1
|
Fudickar W, Linker T. Toggling the Oxygen Affinity between Anthracenes and Naphthalenes. Angew Chem Int Ed Engl 2024; 63:e202411079. [PMID: 39022983 DOI: 10.1002/anie.202411079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/25/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024]
Abstract
We present the design of an anthracenyl-naphthyl (ANT-NAPH) dyad and its application as a luminescent 4-stage photo switch. Both segments can individually react with singlet oxygen to switch off an optical response. In their initial form the larger ANT component reacts significantly faster and thus an ANTO2-NAPH stage is turned on, observed by optical response of the remaining NAPH. To reduce its reactivity, ANT is substituted with two pyridine rings. This concept is first investigated and quantified on ANT and NAPH as separated molecules. Upon protonation the reaction of ANT becomes significantly slower. For the three possible pyridyl isomers this effect increases along the order meta
Collapse
Affiliation(s)
- Werner Fudickar
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| | - Torsten Linker
- Department of Chemistry, University of Potsdam, Karl-Liebknecht-Str. 24-25, D-14476, Potsdam, Germany
| |
Collapse
|
2
|
Jansen-van Vuuren RD, Liu S, Miah MAJ, Cerkovnik J, Košmrlj J, Snieckus V. The Versatile and Strategic O-Carbamate Directed Metalation Group in the Synthesis of Aromatic Molecules: An Update. Chem Rev 2024; 124:7731-7828. [PMID: 38864673 PMCID: PMC11212060 DOI: 10.1021/acs.chemrev.3c00923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 04/26/2024] [Accepted: 05/08/2024] [Indexed: 06/13/2024]
Abstract
The aryl O-carbamate (ArOAm) group is among the strongest of the directed metalation groups (DMGs) in directed ortho metalation (DoM) chemistry, especially in the form Ar-OCONEt2. Since the last comprehensive review of metalation chemistry involving ArOAms (published more than 30 years ago), the field has expanded significantly. For example, it now encompasses new substrates, solvent systems, and metalating agents, while conditions have been developed enabling metalation of ArOAm to be conducted in a green and sustainable manner. The ArOAm group has also proven to be effective in the anionic ortho-Fries (AoF) rearrangement, Directed remote metalation (DreM), iterative DoM sequences, and DoM-halogen dance (HalD) synthetic strategies and has been transformed into a diverse range of functionalities and coupled with various groups through a range of cross-coupling (CC) strategies. Of ultimate value, the ArOAm group has demonstrated utility in the synthesis of a diverse range of bioactive and polycyclic aromatic compounds for various applications.
Collapse
Affiliation(s)
- Ross D. Jansen-van Vuuren
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Susana Liu
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| | - M. A. Jalil Miah
- Department
of Chemistry, Rajshahi University, Rajshahi-6205, Bangladesh
| | - Janez Cerkovnik
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Janez Košmrlj
- Faculty
of Chemistry and Chemical Technology, University
of Ljubljana, Večna pot 113, 1000 Ljubljana, Slovenia
| | - Victor Snieckus
- Department
of Chemistry, Queen’s University, Chernoff Hall, 9 Bader Lane, Kingston, Ontario K7K 2N1, Canada
| |
Collapse
|
3
|
Bone KI, Puleo TR, Bandar JS. Direct C-H Hydroxylation of N-Heteroarenes and Benzenes via Base-Catalyzed Halogen Transfer. J Am Chem Soc 2024; 146:9755-9767. [PMID: 38530788 PMCID: PMC11006572 DOI: 10.1021/jacs.3c14058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2024]
Abstract
Hydroxylated (hetero)arenes are valued in many industries as both key constituents of end products and diversifiable synthetic building blocks. Accordingly, the development of reactions that complement and address the limitations of existing methods for the introduction of aromatic hydroxyl groups is an important goal. To this end, we apply base-catalyzed halogen transfer (X-transfer) to enable the direct C-H hydroxylation of mildly acidic N-heteroarenes and benzenes. This protocol employs an alkoxide base to catalyze X-transfer from sacrificial 2-halothiophene oxidants to aryl substrates, forming SNAr-active intermediates that undergo nucleophilic hydroxylation. Key to this process is the use of 2-phenylethanol as an inexpensive hydroxide surrogate that, after aromatic substitution and rapid elimination, provides the hydroxylated arene and styrene byproduct. Use of simple 2-halothiophenes allows for C-H hydroxylation of 6-membered N-heteroarenes and 1,3-azole derivatives, while a rationally designed 2-halobenzothiophene oxidant extends the scope to electron-deficient benzene substrates. Mechanistic studies indicate that aromatic X-transfer is reversible, suggesting that the deprotonation, halogenation, and substitution steps operate in synergy, manifesting in unique selectivity trends that are not necessarily dependent on the most acidic aryl position. The utility of this method is further demonstrated through streamlined target molecule syntheses, examples of regioselectivity that contrast alternative C-H hydroxylation methods, and the scalable recycling of the thiophene oxidants.
