1
|
Karthik V, Sundari KA, Shophia Lawrence A, Sivakumar B, Rokhum SL, Dhakshinamoorthy A. Cu(II)-Doped ZIF-8 as a Sustainable Catalyst for the Dehydrogenative Coupling of 2-Aminobenzamide with Methanol. Inorg Chem 2025; 64:9102-9113. [PMID: 40311199 DOI: 10.1021/acs.inorgchem.5c00612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
In this study, an effective and stable Cu2+ incorporated within the lattice of ZIF-8 was hydrothermally synthesized and employed as a heterogeneous catalyst for the dehydrogenative coupling between 2-aminobenzamide and CH3OH. The Cu2+-doped ZIF-8 (Cu@ZIF-8) catalysts were firmly characterized using powder X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, UV-visible diffuse reflectance spectra, and Brunauer-Emmett-Teller techniques to examine their structural, morphological, elemental, optical, and surface properties. The catalytic efficiency of Cu@ZIF-8 was investigated in the synthesis of quinazolinone from 2-aminobenzamide and CH3OH as a C1 source with Cs2CO3 as a base under an oxygen atmosphere. Among the different catalysts, 30% Cu@ZIF-8 catalyst demonstrated superior activity in the formation of quinazolinone compared to pristine ZIF-8, indicating that the doping of the Cu2+ ions provides a synergetic effect during the reaction. Furthermore, reusability experiments were carried out with a 30% Cu@ZIF-8 catalyst, and the observed findings show that the activity is maintained up to four cycles. The structural integrity along with the morphology and chemical structure of the reused solid were also verified, and no significant differences between the fresh and reused solids were observed in the dehydrogenative coupling reaction. Furthermore, a plausible reaction mechanism for this reaction is also proposed.
Collapse
Affiliation(s)
- Veerappan Karthik
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
| | | | | | | | | | - Amarajothi Dhakshinamoorthy
- School of Chemistry, Madurai Kamaraj University, Madurai 625 021, Tamil Nadu, India
- Departamento de Química, Universitat Politècnica de València, C/Camino de Vera, s/n, Valencia 46022, Spain
| |
Collapse
|
2
|
Wang J, Gong T, Zhuang Z, Sun B, Zhang FL. Catalyst-free and oxidant-free cyclocondensation of 2-aminobenzamides with glycosides under visible light. Org Biomol Chem 2025; 23:4371-4375. [PMID: 40237193 DOI: 10.1039/d5ob00443h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025]
Abstract
A convenient and practical method for the mild synthesis of quinazolinones has been developed under visible light at room temperature in the absence of catalysts or additional oxidants. Under very mild reaction conditions, the quinazolinone moiety can be successfully introduced into deoxyuridine and helicid. This method afforded various 5-substituted deoxyuridine analogs and 4-substituted helicid derivatives in moderate to good yields (without column chromatography) across diverse aromatic and aliphatic aldehydes, proving effective for late-stage drug functionalization.
Collapse
Affiliation(s)
- Jian Wang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Tiancheng Gong
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Zirui Zhuang
- Wuhan Britain-China School, Wuhan 430070, P. R. China
| | - Bing Sun
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| | - Fang-Lin Zhang
- School of Chemistry, Chemical Engineering and Life Sciences, Wuhan University of Technology, Wuhan 430070, P. R. China.
| |
Collapse
|
3
|
Huang J, Liu Y, Huang Y, Wu X, Lan XB, Yu JQ, Li W, Zheng P, Zhang J, An Z. TBAI-mediated electrochemical oxidative synthesis of quinazolin-4(3 H)-ones from 2-aminobenzamides and isothiocyanates. Org Biomol Chem 2025. [PMID: 40272072 DOI: 10.1039/d5ob00410a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
A practical protocol has been established to access 2-aminoquinazolin-4(3H)-one derivatives through the electrochemical desulfurative cyclization of 2-aminobenzamides and isothiocyanates. The protocol allows for the formation of C-N bonds under mild conditions without metal catalysts or external oxidants. The practicability of this strategy is demonstrated by its broad substrate scope, good functional group compatibility, and scale-up synthesis.
Collapse
Affiliation(s)
- Jingbin Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Yafeng Liu
- School of Chemistry and Chemical Engineering, North MinzuUniversity, Yinchuan 750000, Ningxia, China
| | - Yu Huang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiuli Wu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Xiao-Bing Lan
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Jian-Qiang Yu
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Wenxue Li
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Ping Zheng
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| | - Jian Zhang
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
- Medicinal Chemistry and Bioinformatics Center, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China.
| | - Zhenyu An
- Key Laboratory of Protection, Development and Utilization of Medicinal Resources in Liupanshan Area, Ministry of Education, Peptide & Protein Drug Research Center, School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
4
|
Maurya MR, Nandi M, Kumar S, Gupta P, Avecilla F. Symmetrical Bis-Hydrazone Ligand-Based Binuclear Oxido/Dioxido-Vanadium(IV/V) Complexes: Synthesis, Reactivity, and Catalytic Applications for the Synthesis of Biologically Potent 2-Phenylquinazolin-4-(3 H)-ones. Inorg Chem 2025; 64:1734-1751. [PMID: 39838882 DOI: 10.1021/acs.inorgchem.4c04035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025]
Abstract
Symmetrical bis(hydrazone)-based ligands, H4dar(bhz)2 (I), H4dar(fah)2 (II), H4dar(nah)2 (III), and H4dar(inh)2 (IV) obtained from 4,6-diacetylresorcinol (H2dar) and different hydrazides [benzoylhydrazide (Hbhz), isonicotinoylhydrazide (Hinh), nicotinoylhydrazide (Hnah), and 2-furoylhydrazide (Hfah)], were used to prepare potassium salts of binuclear cis-[VVO2]+ complexes, {K(H2O)2}2[(VVO2)2dar(bhz)2] (1), {K(H2O)2}2[(VVO2)2dar(fah)2] (2), {K(H2O)2}2[(VVO2)2dar(nah)2] (3), and {K(H2O)2}2[(VVO2)2dar(inh)2] (4), and binuclear [VIVO]2+ complexes, [{VIVO(MeOH)}2dar(bhz)2] (5), [{VIVO(MeOH)}2dar(fah)2] (6), [{VIVO(MeOH)}2dar(nah)2] (7), and [{VIVO(MeOH)}2dar(inh)2] (8). In the presence of warm MeOH/DMSO (4:1), 3 changed to {K(H2O)2}[(VVO2)2Hdar(nah)2]·DMSO (3a·DMSO). Single crystal XRD studies of 1 and 3a confirm a binuclear structure along with a distorted square pyramidal geometry of each vanadium center where bis{ONO(2-)} ligands coordinate through phenolate-O, azomethine-N, and enolate-O atoms of each unit. While growing crystals of 6 in EtOH, part of it oxidizes and gives [{VVO(OEt)}2dar(fah)2] (9) along with powdery 6. Complex 9 has a distorted octahedral structure. These complexes were used as catalysts for the synthesis of biologically important 2-phenylquinazolin-4-(3H)-ones having different aryl aldehydes, and they all show excellent catalytic performance (up to 97% yield) in less reaction time and low temperature, in the presence of 70% aqueous TBHP/30% aqueous H2O2 as a greener oxidant. Generally, these complexes perform better than their mononuclear analogues. Spectroscopy, DFT studies, and isolated intermediates have helped in proposing a suitable reaction mechanism for the catalytic reaction.
