1
|
Han S, Liu L, Meng J, Li M, Cao Q, Shen Z. Photoredox Iron-Catalyzed Decarboxylative Radical Cyclization for the Synthesis of Oxindoles and Chroman-4-ones. J Org Chem 2025. [PMID: 40372260 DOI: 10.1021/acs.joc.5c00669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
A sustainable, photocatalytic approach for the synthesis of oxindoles and chroman-4-ones was developed using carboxylate salts as radical precursors and FeCl3 as a catalyst. The reaction proceeds via a decarboxylative radical cyclization mechanism triggered by ligand-to-metal charge transfer under visible light irradiation, operating efficiently at room temperature. This method demonstrates excellent substrate scope, including the use of various alkyl carboxylates, and functional group tolerance and offers a scalable pathway for gram-scale synthesis, highlighting its practical application.
Collapse
Affiliation(s)
- Shaoyang Han
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Advanced Separation Membrane Materials, Zhejiang University of Technology, Hangzhou 310014, China
| | - Litao Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqing Meng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Meichao Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
| | - Qun Cao
- School of Chemistry, University of Leicester, Leicester LE1 7RH, U.K
| | - Zhenlu Shen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China
- State Key Laboratory of Advanced Separation Membrane Materials, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
2
|
Nasireddy SR, Sharma P, Khanna K, Singh A. Visible-Light-Mediated Decarboxylative (Amino)Alkylation of Azomethine Imines. J Org Chem 2025; 90:5226-5230. [PMID: 40193713 DOI: 10.1021/acs.joc.5c00159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Herein, we report an efficient, organophotocatalyzed decarboxylative (amino)alkylation of azomethine imines using readily available carboxylic acids as alkylating agents. This transformation exhibits wide scope, and a variety of carboxylic acids, including glycine derivatives, were employed as radical precursors. The use of 4CzIPN as the photocatalyst allowed the application of nonbenzylic secondary and tertiary carboxylic acids also, overcoming previous limitations. The wide scope, applicability of nonprefunctionalized precursors, and mild conditions are the highlights of this method. The intermediacy of key radical intermediates was established by radical trapping experiments.
Collapse
Affiliation(s)
- Seshadri Reddy Nasireddy
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Parashuram Sharma
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Kirti Khanna
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Anand Singh
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Department of Sustainable Energy Engineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
- Chandrakanta Kesavan Centre for Energy Policy and Climate Solutions, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
3
|
Yang D, Mei YT, Guo ZY, Hou QY, Zhang H, Zheng YX, Jing LH, Cheng DJ, Shi MS. Decarboxylative Alkylation of Morita-Baylis-Hillman Acetates with Aliphatic Acids via Photochemical Iron-Mediated Ligand-to-Metal Charge Transfer. J Org Chem 2025; 90:3665-3672. [PMID: 40019947 DOI: 10.1021/acs.joc.4c03047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Carboxylic acids are bench-stable and readily available chemical feedstocks that function as optimal and fundamental synthetic platforms for the construction of C(sp3)-C(sp3) bonds via decarboxylation processes. We present a novel and practical protocol for the decarboxylative alkylation of Morita-Baylis-Hillman acetates with various carboxylic acids via a photoinduced iron-mediated ligand-to-metal charge transfer (LMCT) process under redox-neutral conditions. This method exhibits remarkable tolerance to a wide array of carboxylic acids, including primary, secondary, and tertiary carboxylic acids, obviating the requirement for preactivated radical precursors. The preliminary mechanistic analyses indicate that a radical pathway is involved in this catalytic transformation.
Collapse
Affiliation(s)
- Dan Yang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yu-Tong Mei
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Zi-Yi Guo
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Qiu-Yao Hou
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Hui Zhang
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Yu-Xuan Zheng
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Lin-Hai Jing
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - De-Jun Cheng
- Key Laboratory of Green Catalysis of Higher Education Institutes of Sichuan, College of Chemical Engineering Sichuan University of Science & Engineering, Zigong 643000, China
| | - Ming-Song Shi
- NHC Key Laboratory of Nuclear Technology Medical Transformation, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology of China, Mianyang 621099, China
| |
Collapse
|
4
|
Yedase GS, Murgeshan R, Yatham VR. Minisci C-H Alkylation of Heterocycles with Unactivated Alkyl Iodides Enabled by Visible Light Photocatalysis. J Org Chem 2025; 90:3412-3419. [PMID: 40013461 DOI: 10.1021/acs.joc.4c03151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2025]
Abstract
In this work, we developed a general catalytic strategy that allows Minisci C-H alkylation of a variety of heterocycles using unactivated alkyl halide as an alkyl radical source under visible light photocatalysis. Mild reaction conditions, employing 4CzIPN as an organophotocatalyst and aerial oxygen as a green terminal oxidant, a broad scope, good functional group tolerance, and late-stage C-H alkylation of bioactive and pharmaceutically relevant molecules are advantages of the protocol. Preliminary mechanistic studies indicate the involvement of the α-amino alkyl radical and the alkyl radical and further involvement of aerial oxygen under our reaction conditions.
Collapse
Affiliation(s)
- Girish Suresh Yedase
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Ruveen Murgeshan
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| | - Veera Reddy Yatham
- School of Chemistry, Indian Institute of Science Education and Research, Thiruvananthapuram 695551, India
| |
Collapse
|
5
|
Pan H, An Q, Mai BK, Chen Y, Liu P, Zuo Z. Iron-Catalyzed Aerobic Carbonylation of Methane via Ligand-to-Metal Charge Transfer Excitation. J Am Chem Soc 2025; 147:1440-1447. [PMID: 39760382 PMCID: PMC11744741 DOI: 10.1021/jacs.4c16449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 12/25/2024] [Accepted: 12/26/2024] [Indexed: 01/07/2025]
Abstract
The integration of ligand-to-metal charge transfer (LMCT) catalytic paradigms with radical intermediates has transformed the selective functionalization of inert C-H bonds, facilitating the use of nonprecious metal catalysts in demanding transformations. Notably, aerobic C-H carbonylation of methane to acetic acid remains formidable due to the rapid oxidation of methyl radicals, producing undesired C1 oxygenates. We present an iron terpyridine catalyst utilizing LMCT to achieve exceptional C2/C1 selectivity through synergistic photoexcitation, methyl radical generation, and carbonylation. Mechanistic studies highlight the critical roles of Fe(II) and Fe-carbonyl complexes in bypassing methyl radical oxidation via a radical rebound-like pathway, unlocking unprecedented efficiency in methane aerobic carbonylation.
Collapse
Affiliation(s)
- Hui Pan
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Shanghai 200032, China
| | - Qing An
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Shanghai 200032, China
| | - Binh Khanh Mai
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Yuegang Chen
- School
of Chemistry and Chemical Engineering, Zhejiang
Sci-Tech University, Hangzhou 310018, China
| | - Peng Liu
- Department
of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Zhiwei Zuo
- State
Key Laboratory of Organometallic Chemistry, Shanghai Institute of
Organic Chemistry, University of Chinese
Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
6
|
Yin Y, Chen F, Chen D, Xie P, Wang D, Loh TP. Iron-Photocatalyzed Decarboxylative Alkylation of Carboxylic Acids with Morita-Baylis-Hillman Acetates. Org Lett 2025; 27:269-274. [PMID: 39727083 DOI: 10.1021/acs.orglett.4c04267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2024]
Abstract
We present an iron-photocatalyzed decarboxylative alkylation strategy involving carboxylic acids and Morita-Baylis-Hillman (MBH) acetates to synthesize E-type tri- and tetrasubstituted alkenes with moderate to excellent stereoselectivity (E/Z ratio up to >19:1). This method is applicable to a broad range of structurally diverse primary, secondary, and tertiary alkyl carboxylic acids, as well as complex pharmaceutical and natural carboxylic acids, achieving efficient alkylation of various MBH acetates under mild conditions (>60 examples, with yields up to 96%). This approach offers a powerful strategy for streamlined alkylation.