Collapse
Affiliation(s)
- Kendelyn I. Bone
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Thomas R. Puleo
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| | - Jeffrey S. Bandar
- Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523, United States
| |
Collapse
|
4
|
Göbel D, Míguez-Lago S, Ruedas-Rama MJ, Orte A, Campaña AG, Juríček M. Circularly Polarized Luminescence of [6]Helicenes via Excited‐State Intramolecular Proton Transfer. Helv Chim Acta 2022. [DOI: 10.1002/hlca.202100221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Dominik Göbel
- Universitat Zurich Department of Chemistry SWITZERLAND
| | | | | | - Angel Orte
- University of Granada: Universidad de Granada Department of Physical Chemistry SPAIN
| | | | - Michal Juríček
- University of Zurich Department of Chemistry Winterthurerstrasse 190 8057 Zurich SWITZERLAND
| |
Collapse
|
5
|
Dual-mode sensing of biomarkers based on nano 3D Cu-Flo.@AuNPs-electrocatalyzed oxidation of glucose inducing in-situ H 2O 2-generation system. Biosens Bioelectron 2022; 198:113820. [PMID: 34844168 DOI: 10.1016/j.bios.2021.113820] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 11/05/2021] [Accepted: 11/17/2021] [Indexed: 11/21/2022]
Abstract
A bimodal 3D-electrochemiluminescence (ECL) analysis method was developed, which integrated simpleness, label-free, high-throughput and real time detection together. Firstly, a novel 3D copper-based nanosheet micro-material (Cu-Flo. NMs) coupled with gold nanoparticles/Cysteine (Cu-Flo.@AuNPs-Cys) was prepared to use as the versatile label for both colorimetric and ECL techniques. The 3D-Cu-Flo.@AuNPs-Cys having glucose oxidase-like activity could catalyze glucose to produce H2O2 in situ, which was further found to be capable of exhibiting a 30.95-fold higher ECL-intensity for luminol than bare glassy carbon electrodes (GCE). Taking advantages of the 3D-Cu-Flo.@AuNPs-Cys above, a colorimetric and ECL-channel sensor (GCE/3D-Cu-Flo.@AuNPs-Cys) were constructed simultaneously for glucose detection. The fabricated sensor displayed a wide linear range (Glucose: 0.001-50 mmol L-1, AFP: 2.25 × 10-7-225 ng mL-1), impressive low limit of detection (Glucose: 1.27 × 10-7 mol L-1, AFP: 1.92 × 10-8 ng mL-1, S/N = 3) and acceptable recovery (Glucose: 94% ∼ 104%, AFP: 96.04% ∼ 102.29%) in practical sample. Furthermore, the biosensor showed ultrafast (0.5 min) analysis efficiency, high stability for 6 cyclic potential scans and satisfactory reproducibility for 7 repeated tests. These results demonstrated the proposed 3D dual-modal ECL-biosensor for biomarkers detection had a great potential in clinical diagnostics, promoting the application in biomedical researching and POCT.