Collapse
Affiliation(s)
- Mannar R Maurya
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Monojit Nandi
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Sonu Kumar
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Puneet Gupta
- Department of Chemistry, Indian Institute of Technology Roorkee, Roorkee 247667, India
| | - Fernando Avecilla
- Grupo NanoToxGen, Centro Interdisciplinar de Química y Biología (CICA), Departamento de Química, Facultade de Ciencias, Universidade da Coruña, A Coruna 15071, Spain
| |
Collapse
|
5
|
Davlatboev M, Allabergenova S, Zulpanov F, Yakubov U, Tojiboev A, Sattarov T. Crystal structure and Hirshfeld surface analysis of 2-methyl-quinazolin-4(3 H)-one hydro-chloride. Acta Crystallogr E Crystallogr Commun 2025; 81:144-147. [PMID: 39927380 PMCID: PMC11799796 DOI: 10.1107/s2056989025000258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 01/10/2025] [Indexed: 02/11/2025]
Abstract
The title salt (systematic name: 2-methyl-4-oxo-3,4-dihydroquinazolin-1-ium chloride), C9H9N2O+·Cl-, has ortho-rhom-bic (Pbcm) symmetry. Except for two methyl H atoms, all atoms of the mol-ecular cation are located about a mirror plane, making the quinazolinium moiety exactly planar. Individual mol-ecules are arranged in (001) layers in the crystal. Supra-molecular features include N-H⋯Cl hydrogen-bonding inter-actions, leading to zigzag chains along [010] with D 1 1(2) and C 1 2(6) graph-set motifs. Additionally, weak π-π stacking inter-actions occur between benzene rings in adjacent layers. Hirshfeld surface analysis revealed that the most important contributions to the surface contacts are from H⋯H (36.1%), H⋯C/C⋯H (25.8%), and H⋯O/O⋯H (17.7%) inter-actions.
Collapse
Affiliation(s)
| | - Sevara Allabergenova
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| | - Fazliddin Zulpanov
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| | - Ubaydullo Yakubov
- Institute of the Chemistry of Plant Substances, Uzbekistan Academy of Sciences, Mirzo Ulugbek Str. 77, Tashkent 100170, Uzbekistan
| | - Akmaljon Tojiboev
- University of Geological Sciences, Olimlar Str. 64, Tashkent 100170, Uzbekistan
| | - Tulkinjon Sattarov
- Namangan State University, Boburshoh str. 161, Namangan, 160107, Uzbekistan
| |
Collapse
|
6
|
Manhas N, Kumar G, Dhawan S, Makhanya T, Singh P. A Systematic Review of Synthetic and Anticancer and Antimicrobial Activity of Quinazoline/Quinazolin-4-one Analogues. ChemistryOpen 2025:e202400439. [PMID: 39871708 DOI: 10.1002/open.202400439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 11/25/2024] [Indexed: 01/29/2025] Open
Abstract
Quinazolines/quinazolin-4-ones are significant nitrogen-containing heterocycles that exist in various natural products and synthetic scaffolds with diverse medicinal and pharmacological applications. Researchers across the globe have explored numerous synthetic strategies to develop safer and more potent quinazoline/quinazolinone analogues, particularly for combating cancer and microbial infections. This review systematically examines scholarly efforts toward understanding this scaffold's synthetic pathways and medicinal relevance, emphasizing the role of metal and non-metal catalysts and other reagents in their synthesis. Additionally, the article discusses selected compounds' anticancer and antimicrobial properties, with a brief look into their structure-activity relationships.
Collapse
Affiliation(s)
- Neha Manhas
- Department of Chemistry, Durban University of Technology, ML Sultan Campus, Durban, 4000, South Africa
| | - Gobind Kumar
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Sanjeev Dhawan
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| | - Talent Makhanya
- Department of Chemistry, Durban University of Technology, ML Sultan Campus, Durban, 4000, South Africa
| | - Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu-Natal, P/Bag X54001, Westville, Durban, 4000, South Africa
| |
Collapse
|
7
|
Wu J, Yu L, Li K, Zhang D, Ye L, Xu X, Zhou J, Li Z, Xu H. Electrochemical Synthesis of Quinazolines: N-H/C(sp 3)-H Coupling of o-Carbonyl Anilines with Amino Acids and Amines. J Org Chem 2024; 89:17031-17041. [PMID: 39528414 DOI: 10.1021/acs.joc.4c01173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
A mild and efficient electrochemical protocol for the synthesis of quinazolines through N-H/C(sp3)-H coupling of o-carbonyl anilines with natural amino acids/amines has been developed. The products quinazolines can easily be isolated in moderate to excellent yields under external chemical oxidant-free conditions. Moreover, this reaction can be safely conducted on gram scale.
Collapse
Affiliation(s)
- Jiwei Wu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Lingxiang Yu
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Kaixuan Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Di Zhang
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Longqiang Ye
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Xiaolan Xu
- School of Medical Science, Anhui Medical University, Hefei 230009, P. R. China
| | - Jie Zhou
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Zirong Li
- College of Chemistry and Materials Engineering, Anhui Science and Technology University, Fengyang 233100, P. R. China
| | - Huajian Xu
- School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| |
Collapse
|
8
|
Dasmahapatra U, Maiti B, Chanda K. A microwave assisted tandem synthesis of quinazolinones using ionic liquid supported copper(II) catalyst with mechanistic insights. Org Biomol Chem 2024; 22:8459-8471. [PMID: 39320933 DOI: 10.1039/d4ob01261e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
Quinazolinone is a preferred structural motif with notable pharmacological activity that is present in a wide range of naturally occurring compounds. A microwave assisted tandem cyclooxidative method has been developed to afford quinazolinones via a recyclable ionic liquid supported copper catalyst. This sustainable method exhibits operational simplicity through a rapid, clean, and energy-efficient route and a variety of 2-substituted quinazolinones are obtained in excellent yields. In addition, this innovative approach enables us to develop a library of nitriles in an environment-friendly synthetic protocol. Moreover, the catalyst can be recycled and reused up to three consecutive cycles without any significant loss of catalytic activity. Further organic transformation of the synthesized quinazolinones was carried out to afford reported as well as novel bioactive heterocyclic compounds.