Collapse
Affiliation(s)
- Yanli Yin
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, P. R. China
- School of Chemistry and Chemical Engineering, Pingyuan Laboratory, Henan Normal University, Xinxiang 453007, Henan, P. R. China
| | - Fang Chen
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, P. R. China
| | - Dong Chen
- College of Material Engineering, Henan International Joint Laboratory of Rare Earth Composite Materials, Henan University of Engineering, Zhengzhou 450001, Henan, P. R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Dongping Wang
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, P. R. China
| | - Teck-Peng Loh
- College of Advanced Interdisciplinary Science and Technology (CAIST), Henan University of Technology, Zhengzhou 450001, Henan, P. R. China
| |
Collapse
|
7
|
Zhang L, Huang Y, Hu P. Iron-Catalyzed SO 2-Retaining Smiles Rearrangement through Decarboxylation. Org Lett 2024; 26:10940-10945. [PMID: 39639825 DOI: 10.1021/acs.orglett.4c04107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Radical Smiles rearrangements have emerged as powerful methodologies for constructing carbon-carbon bonds through intramolecular radical addition and fragmentation under milder conditions, with SO2 released as a byproduct. However, SO2-retaining Smiles rearrangements, which can yield valuable alkyl sulfone derivatives, have been scarcely explored. In this study, we present an unprecedented iron-catalyzed SO2-retaining Smiles rearrangement initiated by the decarboxylation of aliphatic carboxylic acids. This approach provides a mild, cost-effective, and versatile pathway to sulfone-containing compounds, demonstrating broad substrate scope and functional group tolerance. It offers a promising strategy for synthesizing γ- and δ-aryl substituted alkyl sulfones, which are traditionally challenging to produce.
Collapse
Affiliation(s)
- Liang Zhang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Yahao Huang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, PR China
| |
Collapse
|
8
|
González‐Gallardo N, Cores A, Marset X, Guijarro N, Guillena G, Ramón DJ. Unlocking the Potential of Deep Eutectic Solvents and Ligand-to-Metal Charge Transfer Processes: A Reusable Iron-and-UV-Based System for Sustainable C-C Bond Formation. CHEMSUSCHEM 2024; 17:e202400911. [PMID: 38957114 PMCID: PMC11660750 DOI: 10.1002/cssc.202400911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/26/2024] [Accepted: 07/02/2024] [Indexed: 07/04/2024]
Abstract
Catalytic C-H functionalization has provided new opportunities to access novel organic molecules more sustainably and efficiently. However, these procedures typically rely on precious metals or complex organic catalysts as well as on hazardous solvents or reaction conditions. Herein, a pioneering methodology for direct C-C bond formation enabled by Ligand-to-Metal Charge Transfer (LMCT) and mediated by UV irradiation has been developed using Deep Eutectic Solvents (DESs) as sustainable reaction media. This direct C-H bond functionalization via a radical addition to electrophiles was successfully confirmed over a broad scope of substrates. More importantly, this is the first example of photocatalytic C-C bond formation in DESs. An inexpensive and abundant iron catalyst (FeCl3) was used under air and mild conditions. Different functional groups were well tolerated obtaining promising results that were comparable to those reported in the literature. Additionally, the reaction medium along with the catalyst could be reused for up to 5 consecutive cycles without a significant loss in the reaction outcome. Several green metrics were calculated and compared to those of conventional procedures, revealing the advantages of using DESs.
Collapse
Affiliation(s)
- Nerea González‐Gallardo
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Alejandro Cores
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Xavier Marset
- Institute of ElectrochemistryUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Néstor Guijarro
- Institute of ElectrochemistryUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Gabriela Guillena
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| | - Diego J. Ramón
- Departamento de Química Orgánica and Instituto de Síntesis Orgánica (ISO)Facultad de CienciasUniversidad de AlicanteApdo. 9903080AlicanteSpain
| |
Collapse
|
9
|
Tamaki S, Kusamoto T, Tsurugi H. Decarboxylative Alkylation of Carboxylic Acids with Easily Oxidizable Functional Groups Catalyzed by an Imidazole-Coordinated Fe 3 Cluster under Visible Light Irradiation. Chemistry 2024; 30:e202402705. [PMID: 39226120 DOI: 10.1002/chem.202402705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/03/2024] [Accepted: 09/03/2024] [Indexed: 09/05/2024]
Abstract
Decarboxylative alkylation of carboxylic acids with easily oxidizable functional groups such as phenol and indole functionalities was achieved using a catalytic amount of basic iron(III) acetate, Fe(OAc)2(OH), in the presence of benzimidazole under 427 nm LED irradiation. Kinetic analyses of this catalytic reaction revealed that the reaction rate is first-order in alkenes and is linearly correlated with the light intensity; the faster reaction rate for the benzimidazole-ligated species was consistent with the increased absorbance in the visible light region. Wide functional group tolerance for the easily oxidizable groups is ascribed to the weak oxidation ability of the in situ-generated oxo-bridged iron clusters compared with other iron(III) species.
Collapse
Affiliation(s)
- Sota Tamaki
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Tetsuro Kusamoto
- Department of Chemistry, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka, Japan
| | - Hayato Tsurugi
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
10
|
Wang J, Wang Y, Lin W, Yang A, Wang Y, Wang J, Zheng H, Ge H. Photoredox-Catalyzed C-H Methylation of N-Heteroarenes Enabled by N, N-Dimethylethanolamine. J Org Chem 2024; 89:17482-17487. [PMID: 39571100 DOI: 10.1021/acs.joc.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2024]
Abstract
A visible-light-driven radical C-H methylation of N-heteroarenes that is efficient and additive- and catalyst-free and employs readily available N,N-dimethylethanolamine as the methyl source has been developed. The transformation offers the benefits of broad substrate scope, mild reaction conditions, and operational simplicity. A photoactive electron donor-acceptor (EDA) complex between N-heteroarenes and N,N-dimethylethanolamine is essential for this transformation, as revealed by mechanistic investigations.
Collapse
Affiliation(s)
- Jiayang Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Yun Wang
- School of Life and Health Science, Huzhou College, Huzhou, Zhejiang 313002, P. R. China
| | - Wenjing Lin
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Anyi Yang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Ying Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Jingran Wang
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Haizhen Zheng
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| | - Haixia Ge
- School of Life Sciences, Huzhou University, Huzhou, Zhejiang 313002, P. R. China
| |
Collapse
|
11
|
Han W, Zhao Z, Jiang K, Lan Y, Yu X, Jiang X, Yang W, Wei D, Li SJ, Niu L. Dual ligand-enabled iron and halogen-containing carboxylate-based photocatalysis for chloro/fluoro-polyhaloalkylation of alkenes. Chem Sci 2024; 15:19936-19943. [PMID: 39568912 PMCID: PMC11575577 DOI: 10.1039/d4sc04038d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 11/02/2024] [Indexed: 11/22/2024] Open
Abstract
Herein, we demonstrate a practical dual ligand-enabled iron photocatalysis paradigm-converting all kinds of halogen-containing carboxylates (C n X m COO-, X: F, Cl, Br) into C n X m radicals for the valuable chloro/fluoro-polyhaloalkylation of non-activated alkenes with easily available trichloroacetonitrile/Selectfluor as the electrophilic halogenation reagent. The modular in situ assembly of the effective iron and C n X m COO--based light-harvesting species using the two ligands-OMe/CF3-substituted bipyridine and acetonitrile/trichloroacetonitrile is evidenced by detailed mechanistic studies. The late-stage modification, low loading amount of iron (TON: 257) and feasible gram-scale synthesis show the utility of this protocol. We thus anticipate that the dual ligand-enabled iron photocatalysis paradigm may facilitate activation and transformation of inert bulk chemicals.
Collapse
Affiliation(s)
- Wanru Han
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
| | - Zhenyan Zhao
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
| | - Kui Jiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
| | - Yu Lan
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University Xinxiang 453007 Henan China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University Chongqing 401331 China
| | - Xuehan Yu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
| | - Xiaoyu Jiang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
| | - Wei Yang
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
| | - Donghui Wei
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
| | - Shi-Jun Li
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University Xinxiang 453007 Henan China
| | - Linbin Niu
- College of Chemistry, Pingyuan Laboratory, Zhengzhou University 100 Science Avenue Zhengzhou 450001 Henan China
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University Xinxiang 453007 Henan China
| |
Collapse
|
12
|
Lee AL, Mooney DT, McKee H. Direct C-H functionalisation of azoles via Minisci reactions. Org Biomol Chem 2024. [PMID: 39479918 DOI: 10.1039/d4ob01526f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2024]
Abstract
Azoles have widespread applications in medicinal chemistry; for example, thiazoles, imidazoles, benzimidazoles, isoxazoles, tetrazoles and triazoles appear in the top 25 most frequently used N-heterocycles in FDA-approved drugs. Efficient routes for the late-stage C-H functionalisation of azole cores would therefore be highly desirable. The Minisci reaction, a nucleophilic radical addition reaction onto N-heterocyclic bases, is a direct C-H functionalisation reaction that has the potential to be a powerful method for C-H functionalisations of azole scaffolds. However, azoles have not been as widely studied as substrates for modern Minisci-type reactions as they are often more electron-rich and thus more challenging substrates compared to electron-poor 6-membered N-heterocycles such as quinolines, pyrazines and pyridines typically used in Minisci reactions. Nevertheless, with the prevalence of azole scaffolds in drug design, the Minisci reaction has the potential to be a transformative tool for late-stage C-H functionalisations to efficiently access decorated azole motifs. This review thus aims to give an overview of the C-H functionalisation of azoles via Minisci-type reactions, highlighting recent progress, existing limitations and potential areas for growth.