Collapse
|
6
|
Dar AH, Gowri V, Mishra RK, Khan R, Jayamurugan G. Nanotechnology-Assisted, Single-Chromophore-Based White-Light-Emitting Organic Materials with Bioimaging Properties. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:430-438. [PMID: 34965146 DOI: 10.1021/acs.langmuir.1c02797] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
White-light-emitting (WLE) organic materials, especially small molecules comprising a single chromophoric unit, have received much attention due to their tremendous use in modern-day electronic devices and biomaterials. They can increase the efficiency and lifetime of devices compared to the currently used combination approach. Herein, we explored a small symmetric push-pull organic molecule Hexyl-TCBD with a single 1,1,4,4-tetracyanobuta-1,3-diene (TCBD) chromophoric unit containing urea as a key functional group on an acceptor-donor∼donor-acceptor (A-D∼D-A) backbone for its ability to show white-light emission in solution as well as in the solid state. The luminescence was absent in the solid state due to the H-bonding- and π-stacking-driven quenching processes, while emission behavior in solution was tunable with variable CIE chromaticity index values via hydrogen (H)-bonding-governed disaggregation phenomena. Translation of WLE from the Hexyl-TCBD solution to a solid state was demonstrated by utilizing nonemissive polystyrene (80 wt % with respect to the chromophore) as the matrix to obtain WLE nanofibers (made by the electrospun technique) via segregating the molecules. The optical microscopy study validated the WLE nanofibers. The presence of multicolor photoluminescence, including white light, could be fine-tuned through various excitation wavelengths, solvent polarities, and polystyrene matrices. Furthermore, the detailed photophysical studies, including lifetime measurements, indicated that the inherent intramolecular charge transfer (ICT) bands of Hexyl-TCBD exhibit better ICT state stabilization by space charge distribution through the modulation of H-bonding between urea groups. Finally, a cytotoxicity study was performed for Hexyl-TCBD on normal and cancer cell lines using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide (MTT) assay to explore bioimaging applications in biosystems. MTT results revealed significant toxicity toward cancer cells, whereas normal cells exhibited good biocompatibility.
Collapse
Affiliation(s)
- Arif Hassan Dar
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Vijayendran Gowri
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Rakesh Kumar Mishra
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Rehan Khan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| | - Govindasamy Jayamurugan
- Institute of Nano Science and Technology, Knowledge City, Sector 81, SAS Nagar, Manauli PO, Mohali, Punjab 140306, India
| |
Collapse
|
7
|
Song L, Meng X, Zhao J, Han H, Zheng D. Effects of azole rings with different chalcogen atoms on ESIPT behavior for benzochalcogenazolyl-substituted hydroxyfluorenes. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 264:120296. [PMID: 34454130 DOI: 10.1016/j.saa.2021.120296] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/05/2021] [Accepted: 08/14/2021] [Indexed: 06/13/2023]
Abstract
ESIPT behavior has attracted a lot of eyes of researchers in recent years because of its unique optical properties. Due to its large Stokes shift and double emission fluorescence, white light can be generated in the fluorophore based on the excited state intramolecular proton transfer (ESIPT) principle. The excited state proton transfer behavior of hydroxylated benzoxazole (BO-OH), benzothiazole (BS-OH) and benzoselenazole (BSe-OH) have been investigated in heptane, chloroform and DMF solvents. By comparing the infrared vibration spectra and the variation of bond parameters from the S0 to S1 states, and analyzing the frontier molecular orbitals, the influence of hydrogen bond dynamics, the solvent polarity, charge redistribution and the effects of different proton acceptors on proton transfer were observed. The only structural difference among the three substituted hydroxyfluorenes is the heteroatom in the azole ring (oxygen, sulfur and selenium, respectively). We have scanned the potential energy curve of the ESIPT process, and compared the potential barrier, it is found that the heavier chalcogen atoms are more favorable for proton transfer. At the same time, the potential application of changing heteroatoms in the azole ring by walking down the chalcogenic group in crystal luminescence color regulation is also discussed.
Collapse
Affiliation(s)
- Liying Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Xuan Meng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China
| | - Jinfeng Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| | - Haiyun Han
- People's Hospital of Dingtao District, Heze, Shandong Province 274199, China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao 266237, China.
| |
Collapse
|
8
|
Hess A, Guelen HC, Alandini N, Mourati A, Guersoy YC, Knochel P. Preparation of Polyfunctionalized Aromatic Nitriles from Aryl Oxazolines. Chemistry 2022; 28:e202103700. [PMID: 34766655 PMCID: PMC9300023 DOI: 10.1002/chem.202103700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Indexed: 12/17/2022]
Abstract
A selective ortho,ortho'-functionalization of readily available aryl oxazolines by two successive magnesiations with sBu2 Mg in toluene followed by trapping reactions with electrophiles, such as (hetero)aryl iodides or bromides, iodine, tosyl cyanide, ethyl cyanoformate or allylic bromides (39 examples, 62-99 % yield) is reported. Treatment of these aryl oxazolines with excess oxalyl chloride and catalytic amounts of DMF (50 °C, 4 h) provided the corresponding nitriles (36 examples, 73-99 % yield). Conversions of these nitriles to valuable heterocycles are reported, and a tentative mechanism is proposed.