Collapse
Affiliation(s)
- Upala Dasmahapatra
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Barnali Maiti
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore- 632014, India
| | - Kaushik Chanda
- Department of Chemistry, Rabindranath Tagore University, Hojai, Assam-782435, India.
| |
Collapse
|
9
|
R T, Kumar MH, Ankalgi V, Shaikh SF, Al-Enizi AM, Małecki JG, Kshirsagar UA, Rout CS, Dateer RB. Green Approach for the Synthesis of 2-Phenyl-2 H-indazoles and Quinazoline Derivatives Using Sustainable Heterogeneous Copper Oxide Nanoparticles Supported on Activated Carbon and OER Study. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:22918-22930. [PMID: 39410783 DOI: 10.1021/acs.langmuir.4c03054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
This research work reports the synthesis of copper oxide (CuO) nanoparticles supported on activated carbon by a simple impregnation method using 2-propanol as a green solvent, followed by calcination. The synthesized CuO@C is used as an efficient heterogeneous nanocatalyst for the synthesis of 2H-indazoles and quinazolines utilizing commercially available 2-bromobenzaldehydes, primary amines, and sodium azide under ligand-free and base-free conditions. The present methodology demonstrates the formation of new N-N, C-N, and C═N bonds under one-pot reaction conditions using PEG-400 as a green solvent. The reaction pathways are supported by control experiments and mechanistic elucidation. Further, the synthesized catalyst was characterized by a range of microscopic and spectroscopic techniques such as powdered X-ray diffraction, fourier transform infrared spectroscopy, field emission scanning electron microscopy, energy-dispersive X-ray, UV-vis, X-ray photoelectron spectroscopy, high-resolution transmission electron microscopy, and BET-BJH analysis. Importantly, the study focused on the recyclability of the catalyst and successfully showed gram-scale production. Significantly, our active catalyst exhibited an outstanding performance in the oxygen evolution reaction, with an overpotential of 290 mV and a swallow Tafel slope of 91 mV dec-1.
Collapse
Affiliation(s)
- Thrilokraj R
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Maruboina Hemanth Kumar
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Vishwanath Ankalgi
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| | - Shoyebmohamad F Shaikh
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Abdullah M Al-Enizi
- Department of Chemistry, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | | | - Umesh A Kshirsagar
- Department of Chemistry, Indian Institute of Technology, Indore 453552, India
| | - Chandra Sekhar Rout
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
- Department of Chemical Engineering, Chungbuk National University, Cheongju 28644, Chungbuk, Republic of Korea
| | - Ramesh B Dateer
- Centre for Nano and Material Sciences, Jain University, Jain Global Campus, Bangalore, Karnataka 562112, India
| |
Collapse
|
10
|
Gnyawali KP, Shakenov A, Kirinde Arachchige PT, Yi CS. Benzoquinone Ligand-Enabled Ruthenium-Catalyzed Deaminative Coupling of 2-Aminoaryl Aldehydes and Ketones with Branched Amines for Regioselective Synthesis of Quinoline Derivatives. J Org Chem 2024; 89:11119-11135. [PMID: 39058560 DOI: 10.1021/acs.joc.4c00063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/28/2024]
Abstract
The catalytic system generated in situ from the cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) with 2,3,4,5-tetrachloro-1,2-benzoquinone (L1) was found to be highly effective for promoting the deaminative coupling reaction of 2-aminoaryl aldehydes with branched amines to form 2-substituted quinoline products. The analogous deaminative coupling reaction of 2-aminoaryl ketones with branched amines led to the regioselective formation of 2,4-disubstituted quinoline products. A number of biologically active quinoline derivatives including graveolinine and a triplex DNA intercalator have been synthesized by using the catalytic method.
Collapse
Affiliation(s)
| | - Aldiyar Shakenov
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | | | - Chae S Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
11
|
Nandwana NK, Patel OPS, Mehra MK, Kumar A, Salvino JM. Recent Advances in Metal-Catalyzed Approaches for the Synthesis of Quinazoline Derivatives. Molecules 2024; 29:2353. [PMID: 38792215 PMCID: PMC11124210 DOI: 10.3390/molecules29102353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/04/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
Quinazolines are an important class of heterocyclic compounds that have proven their significance, especially in the field of organic synthesis and medicinal chemistry because of their wide range of biological and pharmacological properties. Thus, numerous synthetic methods have been developed for the synthesis of quinazolines and their derivatives. This review article briefly outlines the new synthetic methods for compounds containing the quinazoline scaffold employing transition metal-catalyzed reactions.
Collapse
Affiliation(s)
- Nitesh K. Nandwana
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Om P. S. Patel
- Department of Technical Education, Government Polytechnic Naraini, Banda 210001, India
| | - Manish K. Mehra
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| | - Anil Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani 333031, India
| | - Joseph M. Salvino
- Medicinal Chemistry and Molecular and Cellular Oncogenesis (MCO) Program, The Wistar Institute, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Pal S, Das D, Bhunia S. p-Toluenesulfonic acid-promoted organic transformations for the generation of molecular complexity. Org Biomol Chem 2024; 22:1527-1579. [PMID: 38275082 DOI: 10.1039/d3ob01766d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Since the beginning of this century, p-toluenesulfonic acid (p-TSA) catalysed organic transformations have been an active area of research for developing efficient synthetic methodologies. Often, catalysis using p-TSA is associated with many advantages, such as operational simplicity, high selectivity, excellent yields, and ease of product isolation, which make organic synthesis convenient and versatile. Notably, p-TSA is a non-toxic, commercially available, inexpensive solid organic compound that is soluble in water, alcohols, and other polar organic solvents. p-TSA is a strong acid compared to many protic or mineral acids and its high acidity helps activate different organic functional groups. p-TSA-promoted conversions are fast, have a high atom and pot economy, and feature a multiple bond-forming index. Therefore, the utilization of p-TSA enables the synthesis of many important structural scaffolds without any hazardous metals, making it desirable in numerous applications of sustainable and green chemistry. Recently, this emerging area of research has become one of the pillars of synthetic organic chemistry to synthesise biologically relevant, complex carbocycles and heterocycles. This study provides a comprehensive summary of methods, applications, and mechanistic insights into p-TSA-catalysed organic transformations, covering the literature reports that have appeared since 2012.
Collapse
Affiliation(s)
- Sanchari Pal
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Debjit Das
- Department of Chemistry, Triveni Devi Bhalotia College, Raniganj, India.
| | - Sabyasachi Bhunia
- Department of Chemistry, Central University of Jharkhand, Ranchi, Jharkhand, India.
| |
Collapse
|
13
|
Arumugam A, Senadi GC. Visible-light photocatalyzed C-N bond activation of tertiary amines: a three-component approach to synthesize quinazolines. Org Biomol Chem 2024; 22:1245-1253. [PMID: 38248577 DOI: 10.1039/d3ob02067c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2024]
Abstract
A metal-free three-component approach has been developed to prepare 2,4-disubstituted quinazolines from o-acylanilines, trialkylamines and ammonium chloride under visible-light using eosin Y as the photocatalyst. The notable features of this work include (i) the use of tertiary amines as an alkyl synthon and triethanolamine as a C2-OH synthon; (ii) good functional group tolerance with 52%-98% yields; (iii) proof of concept with o-amino benzaldehyde as a substrate to deliver 2-methyl quinazoline 3pa; and (iv) gram-scale synthesis of compounds 3ga, 3ja and 3ma. A reductive quenching mechanism was proposed based on the control studies and redox potential values.