Collapse
Affiliation(s)
- Ai-Lan Lee
- EaStCHEM School of Chemistry, University of Edinburgh, David Brewster Road, Edinburgh, EH9 3FJ, UK.
| | - David T Mooney
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| | - Heather McKee
- Institute of Chemical Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, EH14 4AS, UK
| |
Collapse
|
13
|
Nsouli R, Nayak S, Balakrishnan V, Lin JY, Chi BK, Ford HG, Tran AV, Guzei IA, Bacsa J, Armada NR, Zenov F, Weix DJ, Ackerman-Biegasiewicz LKG. Decarboxylative Cross-Coupling Enabled by Fe and Ni Metallaphotoredox Catalysis. J Am Chem Soc 2024; 146:29551-29559. [PMID: 39422549 PMCID: PMC11528444 DOI: 10.1021/jacs.4c09621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/11/2024] [Accepted: 09/12/2024] [Indexed: 10/19/2024]
Abstract
Decarboxylative cross-coupling of carboxylic acids and aryl halides has become a key transformation in organic synthesis to form C(sp2)-C(sp3) bonds. In this report, a base metal pairing between Fe and Ni has been developed with complementary reactivity to the well-established Ir and Ni metallaphotoredox reactions. Utilizing an inexpensive FeCl3 cocatalyst along with a pyridine carboxamidine Ni catalyst, a range of aryl iodides can be preferentially coupled to carboxylic acids over boronic acid esters, triflates, chlorides, and even bromides in high yields. Additionally, carboxylic acid derivatives containing heterocycles, N-protected amino acids, and protic functionality can be coupled in 23-96% yield with a range of sterically hindered, electron-rich, and electron-deficient aryl iodides. Preliminary catalytic and stoichiometric reactions support a mechanism in which Fe is responsible for the activation of carboxylic acid upon irradiation with light and a NiI alkyl intermediate is responsible for activation of the aryl iodide coupling partner followed by reductive elimination to generate product.
Collapse
Affiliation(s)
- Reem Nsouli
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Sneha Nayak
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Jung-Ying Lin
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Benjamin K. Chi
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53716, United States
| | - Hannah G. Ford
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Andrew V. Tran
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ilia A. Guzei
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53716, United States
| | - John Bacsa
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Nicholas R. Armada
- School
of Molecular Science, Arizona State University, Tempe, Arizona 85281, United States
| | - Fedor Zenov
- School
of Molecular Science, Arizona State University, Tempe, Arizona 85281, United States
| | - Daniel J. Weix
- Department
of Chemistry, University of Wisconsin-Madison, Madison, Wisconsin 53716, United States
| | | |
Collapse
|
14
|
West JG. Building Catalytic Reactions One Electron at a Time. Acc Chem Res 2024; 57:3068-3078. [PMID: 39317431 PMCID: PMC11756579 DOI: 10.1021/acs.accounts.4c00515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
ConspectusClassical education in organic chemistry and catalysis, not the least my own, has centered on two-electron transformations, from nucleophilic attack to oxidative addition. The focus on two-electron chemistry is well-founded, as this brand of chemistry has enabled incredible feats of synthesis, from the development of life-saving pharmaceuticals to the production of ubiquitous commodity chemicals. With that said, this approach is in many ways complementary to the approach of nature, where enzymes frequently make use of single-electron "radical" steps to achieve challenging reactions with exceptional selectivity, including light detection and C-H hydroxylation. While the power of radical elementary steps is undeniable, the fundamental understanding of─and ability to apply─these in catalysis remains underdeveloped, constraining the palette with which chemists can make new reactions.Motivation to remedy this traditional underemphasis on radical catalysis has been intensified by the runaway success of outer-sphere photoredox catalysis, not only confirming the versatility of radicals in anthropogenic catalysis but also teaching the value of robust and well-understood catalytic cycles for reaction design. Indeed, I would argue the success of outer-sphere photoredox catalysis has been fueled by strong fundamental understanding of its underlying radical elementary steps, with consideration of single-electron transfer (SET) energetics allowing new reactions to be designed de novo with enviable confidence. However, outer-sphere photoredox catalysis is an outlier in this regard, with other mechanistic approaches remaining underexplored.Our research group is part of a growing movement to expand the vocabulary of synthetic radical catalysis beyond the traditional outer-sphere photoredox SET manifold, assembling new cycles comprised of hydrogen atom transfer (HAT), light-induced homolysis (LIH), and radical ligand transfer (RLT) steps in new combinations to achieve challenging transformations. These efforts have been made possible by the ever-growing understanding of these radical elementary steps and discovery of catalyst systems with significant mechanistic flexibility, most recently iron/thiol (Fe/S) cocatalysis.In this Account, I will focus on our efforts applying HAT and LIH steps in Fe/S cocatalysis, sharing broad guidelines we have found helpful for using these steps and demonstrating how they can be combined to make new reactions using three case studies: radical hydrogenation (HAT + HAT), decarboxylative protonation (LIH + HAT), and alkene hydrofluoroalkylation (LIH + HAT, with an intervening radical alkene addition). These efforts have highlighted the importance of several key parameters, including bond dissociation energy (BDE) and radical polarity, and I hope our findings similarly provide a valuable framework to others designing new radical catalytic reactions.
Collapse
Affiliation(s)
- Julian G West
- Department of Chemistry, Rice University, 6100 Main St, Houston, Texas 77005, United States
| |
Collapse
|
15
|
Golagani D, Prakash KK, Thapa S, Sai Naik MB, Akondi SM. Visible-Light-Promoted Iron(II)/Lewis Base Catalysis for the Alkylation of Morita-Baylis-Hillman Acetates Using Carboxylic Acids. Org Lett 2024; 26:8583-8588. [PMID: 39352938 DOI: 10.1021/acs.orglett.4c03216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
A novel photoinduced Fe(OTf)2/2,4,6-collidine-catalyzed alkylation of Morita-Baylis-Hillman (MBH) acetates using carboxylic acids in a regio- and stereoselective manner is reported. This method demonstrates a broad scope, encompassing various carboxylic acids and MBH acetates, including drugs and bioactive molecules, to synthesize densely functionalized cinnamates and acrylates. The reactions are performed in the green solvent dimethyl carbonate under oxidant-free conditions. Based on control experiments, a plausible mechanism involving an Fe(II)-Fe(III)-Fe(II) cycle is proposed.
Collapse
Affiliation(s)
- Durga Golagani
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Kota Krishna Prakash
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Satyam Thapa
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
| | - Mudavath Bhargav Sai Naik
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srirama Murthy Akondi
- Department of Organic Synthesis & Process Chemistry, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
16
|
Holovach S, Poroshyn I, Melnykov KP, Liashuk OS, Pariiska OO, Kolotilov SV, Rozhenko AB, Volochnyuk DM, Grygorenko OO. Parallel Minisci Reaction of gem-Difluorocycloalkyl Building Blocks. ACS ORGANIC & INORGANIC AU 2024; 4:424-431. [PMID: 39132014 PMCID: PMC11311045 DOI: 10.1021/acsorginorgau.4c00028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 08/13/2024]
Abstract
Parallel Minisci reactions of nonfluorinated and gem-difluorinated C4-C7 cycloalkyl building blocks (trifluoroborates and carboxylic acids) with a series of electron-deficient heterocycles were studied. A comparison of the reaction's outcome revealed better product yields in the case of carboxylic acids as the radical precursors in most cases, albeit these reagents were used with three-fold excess under optimized conditions. The nature of the heterocyclic core was found to be important for successful incorporation of the cycloalkyl fragment. The impact of the CF2 moiety on the oxidation potential of fluorinated cycloalkyl trifluoroborates and the reaction outcome, in general, was also evaluated.
Collapse
Affiliation(s)
- Serhii Holovach
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
| | - Illia Poroshyn
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Kostiantyn P. Melnykov
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr S. Liashuk
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Olena O. Pariiska
- L.
V. Pisarzhevskii Institute of Physical Chemistry of National Academy
of Sciences of Ukraine, Nauky Avenue 31, Kyïv 03028, Ukraine
| | - Sergey V. Kolotilov
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- L.