Collapse
Affiliation(s)
- A. Hess
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - H. C. Guelen
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - N. Alandini
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - A. Mourati
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - Y. C. Guersoy
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| | - P. Knochel
- Department ChemieLudwig-Maximilians-Universität MünchenButenandtstrasse 5–13, Haus F81377MünchenGermany
| |
Collapse
|
9
|
Song L, Meng X, Han H, Zhao J, Zheng D. Theoretical regulation of ESIPT behavior by varying the π-expansion of proton acceptor for substituted hydroxyl fluorenes. Chem Phys 2022. [DOI: 10.1016/j.chemphys.2021.111376] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
10
|
Talbi W, Kraiem J, Kacem Y, Marrot J, Marque S. Efficacious One-pot Synthesis of 2-thiazolines and 2-oxazolines Under Solvent and Metal-Free Conditions. CURRENT ORGANOCATALYSIS 2021. [DOI: 10.2174/2213337208666210402130444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
2-oxazolines and 2-thiazolines are important heterocycles due to their extensive
applications in chemistry, biochemistry, and pharmacology. Most of the precedent methods
for preparing these heterocycles involve one or more drawbacks, including harsh reaction conditions,
long reaction times, low yields of products, high temperature, and toxic solvents.
Objective:
The aim of this study was to develop a new and eco-efficient method for the preparation
of 2-oxazolines and 2-thiazolines.
Methods:
Amino alcohols were condensed with nitriles in a sealed tube under solvent-free and metal-
free conditions.
Results:
Our procedure appears to be highly eco-efficient and promotes quantitative access to 2-oxazolines
and 2-thiazolines using simple and minimum manipulation.
Conclusion:
This simple approach allows high conversion for different nitriles yielded from 78 to
99% and easy isolation of the targeted products without further purification. To the best of our
knowledge, our procedure is the most efficient and fast method reported to date in terms of chemical
yields, number of steps, and atom economy.
Collapse
Affiliation(s)
- Wassima Talbi
- Laboratoire de Developpement Chimique, Galenique et Pharmacologique des Medicaments (LR12ES09), Universite de Monastir, Faculte de Pharmacie de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Jamil Kraiem
- Laboratoire de Developpement Chimique, Galenique et Pharmacologique des Medicaments (LR12ES09), Universite de Monastir, Faculte de Pharmacie de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Yakdhane Kacem
- Laboratoire de Developpement Chimique, Galenique et Pharmacologique des Medicaments (LR12ES09), Universite de Monastir, Faculte de Pharmacie de Monastir, Rue Avicenne, 5000, Monastir, Tunisia
| | - Jérôme Marrot
- Universite Versailles Saint- Quentin-en-Yvelines, Institut Lavoisier de Versailles (ILV), UMR CNRS 8180, 45 avenue des Etats-Unis, 78 035 Versailles Cedex, France
| | - Sylvain Marque
- Universite Versailles Saint- Quentin-en-Yvelines, Institut Lavoisier de Versailles (ILV), UMR CNRS 8180, 45 avenue des Etats-Unis, 78 035 Versailles Cedex, France
| |
Collapse
|
11
|
Song L, Meng X, Zhao J, Han H, Zheng D. Excited-state intramolecular double proton transfer mechanism associated with solvent polarity for 9,9-dimethyl-3,6-dihydroxy-2,7-bis(4,5-dihydro-4,4-dimethyl-2-oxazolyl)fluorene compound. Mol Phys 2021. [DOI: 10.1080/00268976.2021.2007307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Liying Song
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, People’s Republic of China
| | - Xuan Meng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, People’s Republic of China
| | - Jinfeng Zhao
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, People’s Republic of China
| | - Haiyun Han
- People's Hospital of Dingtao District, Heze, People’s Republic of China
| | - Daoyuan Zheng
- Institute of Molecular Sciences and Engineering, Institute of Frontier and Interdisciplinary Science, Shandong University, Qingdao, People’s Republic of China
| |
Collapse
|
12
|
Göbel D, Rusch P, Duvinage D, Stauch T, Bigall NC, Nachtsheim BJ. Substitution Effect on 2-(Oxazolinyl)-phenols and 1,2,5-Chalcogenadiazole -Annulated Derivatives: Emission-Color-Tunable, Minimalistic Excited-State Intramolecular Proton Transfer (ESIPT)-Based Luminophores. J Org Chem 2021; 86:14333-14355. [PMID: 34581564 DOI: 10.1021/acs.joc.1c00846] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Minimalistic 2-(oxazolinyl)-phenols substituted with different electron-donating and -withdrawing groups as well as 1,2,5-chalcogenadiazole-annulated derivatives thereof were synthesized and investigated in regard to their emission behavior in solution as well as in the solid state. Depending on the nature of the incorporated substituent and its position, emission efficiencies were increased or diminished, resulting in AIE or ACQ characteristics. Single-crystal analysis revealed J- and H-type packing motifs and a so-far undescribed isolation of ESIPT-based fluorophores in the keto form.