Collapse
Affiliation(s)
- Ajithkumar Arumugam
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| | - Gopal Chandru Senadi
- Department of Chemistry, College of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur - 603 203, Chengalpattu District, Tamil Nadu, India.
| |
Collapse
|
14
|
Domingues L, Duarte ARC, Jesus AR. How Can Deep Eutectic Systems Promote Greener Processes in Medicinal Chemistry and Drug Discovery? Pharmaceuticals (Basel) 2024; 17:221. [PMID: 38399436 PMCID: PMC10892015 DOI: 10.3390/ph17020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/24/2024] [Accepted: 02/03/2024] [Indexed: 02/25/2024] Open
Abstract
Chemists in the medicinal chemistry field are constantly searching for alternatives towards more sustainable and eco-friendly processes for the design and synthesis of drug candidates. The pharmaceutical industry is one of the most polluting industries, having a high E-factor, which is driving the adoption of more sustainable processes not only for new drug candidates, but also in the production of well-established active pharmaceutical ingredients. Deep eutectic systems (DESs) have emerged as a greener alternative to ionic liquids, and their potential to substitute traditional organic solvents in drug discovery has raised interest among scientists. With the use of DESs as alternative solvents, the processes become more attractive in terms of eco-friendliness and recyclability. Furthermore, they might be more effective through making the process simpler, faster, and with maximum efficiency. This review will be focused on the role and application of deep eutectic systems in drug discovery, using biocatalytic processes and traditional organic chemical reactions, as new environmentally benign alternative solvents. Furthermore, herein we also show that DESs, if used in the pharmaceutical industry, may have a significant effect on lowering production costs and decreasing the impact of this industry on the quality of the environment.
Collapse
Affiliation(s)
| | | | - Ana Rita Jesus
- LAQV-REQUIMTE, Chemistry Department, School of Science and Technology, NOVA University, 2829-516 Caparica, Portugal; (L.D.); (A.R.C.D.)
| |
Collapse
|
15
|
Li J, Gu A, Nong XM, Zhai S, Yue ZY, Li MY, Liu Y. Six-Membered Aromatic Nitrogen Heterocyclic Anti-Tumor Agents: Synthesis and Applications. CHEM REC 2023; 23:e202300293. [PMID: 38010365 DOI: 10.1002/tcr.202300293] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/19/2023] [Indexed: 11/29/2023]
Abstract
Cancer stands as a serious malady, posing substantial risks to human well-being and survival. This underscores the paramount necessity to explore and investigate novel antitumor medications. Nitrogen-containing compounds, especially those derived from natural sources, form a highly significant category of antitumor agents. Among these, antitumor agents with six-membered aromatic nitrogen heterocycles have consistently attracted the attention of chemists and pharmacologists. Accordingly, we present a comprehensive summary of synthetic strategies and clinical implications of these compounds in this review. This entails an in-depth analysis of synthesis pathways for pyridine, quinoline, pyrimidine, and quinazoline. Additionally, we explore the historical progression, targets, mechanisms of action, and clinical effectiveness of small molecule inhibitors possessing these structural features.
Collapse
Affiliation(s)
- Jiatong Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Ao Gu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Xiao-Mei Nong
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Shuyang Zhai
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Zhu-Ying Yue
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Meng-Yao Li
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| | - Yingbin Liu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, 160 Pujian Road, Shanghai, 200127, China
| |
Collapse
|
16
|
Momeni S, Ghorbani-Vaghei R. Green synthesis of quinazoline derivatives using a novel recyclable nano-catalyst of magnetic modified graphene oxide supported with copper. Sci Rep 2023; 13:20958. [PMID: 38017065 PMCID: PMC10684527 DOI: 10.1038/s41598-023-48120-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023] Open
Abstract
A new magnetic nano-catalyst system based on graphene oxide was designed and manufactured (GO@Fe3O4@3-chloropropyltrimethoxysilane@(Z)-N'-(2-hydroxybenzylidene)-4-(pyridin-4-yl)benzohydrazide@Cu(II)), and it was checked and confirmed by various analyzes such as FTIR, XRD, EDX, MAPPING, TGA/DSC, VSM and FESEM. This nano-catalyst was used in the three-component one-pot synthesis of quinazoline derivatives. The products were obtained using this efficient catalyst with high efficiency in short time and solvent-free conditions. Easy separation and acceptable recyclability are other advantages of this new nano-catalyst. Also, the catalyst can be recycled 4 times without a significant change in its efficiency.
Collapse
Affiliation(s)
- Sarieh Momeni
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran.
| |
Collapse
|
17
|
Brožová ZR, Dušek J, Palša N, Maixnerová J, Kamaraj R, Smutná L, Matouš P, Braeuning A, Pávek P, Kuneš J, Gathergood N, Špulák M, Pour M, Carazo A. 2-Substituted quinazolines: Partial agonistic and antagonistic ligands of the constitutive androstane receptor (CAR). Eur J Med Chem 2023; 259:115631. [PMID: 37473690 DOI: 10.1016/j.ejmech.2023.115631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023]
Abstract
Following the discovery of 2-(3-methoxyphenyl)-3,4-dihydroquinazoline-4-one and 2-(3-methoxyphenyl)quinazoline-4-thione as potent, but non-specific activators of the human Constitutive Androstane Receptor (CAR, NR1I3), a series of quinazolinones substituted at the C2 phenyl ring was prepared to examine their ability to selectively modulate human CAR activity. Employing cellular and in vitro TR-FRET assays with wild-type CAR or its variant 3 (CAR3) ligand binding domains (LBD), several novel partial human CAR agonists and antagonists were identified. 2-(3-Methylphenyl) quinazolinone derivatives 7d and 8d acted as partial agonists with the recombinant CAR LBD, the former in nanomolar units (EC50 = 0.055 μM and 10.6 μM, respectively). Moreover, 7d did not activate PXR, and did not show any signs of cytotoxicity. On the other hand, 2-(4-bromophenyl)quinazoline-4-thione 7l possessed significant CAR antagonistic activity, although the compound displayed no agonistic or inverse agonistic activities. A compound possessing purely antagonistic effect was thus identified for the first time. These and related compounds may serve as a remedy in xenobiotic intoxication or, conversely, in suppression of undesirable hepatic CAR activation.
Collapse
Affiliation(s)
- Zuzana Rania Brožová
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jan Dušek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic; Department of Physiology, Faculty of Medicine in Hradec Králové, Charles University, Šimkova 870, 500 03, Hradec Králové, Czech Republic
| | - Norbert Palša
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jana Maixnerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Rajamanikkam Kamaraj
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Lucie Smutná
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Petr Matouš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Albert Braeuning
- Department of Food Safety, German Federal Institute for Risk Assessment, Max-Dohrn-Str. 8-10, 10589, Berlin, Germany
| | - Petr Pávek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Jiří Kuneš
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire, LN6 7DL, United Kingdom
| | - Marcel Špulák
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic
| | - Milan Pour
- Department of Organic and Bioorganic Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Heyrovského 1203, 500 05, Hradec Králové, Czech Republic.
| |
Collapse
|
18
|
Zayed MF. Medicinal Chemistry of Quinazolines as Anticancer Agents Targeting Tyrosine Kinases. Sci Pharm 2023. [DOI: 10.3390/scipharm91020018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023] Open
Abstract
Cancer is a large group of diseases that can affect any organ or body tissue due to the abnormal cellular growth with the unknown reasons. Many of the existing chemotherapeutic agents are highly toxic with a low level of selectivity. Additionally, they lead to development of therapeutic resistance. Hence, the development of targeted chemotherapeutic agents with low side effects and high selectivity is required for cancer treatment. Quinazoline is a vital scaffold well-known to be linked with several biological activities. The anticancer activity is one of the prominent biological activities of this scaffold. Several established anticancer quinazolines work by different mechanisms on the various molecular targets. The aim of this review is to present different features of medicinal chemistry as drug design, structure activity relationship, and mode of action of some targeted anticancer quinazoline derivatives. It gives comprehensive attention on the chemotherapeutic activity of quinazolines in the viewpoint of drug discovery and its development. This review provides panoramic view to the medicinal chemists for supporting their efforts to design and synthesize novel quinazolines as targeted chemotherapeutic agents.