V. Pisarzhevskii Institute of Physical Chemistry of National Academy
of Sciences of Ukraine, Nauky Avenue 31, Kyïv 03028, Ukraine
| | - Alexander B. Rozhenko
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Dmytro M. Volochnyuk
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
- Taras
Shevchenko National University of Kyiv, Volodymyrska Street 60, Kyïv 01601, Ukraine
| | - Oleksandr O. Grygorenko
- Enamine
Ltd., Winston Churchill Street 78, Kyïv 02094, Ukraine
- Institute
of Organic Chemistry of National Academy of Sciences of Ukraine, Akademik Kukhar Street 5, Kyïv 02066, Ukraine
| |
Collapse
|
17
|
Denkler LM, Aladahalli Shekar M, Ngan TSJ, Wylie L, Abdullin D, Engeser M, Schnakenburg G, Hett T, Pilz FH, Kirchner B, Schiemann O, Kielb P, Bunescu A. A General Iron-Catalyzed Decarboxylative Oxygenation of Aliphatic Carboxylic Acids. Angew Chem Int Ed Engl 2024; 63:e202403292. [PMID: 38735849 DOI: 10.1002/anie.202403292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/07/2024] [Accepted: 05/09/2024] [Indexed: 05/14/2024]
Abstract
We report an iron-catalyzed decarboxylative C(sp3)-O bond-forming reaction under mild, base-free conditions with visible light irradiation. The transformation uses readily available and structurally diverse carboxylic acids, iron photocatalyst, and 2,2,6,6-tetramethylpiperidine 1-oxyl (TEMPO) derivatives as oxygenation reagents. The process exhibits a broad scope in acids possessing a wide range of stereoelectronic properties and functional groups. The developed reaction was applied to late-stage oxygenation of a series of bio-active molecules. The reaction leverages the ability of iron complexes to generate carbon-centered radicals directly from carboxylic acids by photoinduced carboxylate-to-iron charge transfer. Kinetic, electrochemical, EPR, UV/Vis, HRMS, and DFT studies revealed that TEMPO has a triple role in the reaction: as an oxygenation reagent, an oxidant to turn over the Fe-catalyst, and an internal base for the carboxylic acid deprotonation. The obtained TEMPO adducts represent versatile synthetic intermediates that were further engaged in C-C and C-heteroatom bond-forming reactions using commercial organo-photocatalysts and nucleophilic reagents.
Collapse
Affiliation(s)
- Luca Mareen Denkler
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Meghana Aladahalli Shekar
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tak Shing Jason Ngan
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Luke Wylie
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Dinar Abdullin
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Marianne Engeser
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Gregor Schnakenburg
- Institute of Inorganic Chemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
| | - Tobias Hett
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
| | - Frank Hendrik Pilz
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Barbara Kirchner
- Mulliken Center for Theoretical Chemistry Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Beringstraße 4, 53115, Bonn, Germany
| | - Olav Schiemann
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Patrycja Kielb
- Clausius Institute for Physical and Theoretical Chemistry, Universität Bonn, Wegelerstraße 12, 53115, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| | - Ala Bunescu
- Kekulé Institute for Organic Chemistry and Biochemistry, Universität Bonn, Gerhard-Domagk-Straße1, 53121, Bonn, Germany
- Transdisciplinary Research Area' Building Blocks of Matter and Fundamental Interactions (TRA Matter), University of Bonn, 53115, Bonn, Germany
| |
Collapse
|
18
|
Li P, Tu JL, Hu AM, Zhu Y, Yin J, Guo L, Yang C, Xia W. Iron-Catalyzed Multicomponent C-H Alkylation of in Situ Generated Imines via Photoinduced Ligand-to-Metal Charge Transfer. Org Lett 2024; 26:6347-6352. [PMID: 39038192 DOI: 10.1021/acs.orglett.4c01986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Herein, we describe a novel photoinduced iron-catalyzed strategy for multicomponent C-H alkylation of in situ generated imines. By utilizing the alkyl radicals generated through iron-mediated photocatalytic C-H activation, the imines formed in situ are further subjected to addition reactions, resulting in the synthesis of various secondary and tertiary amine products. This method is simple to operate and does not require additional oxidants. It is applicable to inert alkane substrates such as cyclic alkanes, cyclic ethers, toluene, and ketones. The reaction is also compatible with various aromatic amines, alkyl amines, halogenated aromatic amines, as well as aromatic aldehydes, alkyl aldehydes, and cinnamaldehyde, among other different types of aldehydes.
Collapse
Affiliation(s)
- Pengcheng Li
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jia-Lin Tu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Ao-Men Hu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Yining Zhu
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Jiawen Yin
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Lin Guo
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Chao Yang
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
19
|
Jiang X, Lan Y, Hao Y, Jiang K, He J, Zhu J, Jia S, Song J, Li SJ, Niu L. Iron photocatalysis via Brønsted acid-unlocked ligand-to-metal charge transfer. Nat Commun 2024; 15:6115. [PMID: 39033136 PMCID: PMC11271273 DOI: 10.1038/s41467-024-50507-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 07/15/2024] [Indexed: 07/23/2024] Open
Abstract
Reforming sustainable 3d-metal-based visible light catalytic platforms for inert bulk chemical activation is highly desirable. Herein, we demonstrate the use of a Brønsted acid to unlock robust and practical iron ligand-to-metal charge transfer (LMCT) photocatalysis for the activation of multifarious inert haloalkylcarboxylates (CnXmCOO-, X = F or Cl) to produce CnXm radicals. This process enables the fluoro-polyhaloalkylation of non-activated alkenes by combining easily available Selectfluor as a fluorine source. Valuable alkyl fluorides including potential drug molecules can be easily obtained through this protocol. Mechanistic studies indicate that the real light-harvesting species may derive from the in situ-assembly of Fe3+, CnXmCOO-, H+, and acetonitrile solvent, in which the Brønsted acid indeed increases the efficiency of LMCT between the iron center and CnXmCOO- via hydrogen-bond interactions. We anticipate that this Brønsted acid-unlocked iron LMCT platform would be an intriguing sustainable option to execute the activation of inert compounds.
Collapse
Affiliation(s)
- Xiaoyu Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Yu Lan
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Chemical Theory and Mechanism, Chongqing University, Chongqing, PR China.
| | - Yudong Hao
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Kui Jiang
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jing He
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jiali Zhu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shiqi Jia
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Jinshuai Song
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China
| | - Shi-Jun Li
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
| | - Linbin Niu
- College of Chemistry, and Pingyuan Laboratory, Zhengzhou University, Zhengzhou, Henan, PR China.
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, Henan Normal University, Xinxiang, Henan, PR China.
| |
Collapse
|
20
|
Innocent M, Tanguy C, Gavelle S, Aubineau T, Guérinot A. Iron-Catalyzed, Light-Driven Decarboxylative Alkoxyamination. Chemistry 2024; 30:e202401252. [PMID: 38736425 DOI: 10.1002/chem.202401252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/14/2024]
Abstract
An iron-catalyzed visible-light driven decarboxylative alkoxyamination is disclosed. In the presence of FeBr2 and TEMPO, a large array of carboxylic acids including marketed drugs and biobased molecules is turned into the corresponding alkoxyamine derivatives. The versatility of the latter offers an entry towards molecular diversity generation from abundant starting materials and catalyst. Overall, this method proposes a unified and general approach for LMCT-based iron-catalyzed decarboxylative functionalization.
Collapse
Affiliation(s)
- Milan Innocent
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Clément Tanguy
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Sigrid Gavelle
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Thomas Aubineau
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| | - Amandine Guérinot
- Molecular, Macromolecular Chemistry and Materials, ESPCI Paris - PSL, CNRS, 10 rue Vauquelin, 75005, Paris, France
| |
Collapse
|
21
|
Qin J, Lei H, Gao C, Zheng Y, Zhao Y, Xia W. Light-induced ligand-to-metal charge transfer of Fe(III)-OR species in organic synthesis. Org Biomol Chem 2024. [PMID: 39011956 DOI: 10.1039/d4ob00876f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
Light-induced ligand-to-metal charge transfer (LMCT) has been utilized as a powerful strategy in various organic reactions. First-row transition metals, especially iron complexes, show good applications in this process. Fe(III)-Cl and Fe(III)-OR species are two key intermediates involved in the LMCT of iron complexes. This review highlights studies on LMCT of Fe(III)-OR species, including carboxylate-iron and alkoxy-iron species, in organic transformations. Reaction conditions, substrate scope and related mechanisms are discussed.