Collapse
Affiliation(s)
- Dominik Göbel
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Pascal Rusch
- Leibniz Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), D-30167 Hannover, Germany
| | - Daniel Duvinage
- Institute for Inorganic and Crystallographic Chemistry, University of Bremen, 28359 Bremen, Germany
| | - Tim Stauch
- Institute for Physical and Theoretical Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany.,Bremen Center for Computational Materials Science, University of Bremen, Am Fallturm 1, D-28359 Bremen, Germany.,MAPEX Center for Materials and Processes, University of Bremen, Bibliothekstraße 1, D-28359 Bremen, Germany
| | - Nadja-C Bigall
- Leibniz Universität Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.,Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), D-30167 Hannover, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, 28359 Bremen, Germany
| |
Collapse
|
13
|
Murie VE, Nicolino PV, Dos Santos T, Gambacorta G, Nishimura RHV, Perovani IS, Furtado LC, Costa-Lotufo LV, Moraes de Oliveira A, Vessecchi R, Baxendale IR, Clososki GC. Synthesis of 7-Chloroquinoline Derivatives Using Mixed Lithium-Magnesium Reagents. J Org Chem 2021; 86:13402-13419. [PMID: 34553940 DOI: 10.1021/acs.joc.1c01521] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We have prepared a library of functionalized quinolines through the magnesiation of 7-chloroquinolines under mild conditions, employing both batch and continuous flow conditions. The preparation involved the generation of mixed lithium-magnesium intermediates, which were reacted with different electrophiles. Mixed lithium-zinc reagents allowed the synthesis of halogenated and arylated derivatives. Some of the synthesized 4-carbinol quinolines have shown interesting antiproliferative properties, their hydroxyl group being a suitable amino group bioisostere. We also report a two-step approach for optically active derivatives.
Collapse
Affiliation(s)
- Valter E Murie
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Paula V Nicolino
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Thiago Dos Santos
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Guido Gambacorta
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Rodolfo H V Nishimura
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café S/N, Ribeirão Preto 14040-903, Brazil
| | - Icaro S Perovani
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| | - Luciana C Furtado
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo 05508-900, Brazil
| | - Leticia V Costa-Lotufo
- Departamento de Farmacologia, Instituto de Ciências Biomédicas, Universidade de São Paulo, Av. Prof. Lineu Prestes 1524, São Paulo 05508-900, Brazil
| | - Anderson Moraes de Oliveira
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| | - Ian R Baxendale
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom
| | - Giuliano C Clososki
- Department of Chemistry, Durham University, South Road, Durham DH1 3LE, United Kingdom.,Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto 14040-901, Brazil
| |
Collapse
|
14
|
Zhao G, Shi W, Yang Y, Ding Y, Li Y. Substituent Effects on Excited-State Intramolecular Proton Transfer Reaction of 2-Aryloxazoline Derivatives. J Phys Chem A 2021; 125:2743-2750. [PMID: 33780249 DOI: 10.1021/acs.jpca.0c10799] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Different substituents and benzene ring numbers had significant effects on the fluorescence phenomenon of 2-aryloxazoline derivatives as observed in an experiment. Here, we select five 2-aryloxazoline derivatives with different substituents and benzene ring numbers (2u, 2ad, 2af, 2ai, and 2ah) to analyze the effects on the fluorescence phenomena. For 2ad, 2ah, and 2ai, first, the geometric structures are optimized based on the density functional theory and time-dependent density functional theory methods. The analysis of the obtained bond parameters reveals the variation of hydrogen bond interactions from S0 to S1 states. Second, the calculated absorption and emission spectra are consistent with the experimental values, which proves that the theoretical method is feasible. Finally, through the analysis of the infrared vibrational spectrum, reduced density gradient isosurfaces, frontier molecular orbitals, and potential energy curves, the strengthening mechanism of the hydrogen bond interaction and the ability of the excited-state intramolecular proton transfer (ESIPT) reaction to occur are further explained. Since the proton transfer reactions of 2u and 2af occur spontaneously under photoexcitation, they have no stable structures in the S1 state. In conclusion, due to the different substituents, 2u is more prone to the proton transfer reaction than 2ad. For 2af, 2ai, and 2ah with different benzene ring numbers, the ESIPT reaction is more difficult to occur as the number of benzene rings increases. The ability of the ESIPT reaction to occur follows the order 2af → 2ah → 2ai. For 2-aryloxazoline derivatives with different substituents or different benzene ring numbers, the hydrogen bond strengthening mechanism has been authenticated, which promotes the occurrence of the ESIPT reactions.