Collapse
|
19
|
Tamatam R, Kim SH, Shin D. Transition-metal-catalyzed synthesis of quinazolines: A review. Front Chem 2023; 11:1140562. [PMID: 37007059 PMCID: PMC10060649 DOI: 10.3389/fchem.2023.1140562] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/27/2023] [Indexed: 03/18/2023] Open
Abstract
Quinazolines are a class of nitrogen-containing heterocyclic compounds with broad-spectrum of pharmacological activities. Transition-metal-catalyzed reactions have emerged as reliable and indispensable tools for the synthesis of pharmaceuticals. These reactions provide new entries into pharmaceutical ingredients of continuously increasing complexity, and catalysis with these metals has streamlined the synthesis of several marketed drugs. The last few decades have witnessed a tremendous outburst of transition-metal-catalyzed reactions for the construction of quinazoline scaffolds. In this review, the progress achieved in the synthesis of quinazolines under transition metal-catalyzed conditions are summarized and reports from 2010 to date are covered. This is presented along with the mechanistic insights of each representative methodology. The advantages, limitations, and future perspectives of synthesis of quinazolines through such reactions are also discussed.
Collapse
Affiliation(s)
- Rekha Tamatam
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
| | - Seok-Ho Kim
- College of Pharmacy, Kangwon National University, Chuncheon, Gangwon-do, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| | - Dongyun Shin
- College of Pharmacy, Gachon University, Incheon, Republic of Korea
- Gachon Pharmaceutical Research Institute, Gachon University, Incheon, Republic of Korea
- *Correspondence: Seok-Ho Kim, ; Dongyun Shin,
| |
Collapse
|
20
|
Reddy Potuganti G, Kandula A, Vashishtha K, Reddy Indukuri D, Alla M. Copper Mediated Direct Amination: Synthesis of 1,2,3,15
a
‐tetrahydro‐14
H
‐pyrrolo[1,2‐
a
]quinazolino[3,2‐
c
]quinazolin‐14‐onederivatives
via
2‐(2‐bromophenyl)quinazolin‐4(3
H
)‐ones. ChemistrySelect 2022. [DOI: 10.1002/slct.202204173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Gal Reddy Potuganti
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Aravind Kandula
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad, 500007 India
| | - Kirti Vashishtha
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Divakar Reddy Indukuri
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Manjula Alla
- Division of Fluoro and Agrochemicals CSIR-Indian Institute of Chemical Technology Tarnaka Hyderabad, 500007 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
21
|
Mild synthesis of quinazolines from 2,2,2-trichloroethyl imidates and 2–aminophenyl ketones. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Geng M, Huang M, Kuang J, Fang W, Miao M, Ma Y. Application of N, N-Dimethylethanolamine as a One-Carbon Synthon for the Synthesis of Pyrrolo[1,2- a]quinoxalines, Quinazolin-4-ones, and Benzo[4,5]imidazoquinazolines via [5 + 1] Annulation. J Org Chem 2022; 87:14753-14762. [PMID: 36254464 DOI: 10.1021/acs.joc.2c02079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The synthesis of N-heterocycles composes a significant part of synthetic chemistry. In this report, a Cu(II)-catalyzed green and efficient synthesis of pyrrolo[1,2-a]quinoxaline, quinazolin-4-one, and benzo[4,5]imidazoquinazoline derivatives was developed, employing N,N-dimethylethanolamine (DMEA) as a C1 synthon. Green oxidant O2 is critical in these transformations, facilitating the formation of a key intermediate─a reactive iminium ion. The method conducted under mild conditions is compatible with a diversity of functional groups, providing an appealing alternative to the previously developed protocols.
Collapse
Affiliation(s)
- Meiqi Geng
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China.,Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Minzhao Huang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Jinqiang Kuang
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| | - Weiwei Fang
- International Innovation Center for Forest Chemicals and Materials, College of Chemical Engineering, Nanjing Forestry University (NFU), Nanjing 210037, China
| | - MaoZhong Miao
- Department of Chemistry, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, 310018 Zhejiang, Hangzhou, China
| | - Yongmin Ma
- Institute of Advanced Studies and School of Pharmaceutical Sciences, Taizhou University, Jiaojiang, 318000 Zhejiang, Taizhou, China
| |
Collapse
|
23
|
Hyland EE, Kelly PQ, McKillop AM, Dherange BD, Levin MD. Unified Access to Pyrimidines and Quinazolines Enabled by N-N Cleaving Carbon Atom Insertion. J Am Chem Soc 2022; 144:19258-19264. [PMID: 36240487 PMCID: PMC9619406 DOI: 10.1021/jacs.2c09616] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
![]()
Given
the ubiquity of heterocycles in biologically active
molecules,
transformations with the capacity to modify such molecular skeletons
with modularity remain highly desirable. Ring expansions that enable
interconversion of privileged heterocyclic motifs are especially interesting
in this regard. As such, the known mechanisms for ring expansion and
contraction determine the classes of heterocycle amenable to skeletal
editing. Herein, we report a reaction that selectively cleaves the
N–N bond of pyrazole and indazole cores to afford pyrimidines
and quinazolines, respectively. This chlorodiazirine-mediated reaction
provides a unified route to a related pair of heterocycles that are
otherwise typically prepared by divergent approaches. Mechanistic
experiments and DFT calculations support a pathway involving pyrazolium
ylide fragmentation followed by cyclization of the ring-opened diazahexatriene
intermediate to yield the new diazine core. Beyond enabling access
to valuable heteroarenes from easily prepared starting materials,
we demonstrate the synthetic utility of skeletal editing in the synthesis
of a Rosuvastatin analog as well as in an aryl vector-adjusting direct
scaffold hop.