Collapse
Affiliation(s)
- Jie Qin
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Hong Lei
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Chuanhua Gao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Yuewen Zheng
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Yating Zhao
- College of Chemical and Material Engineering, Quzhou University, Quzhou 324000, China.
| | - Wujiong Xia
- State Key Lab of Urban Water Resource and Environment, School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen, 518055, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
22
|
Treacy SM, Rovis T. Photoinduced Ligand-to-Metal Charge Transfer in Base-Metal Catalysis. SYNTHESIS-STUTTGART 2024; 56:1967-1978. [PMID: 38962497 PMCID: PMC11218547 DOI: 10.1055/s-0042-1751518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/05/2024]
Abstract
The absorption of light by photosensitizers has been shown to offer novel reactive pathways through electronic excited state intermediates, complementing ground state mechanisms. Such strategies have been applied in both photocatalysis and photoredox catalysis, driven by generating reactive intermediates from their long-lived excited states. One developing area is photoinduced ligand-to-metal charge transfer (LMCT) catalysis, in which coordination of a ligand to a metal center and subsequent excitation with light results in the formation of a reactive radical and a reduced metal center. This mini review concerns the foundations and recent developments in ligand-to-metal charge transfer in transition metal catalysis focusing on the organic transformations made possible through this mechanism.
Collapse
Affiliation(s)
- S M Treacy
- Columbia University, Department of Chemistry, 3000 Broadway, Havemeyer Hall, New York, NY 10027, USA
| | - T Rovis
- Columbia University, Department of Chemistry, 3000 Broadway, Havemeyer Hall, New York, NY 10027, USA
| |
Collapse
|
23
|
Fall A, Magdei M, Savchuk M, Oudeyer S, Beucher H, Brière JF. Iron-catalyzed decarboxylative radical addition to chiral azomethine imines upon visible light. Chem Commun (Camb) 2024; 60:6316-6319. [PMID: 38819219 DOI: 10.1039/d4cc01766h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/01/2024]
Abstract
Herein, we disclose an eco-efficient redox-neutral iron-catalyzed decarboxylative radical addition to chiral azomethine imines upon visible light (427 nm) giving cyclic hydrazine derivatives with dr ranging from 82 : 18 to >96 : 4. This earth-abundant metal promoted sequence proceeds efficiently under ligand-free conditions based on a LMCT process and opens a route to new chiral heterocycles.
Collapse
Affiliation(s)
- Arona Fall
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| | - Mihaela Magdei
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| | - Mariia Savchuk
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| | - Sylvain Oudeyer
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| | - Hélène Beucher
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| | - Jean-François Brière
- INSA Rouen Normandie, Univ Rouen Normandie, CNRS, Normandie Univ, COBRA UMR 6014, INC3M FR 3038, F-76000 Rouen, France.
| |
Collapse
|
24
|
Badufle M, Robert F, Landais Y. Visible light mediated iron-catalyzed addition of oxamic acids to imines. RSC Adv 2024; 14:12528-12532. [PMID: 38638815 PMCID: PMC11024671 DOI: 10.1039/d4ra02258k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 04/09/2024] [Indexed: 04/20/2024] Open
Abstract
Oxamic acids where shown to add to imines, providing a broad range of α-aminoacid amides in generally good yields. The process is efficient on pre-formed imines but may also be conducted using a 3-component strategy by simply mixing aldehydes, amines and oxamic acids in the presence of ferrocene, acting both as a photocatalyst under visible light and as a Lewis acid. The reaction proceeds through the addition onto the imine of a carbamoyl radical intermediate generated through a charge transfer from the carboxylate ligand to a Fe(iii) species (LMCT).
Collapse
Affiliation(s)
- Margaux Badufle
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Frédéric Robert
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Yannick Landais
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| |
Collapse
|
25
|
Wellauer J, Ziereisen F, Sinha N, Prescimone A, Velić A, Meyer F, Wenger OS. Iron(III) Carbene Complexes with Tunable Excited State Energies for Photoredox and Upconversion. J Am Chem Soc 2024; 146. [PMID: 38598280 PMCID: PMC11046485 DOI: 10.1021/jacs.4c00605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/13/2024] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
Substituting precious elements in luminophores and photocatalysts by abundant first-row transition metals remains a significant challenge, and iron continues to be particularly attractive owing to its high natural abundance and low cost. Most iron complexes known to date face severe limitations due to undesirably efficient deactivation of luminescent and photoredox-active excited states. Two new iron(III) complexes with structurally simple chelate ligands enable straightforward tuning of ground and excited state properties, contrasting recent examples, in which chemical modification had a minor impact. Crude samples feature two luminescence bands strongly reminiscent of a recent iron(III) complex, in which this observation was attributed to dual luminescence, but in our case, there is clear-cut evidence that the higher-energy luminescence stems from an impurity and only the red photoluminescence from a doublet ligand-to-metal charge transfer (2LMCT) excited state is genuine. Photoinduced oxidative and reductive electron transfer reactions with methyl viologen and 10-methylphenothiazine occur with nearly diffusion-limited kinetics. Photocatalytic reactions not previously reported for this compound class, in particular the C-H arylation of diazonium salts and the aerobic hydroxylation of boronic acids, were achieved with low-energy red light excitation. Doublet-triplet energy transfer (DTET) from the luminescent 2LMCT state to an anthracene annihilator permits the proof of principle for triplet-triplet annihilation upconversion based on a molecular iron photosensitizer. These findings are relevant for the development of iron complexes featuring photophysical and photochemical properties competitive with noble-metal-based compounds.
Collapse
Affiliation(s)
- Joël Wellauer
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Fabienne Ziereisen
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Narayan Sinha
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Ajdin Velić
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Franc Meyer
- University
of Göttingen, Institute of Inorganic Chemistry, Tammannstraße 4, D-37077 Göttingen, Germany
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
26
|
Xiong N, Zhou C, Li S, Wang S, Ke C, Rong Z, Li Y, Zeng R. Iron-Catalyzed Csp 2-Csp 3 Cross-Coupling via Double Decarboxylation: One Step Synthesis of Remote Polar Alkenes. Org Lett 2024; 26:2029-2033. [PMID: 38437519 DOI: 10.1021/acs.orglett.4c00121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Herein, we report an efficient photoinduced iron-catalyzed strategy for cross-couplings of alkyl carboxylic and acrylic acids, which provides a powerful tool for the synthesis of a variety of alkenes with polar functional groups. This novel synthetic methodology can also be applied to the preparation of ketones by using α-keto acids. Mechanistic experiments revealed preliminary mechanistic details. Diverse functionalization could be achieved, which may help streamline the synthesis of complex analogues for drug discovery.
Collapse
Affiliation(s)
- Ni Xiong
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo 315100, China
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Chengxiang Zhou
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Shiyi Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Sichang Wang
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Congyu Ke
- College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, 710065, P. R. China
| | - Zhouting Rong
- Hwamei College of Life and Health Sciences, Zhejiang Wanli University, Ningbo 315100, China
| | - Yang Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| |
Collapse
|
27
|
Qian J, Zhang Y, Zhao W, Hu P. Decarboxylative halogenation of aliphatic carboxylic acids catalyzed by iron salts under visible light. Chem Commun (Camb) 2024; 60:2764-2767. [PMID: 38353608 DOI: 10.1039/d3cc06149c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
In this article, we report a general protocol for the direct decarboxylative chlorination, iodination, and bromination of aliphatic carboxylic acids catalyzed by iron salts under visible light. This method enjoys a broad substrate scope with good functional group compatibility, including complex natural products. Benzylic and allylic C(sp3)-H bonds can be retained under the oxidative halogenation conditions. This method also shows application potential for late-stage functionalization.
Collapse
Affiliation(s)
- Jiahui Qian
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Yu Zhang
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| | - Weining Zhao
- College of Pharmacy, Shenzhen Technology University, Shenzhen 518118, China
| | - Peng Hu
- Institute of Green Chemistry and Molecular Engineering, GBRCE for Functional Molecular Engineering, Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-Sen University, Guangzhou 510006, China.
| |
Collapse
|
28
|
Li LJ, Wei Y, Zhao YL, Gao Y, Hu XQ. Radical-Mediated Decarboxylative C-C and C-S Couplings of Carboxylic Acids via Iron Photocatalysis. Org Lett 2024; 26:1110-1115. [PMID: 38277128 DOI: 10.1021/acs.orglett.3c04395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2024]
Abstract
Despite the significant success of decarboxylative radical reactions, the catalytic systems vary considerably upon different radical acceptors, requiring renewed case-by-case reaction optimization. Herein, we developed an iron catalytic condition that enables the highly efficient decarboxylation of various carboxylic acids for a range of radical transformations. This operationally simple protocol was amenable to a wide array of radical acceptors, delivering structurally diverse oxime ethers, alkenylation, alkynylation, thiolation, and amidation products in useful to excellent yields (>40 examples, up to 95% yield).