Collapse
Affiliation(s)
- Guijie Zhao
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Wei Shi
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Yunfan Yang
- Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao 066004, P. R. China
| | - Yong Ding
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| | - Yongqing Li
- School of Physics, Liaoning University, Shenyang 110036, P. R. China
| |
Collapse
|
15
|
Jiang J, Yuan D, Ma C, Song W, Lin Y, Hu L, Zhang Y. Palladium-Catalyzed Regiospecific peri- and ortho-C-H Oxygenations of Polyaromatic Rings Mediated by Tunable Directing Groups. Org Lett 2021; 23:279-284. [PMID: 33352055 DOI: 10.1021/acs.orglett.0c03701] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient divergent approach of Pd-catalyzed C-H oxygenation of polyaromatic rings is described. Reversible directing groups enable regiospecific peri- and ortho-oxygenation to readily access a wide array of polyaromatic phenols without pre- and postmanipulation of directing groups. The systematic mechanistic investigation, including deuterium-labeling experiments, palladacycle trapping, and DFT calculations, reveals that the tunable ligand-assisted C-H bond cleavage played a crucial role during the reaction process.
Collapse
Affiliation(s)
- Jing Jiang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Dandan Yuan
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Congzhe Ma
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Wanbin Song
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yaoyu Lin
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Lihong Hu
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Yinan Zhang
- Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
16
|
Bozzini LA, Santos TD, Murie VE, de Mello MBM, Vessecchi R, Clososki GC. Regioselective Functionalization of Ester-, Amide-, Carbonate-, and Carbamate-Substituted 2-Phenyl-2-oxazolines with Mixed Lithium-Magnesium Amides. J Org Chem 2021; 86:1204-1215. [PMID: 33296214 DOI: 10.1021/acs.joc.0c02369] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
We have prepared novel highly functionalized benzene derivatives by regioselective metalation of ester-, amide-, carbamate-, and carbonate-substituted 2-phenyl-2-oxazolines with mixed lithium-magnesium amides followed by reaction with different electrophiles. While a complementary metalation site can be accessed by using different bases, steric and electronic effects promoted by the aromatic ring substituents also play an important role in reaction regioselectivity. Computational calculations of the aromatic hydrogen pKa values have helped us to rationalize the metalation preference by the complex-induced proximity effect concept.
Collapse
Affiliation(s)
- Leandro A Bozzini
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Thiago Dos Santos
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Valter E Murie
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Murilo B M de Mello
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| | - Ricardo Vessecchi
- Departamento de Química, Faculdade de Filosofia Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Av. dos Bandeirantes 3900, Ribeirão Preto-SP 14090-901, Brazil
| | - Giuliano C Clososki
- Departamento de Ciências BioMoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Av. do Café s/n, Ribeirão Preto-SP 14040-903, Brazil
| |
Collapse
|
17
|
Göbel D, Rusch P, Duvinage D, Bigall NC, Nachtsheim BJ. Emission color-tunable oxazol(in)yl-substituted excited-state intramolecular proton transfer (ESIPT)-based luminophores. Chem Commun (Camb) 2020; 56:15430-15433. [PMID: 33231590 PMCID: PMC8517962 DOI: 10.1039/d0cc05780k] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 11/10/2020] [Indexed: 12/16/2022]
Abstract
Oxazolinyl- and arylchalcogenazolyl-substituted hydroxyfluorenes exhibiting excited-state intramolecular proton transfer (ESIPT) are described as potent and highly modular luminophores. Emission color tuning was achieved by varying the π-expansion and the insertion of different chalcogen atoms.