Collapse
Affiliation(s)
- Ethan E Hyland
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Patrick Q Kelly
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Alexander M McKillop
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Balu D Dherange
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| | - Mark D Levin
- Department of Chemistry, University of Chicago, Chicago, Illinois 60637, United States
| |
Collapse
|
24
|
Liu S, Wang AJ, Li M, Zhang J, Yin GD, Shu WM, Yu WC. Rh(III)-Catalyzed Tandem Reaction Access to (Quinazolin-2-yl)methanone Derivatives from 2,1-Benzisoxazoles and α-Azido Ketones. J Org Chem 2022; 87:11253-11260. [PMID: 35938613 DOI: 10.1021/acs.joc.2c01214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A Rh(III)-catalyzed tandem reaction for the synthesis of (quinazolin-2-yl)methanone derivatives has been explored from 2,1-benzisoxazoles and α-azido ketones. The transformation involves Rh(III)-catalyzed denitrogenation of α-azido ketones, aza-[4 + 2] cycloaddition, ring opening, and dehydration aromatization processes. Notably, the aza-[4 + 2] cycloaddition of an imine rhodium complex intermediate with 2,1-benzisoxazoles is the key to this reaction.
Collapse
Affiliation(s)
- Shan Liu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - An-Jing Wang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Min Li
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Jing Zhang
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| | - Guo-Dong Yin
- Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, PR China
| | - Wen-Ming Shu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China.,Hubei Key Laboratory of Pollutant Analysis & Reuse Technology, Hubei Normal University, Huangshi 435002, PR China
| | - Wei-Chu Yu
- College of Chemistry and Environmental Engineering, Yangtze University, Jingzhou 434023, PR China
| |
Collapse
|
25
|
DMSO as C1 source under metal‐and oxidant‐free conditions: NH4SCN mediated synthesis of quinazolinone and dihydroquinazolin‐4(1H)‐one derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
26
|
Sarkar R, Gajurel S, Gupta A, Kumar Pal A. Synergistic Catalysis by Copper Oxide/Graphene Oxide Nanocomposites: A Facile Approach to Prepare Quinazolines and Quinazoline Containing Triazole/Tetrazole Moieties under Mild Reaction Conditions. ChemistrySelect 2022. [DOI: 10.1002/slct.202200297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Rajib Sarkar
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Sushmita Gajurel
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Ajay Gupta
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| | - Amarta Kumar Pal
- Department of Chemistry, Centre for Advanced Studies North-Eastern Hill University Shillong 793022 India
| |
Collapse
|
27
|
Sundarraman B, Rengan R, Semeril D. NNO Pincer Ligand-Supported Palladium(II) Complexes: Direct Synthesis of Quinazolines via Acceptorless Double Dehydrogenative Coupling of Alcohols. Organometallics 2022. [DOI: 10.1021/acs.organomet.2c00062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Balaji Sundarraman
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - Ramesh Rengan
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, 620 024 Tiruchirappalli, India
| | - David Semeril
- Laboratoire de Chimie Inorganique et Catalyse, Institut de Chimie, Universite de Strasbourg, UMR 7177, CNRS, 67000 Strasbourg, France
| |
Collapse
|
28
|
Meng XH, Xu XC, Wang Z, Liang YX, Zhao YL. NaN(SiMe3)2/CsTFA Copromoted Aminobenzylation/Cyclization of 2-Isocyanobenzaldehydes with Toluene Derivatives or Benzyl Compounds: One-Pot Access to Dihydroquinazolines and Quinazolines. J Org Chem 2022; 87:3156-3166. [DOI: 10.1021/acs.joc.1c02890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
29
|
Gnyawali K, Kirinde Arachchige PT, Yi CS. Synthesis of Flavanone and Quinazolinone Derivatives from the Ruthenium-Catalyzed Deaminative Coupling Reaction of 2'-Hydroxyaryl Ketones and 2-Aminobenzamides with Simple Amines. Org Lett 2021; 24:218-222. [PMID: 34958227 DOI: 10.1021/acs.orglett.1c03870] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
The cationic Ru-H complex [(C6H6)(PCy3)(CO)RuH]+BF4- (1) with 3,4,5,6-tetrachloro-1,2-benzoquinone (L1) was found to be a highly effective catalyst for the deaminative coupling reaction of 2'-hydroxyaryl ketones with simple amines to form 3-substituted flavanone products. The analogous deaminative coupling reaction of 2-aminobenzamides with branched amines directly formed 3,3-disubstituted quinazolinone products. The catalytic method efficiently installs synthetically useful flavanone and quinazolinone core structures without employing any reactive reagents.
Collapse
Affiliation(s)
- Krishna Gnyawali
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| | | | - Chae S Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53201-1881, United States
| |
Collapse
|
30
|
Prasanth K, Bhargava Reddy M, Anandhan R. Visible‐Light‐Induced Photocatalyst‐Free Oxidative Cyclization of Primary Alcohols by Selectfluor
via
HAT Process: Synthesis of Quinazolinones and Benzothiadiazines. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100590] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kesavan Prasanth
- Department of Organic Chemistry Guindy Campus University of Madras Chennai 600 025 Tamil Nadu India
| | - Mandapati Bhargava Reddy
- Department of Organic Chemistry Guindy Campus University of Madras Chennai 600 025 Tamil Nadu India
| | - Ramasamy Anandhan
- Department of Organic Chemistry Guindy Campus University of Madras Chennai 600 025 Tamil Nadu India
| |
Collapse
|
31
|
Sahoo S, Pal S. Copper-Catalyzed One-Pot Synthesis of Quinazolinones from 2-Nitrobenzaldehydes with Aldehydes: Application toward the Synthesis of Natural Products. J Org Chem 2021; 86:18067-18080. [PMID: 34813342 DOI: 10.1021/acs.joc.1c02343] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A novel, efficient, and atom-economical approach for the construction of quinazolinones from 2-nitrobenzaldehydes has been unveiled via copper-catalyzed nitrile formation, hydrolysis, and reduction in one pot for the first time. In this reaction, urea is used as a source of nitrogen for nitrile formation, hydrazine hydrate is used for both the reduction of the nitro group and the hydrolysis of nitrile, and atmospheric oxygen is used as the sole oxidant. The method portrays a wide substrate scope with good functional group tolerances. Moreover, this method was applied for the synthesis of schizocommunin, tryptanthrin, phaitanthrin-A, phaitanthrin-B, and 8H-quinazolino[4,3-b]quinazolin-8-one.
Collapse
Affiliation(s)
- Subrata Sahoo
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| | - Shantanu Pal
- Organic Chemistry Laboratory, School of Basic Sciences, Indian Institute of Technology Bhubaneswar, Argul, Odisha 752050, India
| |
Collapse
|
32
|
Li S, Ren J, Ding C, Wang Y, Ma C. N, N-Dimethylformamide as Carbon Synthons for the Synthesis of N-Heterocycles: Pyrrolo/Indolo[1,2- a]quinoxalines and Quinazolin-4-ones. J Org Chem 2021; 86:16848-16857. [PMID: 34807611 DOI: 10.1021/acs.joc.1c02067] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
N,N-dimethylformamide (DMF) as synthetic precursors contributing especially the methyl, acyl, and amino groups has played a significant role in heterocycle syntheses and functionalization. In this protocol, a wide range of pyrrolo/indolo[1,2-a]quinoxalines and quinazolin-4-ones were obtained in moderate to good yields by using elemental iodine without any metal or peroxides. We considered that N-methyl and N-acyl of DMF participate and complete the reaction separately through different mechanisms, which displayed potential still to be explored of DMF.