Collapse
Affiliation(s)
- Li-Jing Li
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yi Wei
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yu-Lian Zhao
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| | - Yang Gao
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiao-Qiang Hu
- Key Laboratory of Catalysis and Energy Materials Chemistry of Ministry of Education & Hubei Key Laboratory of Catalysis and Materials Science, School of Chemistry and Materials Science, South-Central Minzu University, Wuhan 430074, China
| |
Collapse
|
29
|
Liu SH, Dong ZC, Zang ZL, Zhou CH, Cai GX. Selective α-oxidation of amides via visible-light-driven iron catalysis. Org Biomol Chem 2024; 22:1205-1212. [PMID: 38224270 DOI: 10.1039/d3ob01984e] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
Hydroxyl radicals (˙OH) as one of the highly reactive species can react unselectively with a wide range of chemicals. The ˙OH radicals are typically generated under harsh conditions. Herein, we report hydroxyl radical-induced selective N-α C(sp3)-H bond oxidation of amides under greener and mild conditions via an Fe(NO3)3·9H2O catalyst inner sphere pathway upon irradiation with a 30 W blue LED light strip (λ = 455 nm) using NaBrO3 as the oxidant. This protocol exhibited high chemoselectivity and excellent functional group tolerance. A preliminary mechanism investigation demonstrated that the iron catalyst afforded hydroxyl radicals via the visible-light-induced homolysis (VLIH) of iron complexes followed by a hydrogen atom transfer (HAT) process to realize this transformation.
Collapse
Affiliation(s)
- Shu-Hong Liu
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhi-Chao Dong
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Zhong-Lin Zang
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, P. R. China.
| |
Collapse
|
30
|
Li QY, He Y, Lin YM, Gong L. Photo-Induced C-H Methylation Reactions. Chemistry 2023; 29:e202302542. [PMID: 37800464 DOI: 10.1002/chem.202302542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 09/21/2023] [Accepted: 10/04/2023] [Indexed: 10/07/2023]
Abstract
Direct C-H methylation is a highly valuable approach for introducing methyl groups into organic molecules, particularly in pharmaceutical chemistry. Among the various methodologies available, photo-induced methylation stands out as an exceptional choice due to its mild reaction conditions, energy efficiency, and compatibility with functional groups. This article offers a comprehensive review of photochemical strategies employed for the direct and selective methylation of C(sp3 )-H, C(sp2 )-H, and C(sp)-H bonds in various organic molecules. The discussed methodologies encompass transition-metal-based photocatalysis, organophotocatalysis, as well as other metal-free approaches, including electron donor-acceptor (EDA)-enabled transformations. Importantly, a wide range of easily accessible agents such as tert-butyl peroxide, methanol, DMSO, methyl tert-butyl ether, TsOMe, N-(acetoxy)phthalimide, acetic acid, methyl halides, and even methane can serve as effective methylating reagents for modifying diverse targets. These advancements in photochemical C-H methylation are anticipated to drive further progress in the fields of organic synthesis, photocatalysis, and pharmaceutical development, opening up exciting avenues for creating novel organic molecules and discovering new drug compounds.
Collapse
Affiliation(s)
- Qian-Yu Li
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yuhang He
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Yu-Mei Lin
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
| | - Lei Gong
- Key Laboratory of Chemical Biology of Fujian Province, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian, 361005, China
- Innovation Laboratory for Sciences and, Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen, Fujian, 361005, China
| |
Collapse
|
31
|
Bian KJ, Nemoto D, Chen XW, Kao SC, Hooson J, West JG. Photocatalytic, modular difunctionalization of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer. Chem Sci 2023; 15:124-133. [PMID: 38131080 PMCID: PMC10732012 DOI: 10.1039/d3sc05231a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 11/09/2023] [Indexed: 12/23/2023] Open
Abstract
Ligand-to-metal charge transfer (LMCT) is a mechanistic strategy that provides a powerful tool to access diverse open-shell species using earth abundant elements and has seen tremendous growth in recent years. However, among many reaction manifolds driven by LMCT reactivity, a general and catalytic protocol for modular difunctionalization of alkenes remains unknown. Leveraging the synergistic cooperation of iron-catalyzed ligand-to-metal charge transfer and radical ligand transfer (RLT), here we report a photocatalytic, modular difunctionalization of alkenes using inexpensive iron salts catalytically to function as both radical initiator and terminator. Additionally, strategic use of a fluorine atom transfer reagent allows for general fluorochlorination of alkenes, providing the first example of interhalogen compound formation using earth abundant element photocatalysis. Broad scope, mild conditions and versatility in converting orthogonal nucleophiles (TMSN3 and NaCl) directly into corresponding open-shell radical species are demonstrated in this study, providing a robust means towards accessing vicinal diazides and homo-/hetero-dihalides motifs catalytically. These functionalities are important precursors/intermediates in medicinal and material chemistry. Preliminary mechanistic studies support the radical nature of these transformations, disclosing the tandem LMCT/RLT as a powerful reaction manifold in catalytic olefin difunctionalization.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - David Nemoto
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Xiao-Wei Chen
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - James Hooson
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| | - Julian G West
- Department of Chemistry, Rice University 6100 Main St MS 602 Houston TX 77005 USA
| |
Collapse
|
32
|
Fernández-García S, Chantzakou VO, Juliá-Hernández F. Direct Decarboxylation of Trifluoroacetates Enabled by Iron Photocatalysis. Angew Chem Int Ed Engl 2023:e202311984. [PMID: 38088503 DOI: 10.1002/anie.202311984] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Indexed: 12/30/2023]
Abstract
Trifluoroacetates are the most abundant and accessible sources of trifluoromethyl groups, which are key components in pharmaceuticals and agrochemicals. The generation of trifluoromethyl reactive radicals from trifluoroacetates requires their decarboxylation, which is hampered by their high oxidation potential. This constitutes a major challenge for redox-based methods, because of the need to pair the redox potentials with trifluoroacetate. Here we report a strategy based on iron photocatalysis to promote the direct photodecarboxylation of trifluoroacetates that displays reactivity features that escape from redox limitations. Our synthetic design has enabled the use of trifluoroacetates for the trifluoromethylation of more easily oxidizable organic substrates, offering new opportunities for late-stage derivatization campaigns using chemical feedstocks, Earth-abundant catalysts, and visible-light.
Collapse
Affiliation(s)
- Sara Fernández-García
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Veronika O Chantzakou
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Francisco Juliá-Hernández
- Departamento de Química Inorgánica, Facultad de Química, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
33
|
Yuan J, Shen L, Guo N, Yin Y, Yang P, Yang L, Xiao Y, Zhang S. Visible-Light-Induced Cascade Cyclization of 1-Acryloyl-2-cyanoindole: Access of Difluoroalkylated Pyrrolo[1,2- a]indolediones. J Org Chem 2023; 88:16598-16608. [PMID: 37948397 DOI: 10.1021/acs.joc.3c02183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
An effective method for accessing diverse difluoroalkylated pyrrolo[1,2-a]indolediones via visible-light-induced PhI(OAc)2-promoted cascade difluoroalkylation/cyclization reaction under mild conditions has been established. This method is noteworthy for its use of DMSO-H2O as a green medium at room temperature and avoidance of photocatalysts. The reactions are straightforward to execute and convenient to expand on, provide good to excellent yields, and have good functional group tolerance.
Collapse
Affiliation(s)
- Jinwei Yuan
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Lu Shen
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Na Guo
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yanli Yin
- College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Pengyuan Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Liangru Yang
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Yongmei Xiao
- School of Chemistry & Chemical Engineering, Henan University of Technology, Zhengzhou 450001, P. R. China
| | - Shouren Zhang
- Henan Key Laboratory of Nanocomposites and Applications, Institute of Nanostructured Functional Materials, Huanghe Science and Technology College, Zhengzhou 450006, P. R. China
| |
Collapse
|
34
|
Bian KJ, Lu YC, Nemoto D, Kao SC, Chen X, West JG. Photocatalytic hydrofluoroalkylation of alkenes with carboxylic acids. Nat Chem 2023; 15:1683-1692. [PMID: 37957278 PMCID: PMC10983801 DOI: 10.1038/s41557-023-01365-0] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 10/09/2023] [Indexed: 11/15/2023]
Abstract
Incorporation of fluoroalkyl motifs in pharmaceuticals can enhance the therapeutic profiles of the parent molecules. The hydrofluoroalkylation of alkenes has emerged as a promising route to diverse fluoroalkylated compounds; however, current methods require superstoichiometric oxidants, expensive/oxidative fluoroalkylating reagents and precious metals, and often exhibit limited scope, making a universal protocol that addresses these limitations highly desirable. Here we report the hydrofluoroalkylation of alkenes with cheap, abundant and available fluoroalkyl carboxylic acids as the sole reagents. Hydrotrifluoro-, difluoro-, monofluoro- and perfluoroalkylation are all demonstrated, with broad scope, mild conditions (redox neutral) and potential for late-stage modification of bioactive molecules. Critical to success is overcoming the exceedingly high redox potential of feedstock fluoroalkyl carboxylic acids such as trifluoroacetic acid by leveraging cooperative earth-abundant, inexpensive iron and redox-active thiol catalysis, enabling these reagents to be directly used as hydroperfluoroalkylation donors without pre-activation. Preliminary mechanistic studies support the radical nature of this cooperative process.