Collapse
Affiliation(s)
- Dominik Göbel
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany.
| | - Pascal Rusch
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Daniel Duvinage
- Institute for Inorganic and Crystallographic Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany
| | - Nadja C Bigall
- Leibniz University Hannover, Institute of Physical Chemistry and Electrochemistry, Callinstraße 3a, D-30167 Hannover, Germany.
- Cluster of Excellence PhoenixD (Photonics, Optics, and Engineering - Innovation Across Disciplines), Hannover, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße NW2, D-28359 Bremen, Germany.
| |
Collapse
|
18
|
Iqbal Z, Joshi A, Ranjan De S. Recent Advancements on Transition‐Metal‐Catalyzed, Chelation‐Induced
ortho
‐Hydroxylation of Arenes. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000762] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Zafar Iqbal
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Asha Joshi
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| | - Saroj Ranjan De
- National Institute of Technology Uttarakhand Srinagar Garhwal Uttarakhand 246174 India
| |
Collapse
|
19
|
Göbel D, Friedrich M, Lork E, Nachtsheim BJ. Clickable azide-functionalized bromoarylaldehydes - synthesis and photophysical characterization. Beilstein J Org Chem 2020; 16:1683-1692. [PMID: 32733611 PMCID: PMC7372231 DOI: 10.3762/bjoc.16.139] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Accepted: 06/30/2020] [Indexed: 12/05/2022] Open
Abstract
Herein, we present a facile synthesis of three azide-functionalized fluorophores and their covalent attachment as triazoles in Huisgen-type cycloadditions with model alkynes. Besides two ortho- and para-bromo-substituted benzaldehydes, the azide functionalization of a fluorene-based structure will be presented. The copper(I)-catalyzed azide–alkyne cycloaddition (CuAAC) of the so-synthesized azide-functionalized bromocarbaldehydes with terminal alkynes, exhibiting different degrees of steric demand, was performed in high efficiency. Finally, we investigated the photophysical properties of the azide-functionalized arenes and their covalently linked triazole derivatives to gain deeper insight towards the effect of these covalent linkers on the emission behavior.
Collapse
Affiliation(s)
- Dominik Göbel
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| | - Marius Friedrich
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany.,Department of Organic Chemistry, Technical University Kaiserslautern, Erwin-Schrödinger-Straße Geb.54, 67663 Kaiserslautern, Germany
| | - Enno Lork
- Institute for Inorganic and Crystallographic Chemistry, University of Bremen, Leobener Straße NW2, 28359 Bremen, Germany
| | - Boris J Nachtsheim
- Institute for Organic and Analytical Chemistry, University of Bremen, Leobener Straße 7, 28359 Bremen, Germany
| |
Collapse
|
20
|
Voronin VV, Ledovskaya MS, Rodygin KS, Ananikov VP. Examining the vinyl moiety as a protecting group for hydroxyl (–OH) functionality under basic conditions. Org Chem Front 2020. [DOI: 10.1039/d0qo00202j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A method for the protection and deprotection of alcohols via vinylation and devinylation reactions is proposed. Stability of the vinyl protecting group under various conditions is studied and synthetic applicability is demonstrated.
Collapse
Affiliation(s)
| | | | - Konstantin S. Rodygin
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| | - Valentine P. Ananikov
- Institute of Chemistry
- Saint Petersburg State University
- Peterhof
- Russia
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences
| |
Collapse
|
21
|
Sun L, Liu Y, Wang Y, Li Y, Liu Z, Lu T, Li W. An efficient synthesis of oxazolines via a cascade reaction between azaoxyallyl cations and 1,2-benzisoxazoles. Org Biomol Chem 2019; 17:7526-7530. [PMID: 31368471 DOI: 10.1039/c9ob01366k] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A formal [3 + 2] cycloaddition reaction between the C and O terminals of azaoxyallyl cations formed in situ and 1,2-benzisoxazoles has been realized. This one-pot cycloaddition method provided an effective and practical pathway to synthesize oxazoline in good yields under mild conditions. The title products exhibited unique fluorescence properties.
Collapse
Affiliation(s)
- Li Sun
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Yi Liu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Yankai Wang
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Yuanyuan Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Zhiwen Liu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Tao Lu
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| | - Wenhai Li
- State Key Laboratory of Natural Medicines, Department of Organic Chemistry, China Pharmaceutical University, Nanjing, 210009, P. R. China.
| |
Collapse
|