Collapse
Affiliation(s)
- Shichen Li
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Jianing Ren
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chengcheng Ding
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Yishou Wang
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| | - Chen Ma
- School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, P. R. China
| |
Collapse
|
33
|
Zheng L, Xie Z, Cai L, Liu G, Mei W, Zou X, Zhuo X, Fan X, Guo W. Green Catalyst‐ and Additive‐Free Three‐Component Deamination Cyclization Synthesis of 3‐Substituted‐4‐ oxo‐2‐quinazolinonyl Sulfides. ChemistrySelect 2021. [DOI: 10.1002/slct.202103747] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lvyin Zheng
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Zhen Xie
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Liuhuan Cai
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Gongping Liu
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Weijie Mei
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoying Zou
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaoya Zhuo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Xiaolin Fan
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| | - Wei Guo
- Key Laboratory of Organo-Pharmaceutical Chemistry of Jiangxi Province Gannan Normal University Ganzhou 341000 P. R. China
| |
Collapse
|
34
|
Huang J, Chen W, Liang J, Yang Q, Fan Y, Chen MW, Peng Y. α-Keto Acids as Triggers and Partners for the Synthesis of Quinazolinones, Quinoxalinones, Benzooxazinones, and Benzothiazoles in Water. J Org Chem 2021; 86:14866-14882. [PMID: 34624963 DOI: 10.1021/acs.joc.1c01497] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A general and efficient method for the synthesis of quinazolinones, quinoxalinones, benzooxazinones, and benzothiazoles from the reactions of α-keto acids with 2-aminobenzamides, benzene-1,2-diamines, 2-aminophenols, and 2-aminobenzenethiols, respectively, is described. The reactions were conducted under catalyst-free conditions, using water as the sole solvent with no additive required, and successfully applied to the synthesis of sildenafil. More importantly, these reactions can be conducted on a mass scale, and the products can be easily purified through filtration and washing with ethanol (or crystallized).
Collapse
Affiliation(s)
- Jian Huang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Wei Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Jiazhi Liang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Qin Yang
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yan Fan
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Mu-Wang Chen
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| | - Yiyuan Peng
- Key Laboratory for Green Chemistry of Jiangxi Province, Key Laboratory of Functional Small Molecules for Ministry of Education, Jiangxi Normal University, 99 Ziyang Avenue, Nanchang 330022, China
| |
Collapse
|
35
|
Kirinde Arachchige PT, Handunneththige S, Talipov MR, Kalutharage N, Yi CS. Scope and Mechanism of the Redox-Active 1,2-Benzoquinone Enabled Ruthenium-Catalyzed Deaminative α-Alkylation of Ketones with Amines. ACS Catal 2021. [DOI: 10.1021/acscatal.1c04732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Suhashini Handunneththige
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Marat R. Talipov
- Department of Chemistry and Biochemistry, New Mexico State University, Las Cruces, New Mexico 88003, United States
| | - Nishantha Kalutharage
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| | - Chae S. Yi
- Department of Chemistry, Marquette University, Milwaukee, Wisconsin 53233, United States
| |
Collapse
|
36
|
Toffano M, Guillot R, Bournaud C, Brière J, Vo‐Thanh G. Auto Tandem Catalysis: Asymmetric Vinylogous Cycloaddition/Kinetic Resolution Sequence for the Enantioselective Synthesis of Spiro‐Dihydropyranone from Benzylidene Meldrum's Acid. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100559] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Martial Toffano
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| | - Régis Guillot
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| | - Chloée Bournaud
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| | | | - Giang Vo‐Thanh
- Institut de Chimie Moléculaire et des Matériaux d'Orsay, CNRS UMR 8182 Université Paris Saclay 91405 Orsay Cedex France
| |
Collapse
|
37
|
Chakraborty G, Mondal R, Guin AK, Paul ND. Nickel catalyzed sustainable synthesis of benzazoles and purines via acceptorless dehydrogenative coupling and borrowing hydrogen approach. Org Biomol Chem 2021; 19:7217-7233. [PMID: 34612344 DOI: 10.1039/d1ob01154e] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Herein we report nickel-catalyzed sustainable synthesis of a few chosen five-membered fused nitrogen heterocycles such as benzimidazole, purine, benzothiazole, and benzoxazole via acceptorless dehydrogenative functionalization of alcohols. Using a bench stable, easy to prepare, and inexpensive Ni(ii)-catalyst, [Ni(MeTAA)] (1a), featuring a tetraaza macrocyclic ligand (tetramethyltetraaza[14]annulene (MeTAA)), a wide variety of polysubstituted benzimidazole, purine, benzothiazole, and benzoxazole derivatives were prepared via dehydrogenative coupling of alcohols with 1,2-diaminobenzene, 4,5-diaminopyrimidine, 2-aminothiphenol, and 2-aminophenol, respectively. A wide array of benzimidazoles were also prepared via a borrowing hydrogen approach involving alcohols as hydrogen donors and 2-nitroanilines as hydrogen acceptors. A few control experiments were performed to understand the reaction mechanism.