Collapse
Affiliation(s)
- Kang-Jie Bian
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Yen-Chu Lu
- Department of Chemistry, Rice University, Houston, TX, USA
| | - David Nemoto
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Shih-Chieh Kao
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiaowei Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Julian G West
- Department of Chemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
35
|
Kvasovs N, Fang J, Kliuev F, Gevorgyan V. Merging of Light/Dark Palladium Catalytic Cycles Enables Multicomponent Tandem Alkyl Heck/Tsuji-Trost Homologative Amination Reaction toward Allylic Amines. J Am Chem Soc 2023; 145:18497-18505. [PMID: 37556443 PMCID: PMC10750327 DOI: 10.1021/jacs.3c04968] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023]
Abstract
A visible light-induced palladium-catalyzed homologative three-component synthesis of allylic amines has been developed. This protocol proceeds via a unique mechanism involving two distinct cycles enabled by the same Pd(0) catalyst: a visible light-induced hybrid radical alkyl Heck reaction between 1,1-dielectrophile and styrene, followed by the "in dark" classical Tsuji-Trost-type allylic substitution reaction. This method works well with a broad range of primary and secondary amines, aryl alkenes, dielectrophiles, and in complex settings. The regiochemistry of the obtained products is primarily governed by the structure of 1,1-dielectrophile. Involvement of π-allyl palladium intermediates allowed for the control of stereoselectivity, which has been demonstrated with up to 95:5 er.
Collapse
Affiliation(s)
- Nikita Kvasovs
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Jian Fang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Fedor Kliuev
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
36
|
Kao SC, Bian KJ, Chen XW, Chen Y, Martí AA, West JG. Photochemical iron-catalyzed decarboxylative azidation via the merger of ligand-to-metal charge transfer and radical ligand transfer catalysis. CHEM CATALYSIS 2023; 3:100603. [PMID: 37720729 PMCID: PMC10501478 DOI: 10.1016/j.checat.2023.100603] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2023]
Abstract
Ligand-to-metal charge transfer (LMCT) using stoichiometric copper salts has recently been shown to permit decarboxylative C-N bond formation via an LMCT/radical polar crossover (RPC) mechanism; however, this method is unable to function catalytically and cannot successfully engage unactivated alkyl carboxylic acids, presenting challenges to the general applicability of this approach. Leveraging the concepts of ligand-to-metal charge transfer (LMCT) and radical-ligand-transfer (RLT), we herein report the first photochemical, iron-catalyzed direct decarboxylative azidation. Simply irradiating an inexpensive iron nitrate catalyst in the presence of azidotrimethylsilane allows for a diverse array of carboxylic acids to be converted to corresponding organic azides directly with broad functional group tolerance and mild conditions. Intriguingly, no additional external oxidant is required for this reaction to proceed, simplifying the reaction protocol. Finally, mechanistic studies are consistent with a radical mechanism and suggest that the nitrate counteranion serves as an internal oxidant for turnover of the iron catalyst.
Collapse
Affiliation(s)
- Shih-Chieh Kao
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Kang-Jie Bian
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Xiao-Wei Chen
- Department of Chemistry, Rice University, Houston, TX, USA
| | - Ying Chen
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Angel A. Martí
- Department of Chemistry, Rice University, Houston, TX, USA
- Department of Materials Science and Nanoengineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Julian G. West
- Department of Chemistry, Rice University, Houston, TX, USA
- Lead contact
| |
Collapse
|
37
|
Lutovsky GA, Gockel SN, Bundesmann MW, Bagley SW, Yoon TP. Iron-mediated modular decarboxylative cross-nucleophile coupling. Chem 2023; 9:1610-1621. [PMID: 37637494 PMCID: PMC10449378 DOI: 10.1016/j.chempr.2023.04.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
Carboxylic acids are valuable building blocks for pharmaceutical discovery because of their chemical stability, commercial availability, and structural diversity. Decarboxylative coupling reactions enable versatile functionalization of these feedstock chemicals, but many of the most general methods require prefunctionalization of carboxylic acids with redox-active moieties. These internal oxidants can be costly, their installation impedes rapid library synthesis, and their use results in environmentally problematic organic byproducts. We report herein a method for the direct decarboxylative cross-coupling of native carboxylic acids with nucleophilic coupling partners mediated by inexpensive, terrestrially abundant, and nontoxic Fe(III) salts. This method involves an initial photochemical decarboxylation followed by radical-polar crossover, which enables the construction of diverse carbon-carbon, carbon-oxygen, and carbon-nitrogen bonds with remarkable generality.
Collapse
Affiliation(s)
- Grace A. Lutovsky
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
- These authors contributed equally
| | - Samuel N. Gockel
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
- Department of Chemistry, Colorado State University Pueblo, 2200 Bonforte Boulevard, Pueblo, CO 81001, USA
| | | | - Scott W. Bagley
- Medicine Design, Pfizer Inc., Eastern Point Road, Groton, CT 06340, USA
| | - Tehshik P. Yoon
- Department of Chemistry, University of Wisconsin–Madison, 1101 University Avenue, Madison, WI 53706, USA
- Lead contact
| |
Collapse
|
38
|
de Groot LHM, Ilic A, Schwarz J, Wärnmark K. Iron Photoredox Catalysis-Past, Present, and Future. J Am Chem Soc 2023; 145:9369-9388. [PMID: 37079887 PMCID: PMC10161236 DOI: 10.1021/jacs.3c01000] [Citation(s) in RCA: 69] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/22/2023]
Abstract
Photoredox catalysis of organic reactions driven by iron has attracted substantial attention throughout recent years, due to potential environmental and economic benefits. In this Perspective, three major strategies were identified that have been employed to date to achieve reactivities comparable to the successful noble metal photoredox catalysis: (1) Direct replacement of a noble metal center by iron in archetypal polypyridyl complexes, resulting in a metal-centered photofunctional state. (2) In situ generation of photoactive complexes by substrate coordination where the reactions are driven via intramolecular electron transfer involving charge-transfer states, for example, through visible-light-induced homolysis. (3) Improving the excited-state lifetimes and redox potentials of the charge-transfer states of iron complexes through new ligand design. We seek to give an overview and evaluation of recent developments in this rapidly growing field and, at the same time, provide an outlook on the future of iron-based photoredox catalysis.
Collapse
Affiliation(s)
- Lisa H M de Groot
- Centre for Analysis and Synthesis, Lund University, Lund SE-22100, Sweden
| | - Aleksandra Ilic
- Centre for Analysis and Synthesis, Lund University, Lund SE-22100, Sweden
| | - Jesper Schwarz
- Centre for Analysis and Synthesis, Lund University, Lund SE-22100, Sweden
| | - Kenneth Wärnmark
- Centre for Analysis and Synthesis, Lund University, Lund SE-22100, Sweden
| |
Collapse
|
39
|
Dubois MAJ, Rojas JJ, Sterling AJ, Broderick HC, Smith MA, White AJP, Miller PW, Choi C, Mousseau JJ, Duarte F, Bull JA. Visible Light Photoredox-Catalyzed Decarboxylative Alkylation of 3-Aryl-Oxetanes and Azetidines via Benzylic Tertiary Radicals and Implications of Benzylic Radical Stability. J Org Chem 2023; 88:6476-6488. [PMID: 36868184 DOI: 10.1021/acs.joc.3c00083] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
Abstract
Four-membered heterocycles offer exciting potential as small polar motifs in medicinal chemistry but require further methods for incorporation. Photoredox catalysis is a powerful method for the mild generation of alkyl radicals for C-C bond formation. The effect of ring strain on radical reactivity is not well understood, with no studies that address this question systematically. Examples of reactions that involve benzylic radicals are rare, and their reactivity is challenging to harness. This work develops a radical functionalization of benzylic oxetanes and azetidines using visible light photoredox catalysis to prepare 3-aryl-3-alkyl substituted derivatives and assesses the influence of ring strain and heterosubstitution on the reactivity of small-ring radicals. 3-Aryl-3-carboxylic acid oxetanes and azetidines are suitable precursors to tertiary benzylic oxetane/azetidine radicals which undergo conjugate addition into activated alkenes. We compare the reactivity of oxetane radicals to other benzylic systems. Computational studies indicate that Giese additions of unstrained benzylic radicals into acrylates are reversible and result in low yields and radical dimerization. Benzylic radicals as part of a strained ring, however, are less stable and more π-delocalized, decreasing dimer and increasing Giese product formation. Oxetanes show high product yields due to ring strain and Bent's rule rendering the Giese addition irreversible.