Collapse
Affiliation(s)
- Gargi Chakraborty
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | | | | | | |
Collapse
|
38
|
Philips A, Raja D, Arumugam A, Lin W, Chandru Senadi G. Copper‐Catalyzed Oxidative C−C Cleavage of Carbohydrates: An Efficient Access to Quinazolinone Scaffolds. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100317] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Abigail Philips
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
| | - Dineshkumar Raja
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| | - Ajithkumar Arumugam
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| | - Wei‐Yu Lin
- Department of Medicinal and Applied Chemistry Kaohsiung Medical University Kaohsiung 80708 Taiwan
- Department of Medical Research Kaohsiung Medical University Hospital Kaohsiung 80708 Taiwan
| | - Gopal Chandru Senadi
- Department of Chemistry, Faculty of Engineering and Technology SRM Institute of Science and Technology Kattankulathur Tamilnadu 603203 India
| |
Collapse
|
39
|
Yang J, Xie Z, Chen Z, Jin L, Li Q, Le Z. Catalyst‐free synthesis of quinazolinones by oxidative cyclization under visible light in the absence of additives. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Jiangnan Yang
- Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
- School of Chemistry, Biology and Material Science East China University of Technology Nanchang China
| | - Zongbo Xie
- Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
- School of Chemistry, Biology and Material Science East China University of Technology Nanchang China
| | - Zhongsheng Chen
- Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
- School of Chemistry, Biology and Material Science East China University of Technology Nanchang China
| | - Liang Jin
- Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
- School of Chemistry, Biology and Material Science East China University of Technology Nanchang China
| | - Qian Li
- Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
- School of Chemistry, Biology and Material Science East China University of Technology Nanchang China
| | - Zhanggao Le
- Jiangxi Province Key Laboratory of Synthetic Chemistry East China University of Technology Nanchang China
- School of Chemistry, Biology and Material Science East China University of Technology Nanchang China
| |
Collapse
|
40
|
Yuan F, Xie S, Zhuo L, Wang L, Zhu H. Metal‐Free Synthesis of 2‐Aryl Quinazolines via Tandem C−H/N−H Bond Functionalization. ChemistrySelect 2021. [DOI: 10.1002/slct.202100990] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Affiliation(s)
- Feixiang Yuan
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Shihua Xie
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Liang Zhuo
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Lei Wang
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| | - Hongjun Zhu
- College of Chemistry and Molecular Engineering Nanjing Tech University No. 30 North Puzhu Road Nanjing 211816 P. R. China
| |
Collapse
|
41
|
Wang C, Rui X, Si D, Dai R, Zhu Y, Wen H, Li W, Liu J. Copper‐Catalyzed Three‐Component Cascade Reaction of Benzaldehyde with Benzylamine and Hydroxylamine or Aniline: Synthesis of 1,2,4‐Oxadiazoles and Quinazolines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001535] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Chao Wang
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Xiyan Rui
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Dongjuan Si
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Rupeng Dai
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Yueyue Zhu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Hongmei Wen
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Wei Li
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| | - Jian Liu
- School of Pharmacy Nanjing University of Chinese Medicine Nanjing 210023 People's Republic of China
| |
Collapse
|
42
|
Teng F, Yu T, Peng Y, Hu W, Hu H, He Y, Luo S, Zhu Q. Palladium-Catalyzed Atroposelective Coupling–Cyclization of 2-Isocyanobenzamides to Construct Axially Chiral 2-Aryl- and 2,3-Diarylquinazolinones. J Am Chem Soc 2021; 143:2722-2728. [DOI: 10.1021/jacs.1c00640] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Fan Teng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, China
| | - Ting Yu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yan Peng
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Weiming Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
| | - Huaanzi Hu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Shuang Luo
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| | - Qiang Zhu
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, 190 Kaiyuan Avenue, Guangzhou 510530, China
- University of Chinese Academy of Sciences, No. 19(A) Yuquan Road, Shijingshan District, Beijing 100049, China
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou 510005, China
| |
Collapse
|
43
|
Saha D, Taily IM, Naik S, Banerjee P. Electrochemical access to benzimidazolone and quinazolinone derivatives via in situ generation of isocyanates. Chem Commun (Camb) 2021; 57:631-634. [PMID: 33346276 DOI: 10.1039/d0cc07125k] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Isocyanates are the key intermediates for several organic transformations towards the synthesis of diverse pharmaceutical targets. Herein, we report the development of an oxidant-free protocol for electrochemical in situ generation of isocyanates. This strategy highlights expedient access to benzimidazolones and quinazolinones and eliminates the need for exogenous oxidants. Furthermore, detailed mechanistic studies provide strong support towards our hypothesis of in situ isocyanate generation.
Collapse
Affiliation(s)
- Debarshi Saha
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Irshad Maajid Taily
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Sumitra Naik
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| | - Prabal Banerjee
- Department of Chemistry, Indian Institute of Technology Ropar, Nangal Road, Rupnagar, Punjab-140001, India.
| |
Collapse
|
44
|
Berger KJ, Levin MD. Reframing primary alkyl amines as aliphatic building blocks. Org Biomol Chem 2021; 19:11-36. [PMID: 33078799 DOI: 10.1039/d0ob01807d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While primary aliphatic amines are ubiquitous in natural products, they are traditionally considered inert to substitution chemistry. This review highlights historical and recent advances in the field of aliphatic deamination chemistry which demonstrate these moieties can be harnessed as valuable C(sp3) synthons. Cross-coupling and photocatalyzed transformations proceeding through polar and radical mechanisms are compared with oxidative deamination and other transition metal catalyzed reactions.
Collapse
Affiliation(s)
- Kathleen J Berger
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
45
|
Chen Y, Xia L, Chang Y, Ma W, Wang B. Application of N-Alkyl Amines as Versatile Building Blocks in Oxidative Coupling Reactions. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202009034] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
46
|
Zhang SQ, Cui Y, Guo B, Young DJ, Xu Z, Li HX. Efficient synthesis of quinazolines by the iron-catalyzed acceptorless dehydrogenative coupling of (2-aminophenyl)methanols and benzamides. Tetrahedron 2021. [DOI: 10.1016/j.tet.2020.131825] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
47
|
Laha JK, Gulati U, Saima, Gupta A, Indurthi HK. Improved, gram-scale synthesis of sildenafil in water using arylacetic acid as the acyl source in the pyrazolo[4,3- d]pyrimidin-7-one ring formation. NEW J CHEM 2021. [DOI: 10.1039/d0nj01236j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An improved, gram-scale synthesis of the blockbuster drug sildenafil, used for the treatment of male erectile dysfunction, has been developed.
Collapse
Affiliation(s)
- Joydev K. Laha
- Department of Pharmaceutical Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar
- India
| | - Upma Gulati
- Department of Pharmaceutical Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar
- India
| | - Saima
- Department of Pharmaceutical Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar
- India
| | - Anjali Gupta
- Department of Pharmaceutical Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar
- India
| | - Harish Kumar Indurthi
- Department of Pharmaceutical Technology (Process Chemistry) National Institute of Pharmaceutical Education and Research S. A. S. Nagar
- India
| |
Collapse
|
48
|
Tian Q, Zhang J, Xu L, Wei Y. Synthesis of quinazolin-4(3H)-ones via electrochemical decarboxylative cyclization of α‑keto acids with 2-aminobenzamides. MOLECULAR CATALYSIS 2021. [DOI: 10.1016/j.mcat.2020.111345] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
49
|
Dong Y, Zhang J, Yang J, Yan C, Wu Y. An efficient transition-metal-free route to quinazolin-4(3 H)-ones via 2-aminobenzamides and thiols. NEW J CHEM 2021. [DOI: 10.1039/d1nj03179a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
An efficient approach to quinazolin-4(3H)-ones was developed by a one-pot intermolecular annulation reaction of o-amino benzamides and thiols.
Collapse
Affiliation(s)
- Yibo Dong
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Jinli Zhang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P. R. China
- College of Chemistry, Green Catalytic Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Jinchen Yang
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P. R. China
| | - Congcong Yan
- College of Chemistry, Green Catalytic Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| | - Yangjie Wu
- Henan Key Laboratory of Chemical Biology and Organic Chemistry Key Laboratory of Applied Chemistry of Henan Universities, Zhengzhou University, Zhengzhou, 450052, P. R. China
- College of Chemistry, Green Catalytic Center, Zhengzhou University, Zhengzhou 450001, P. R. China
| |
Collapse
|
50
|
Bhargava Reddy M, Prasanth K, Anandhan R. Visible-light induced copper(i)-catalyzed oxidative cyclization of o-aminobenzamides with methanol and ethanol via HAT. Org Biomol Chem 2020; 18:9601-9605. [PMID: 33226372 DOI: 10.1039/d0ob02234a] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of the in situ generated ligand-copper superoxo complex absorbing light energy to activate the alpha C(sp3)-H of MeOH and EtOH via the hydrogen atom transfer (HAT) process for the synthesis of quinazolinones by oxidative cyclization of alcohols with o-aminobenzamide has been investigated. The synthetic utility of this protocol offers an efficient synthesis of a quinazolinone intermediate for erlotinb (anti-cancer agent) and 30 examples were reported.
Collapse
|