Collapse
Affiliation(s)
- Maryne A J Dubois
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Juan J Rojas
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Alistair J Sterling
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Hannah C Broderick
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Milo A Smith
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Andrew J P White
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Philip W Miller
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| | - Chulho Choi
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - James J Mousseau
- Pfizer Global Research and Development, 445 Eastern Point Rd., Groton, Connecticut 06340, United States
| | - Fernanda Duarte
- Department of Chemistry, Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - James A Bull
- Department of Chemistry, Imperial College London, Molecular Sciences Research Hub, White City Campus, Wood Lane, London W12 0BZ, U.K
| |
Collapse
|
40
|
Lu YC, West JG. Chemoselective Decarboxylative Protonation Enabled by Cooperative Earth-Abundant Element Catalysis. Angew Chem Int Ed Engl 2023; 62:e202213055. [PMID: 36350328 PMCID: PMC9839625 DOI: 10.1002/anie.202213055] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Revised: 11/08/2022] [Accepted: 11/09/2022] [Indexed: 11/11/2022]
Abstract
Decarboxylative protonation is a general deletion tactic to replace polar carboxylic acid groups with hydrogen or its isotope. Current methods rely on the pre-activation of acids, non-sustainable hydrogen sources, and/or expensive/highly oxidizing photocatalysts, presenting challenges to their wide adoption. Here we show that a cooperative iron/thiol catalyst system can readily achieve this transformation, hydrodecarboxylating a wide range of activated and unactivated carboxylic acids and overcoming scope limitations in previous direct methods. The reaction is readily scaled in batch configuration and can be directly performed in deuterated solvent to afford high yields of d-incorporated products with excellent isotope incorporation efficiency; characteristics not attainable in previous photocatalyzed approaches. Preliminary mechanistic studies indicate a radical mechanism and kinetic results of unactivated acids (KIE=1) are consistent with a light-limited reaction.
Collapse
Affiliation(s)
- Yen-Chu Lu
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| | - Julian G West
- Department of Chemistry, Rice University, 6100 Main St, Houston, TX 77005, USA
| |
Collapse
|
41
|
Xiong N, Li Y, Zeng R. Merging Photoinduced Iron-Catalyzed Decarboxylation with Copper Catalysis for C–N and C–C Couplings. ACS Catal 2023. [DOI: 10.1021/acscatal.2c05293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Ni Xiong
- School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Yang Li
- School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi’an Jiaotong University, Xi’an 710049, P. R. China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
42
|
Dorn M, East NR, Förster C, Kitzmann WR, Moll J, Reichenauer F, Reuter T, Stein L, Heinze K. d-d and charge transfer photochemistry of 3d metal complexes. COMPREHENSIVE INORGANIC CHEMISTRY III 2023:707-788. [DOI: 10.1016/b978-0-12-823144-9.00063-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
43
|
Photochemical diazidation of alkenes enabled by ligand-to-metal charge transfer and radical ligand transfer. Nat Commun 2022; 13:7881. [PMID: 36564375 PMCID: PMC9789121 DOI: 10.1038/s41467-022-35560-3] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Vicinal diamines are privileged synthetic motifs in chemistry due to their prevalence and powerful applications in bioactive molecules, pharmaceuticals, and ligand design for transition metals. With organic diazides being regarded as modular precursors to vicinal diamines, enormous efforts have been devoted to developing efficient strategies to access organic diazide generated from olefins, themselves common feedstock chemicals. However, state-of-the-art methods for alkene diazidation rely on the usage of corrosive and expensive oxidants or complicated electrochemical setups, significantly limiting the substrate tolerance and practicality of these methods on large scale. Toward overcoming these limitations, here we show a photochemical diazidation of alkenes via iron-mediated ligand-to-metal charge transfer (LMCT) and radical ligand transfer (RLT). Leveraging the merger of these two reaction manifolds, we utilize a stable, earth abundant, and inexpensive iron salt to function as both radical initiator and terminator. Mild conditions, broad alkene scope and amenability to continuous-flow chemistry rendering the transformation photocatalytic were demonstrated. Preliminary mechanistic studies support the radical nature of the cooperative process in the photochemical diazidation, revealing this approach to be a powerful means of olefin difunctionalization.
Collapse
|
44
|
Xu P, Su W, Ritter T. Decarboxylative sulfoximination of benzoic acids enabled by photoinduced ligand-to-copper charge transfer. Chem Sci 2022; 13:13611-13616. [PMID: 36507153 PMCID: PMC9682917 DOI: 10.1039/d2sc05442f] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Accepted: 11/01/2022] [Indexed: 11/16/2022] Open
Abstract
Sulfoximines are synthetically important scaffolds and serve important roles in drug discovery. Currently, there is no solution to decarboxylative sulfoximination of benzoic acids; although thoroughly investigated, limited substrate scope and harsh reaction conditions still hold back traditional thermal aromatic decarboxylative functionalization. Herein, we realize the first decarboxylative sulfoximination of benzoic acids via photo-induced ligand to copper charge transfer (copper-LMCT)-enabled decarboxylative carbometalation. The transformation proceeds under mild reaction conditions, has a broad substrate scope, and can be applied to late-stage functionalization of complex small molecules.
Collapse
Affiliation(s)
- Peng Xu
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 1D-45470 Mülheim an der RuhrGermany
| | - Wanqi Su
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 1D-45470 Mülheim an der RuhrGermany,Institute of Organic Chemistry, RWTH Aachen UniversityLandoltweg 152074 AachenGermany
| | - Tobias Ritter
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm Platz 1D-45470 Mülheim an der RuhrGermany
| |
Collapse
|
45
|
Jue Z, Huang Y, Qian J, Hu P. Visible Light-Induced Unactivated δ-C(sp 3 )-H Amination of Alcohols Catalyzed by Iron. CHEMSUSCHEM 2022; 15:e202201241. [PMID: 35916215 DOI: 10.1002/cssc.202201241] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/30/2022] [Indexed: 06/15/2023]
Abstract
An iron-catalyzed remote C(sp3 )-H amination of alcohols through 1,5-hydrogen atom transfer is developed. This protocol provides a method to generate δ-C(sp3 )-N bonds from primary, secondary, and tertiary alcohols under mild conditions. A wide substrate scope and a good functional group tolerance are presented. Mechanistic studies show that a LMCT course of an Fe-OR species and a chlorine radical-induced hydrogen abstraction of an alcohol are possible to generate the alkoxy radical intermediate.
Collapse
Affiliation(s)
- Zhaofan Jue
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Jiahui Qian
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou, 510006, P. R. China
| |
Collapse
|
46
|
Kim C, Jeong J, Vellakkaran M, Hong S. Photocatalytic Decarboxylative Pyridylation of Carboxylic Acids Using In Situ-Generated Amidyl Radicals as Oxidants. ACS Catal 2022. [DOI: 10.1021/acscatal.2c04417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Changha Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Jinwook Jeong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Mari Vellakkaran
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| |
Collapse
|
47
|
Juliá F. Ligand‐to‐Metal Charge Transfer (LMCT) Photochemistry at 3d‐Metal Complexes: An Emerging Tool for Sustainable Organic Synthesis. ChemCatChem 2022. [DOI: 10.1002/cctc.202200916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Fabio Juliá
- Institute of Chemical Research of Catalonia: Institut Catala d'Investigacio Quimica Chemistry Av Paisos Catalans, 16 43007 Tarragona SPAIN
| |
Collapse
|
48
|
Zhang Y, Qian J, Wang M, Huang Y, Hu P. Visible-Light-Induced Decarboxylative Fluorination of Aliphatic Carboxylic Acids Catalyzed by Iron. Org Lett 2022; 24:5972-5976. [PMID: 35950813 DOI: 10.1021/acs.orglett.2c02242] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
An efficient and inexpensive protocol for the direct decarboxylative fluorination of aliphatic carboxylic acids catalyzed with iron salts under visible light is presented. This new method allows the facile fluorination of a diverse array of carboxylic acids even on gram scale using a Schlenk flask without loss of efficiency. Mechanistic studies suggest that the photoinduced ligand-to-metal charge transfer process enables the generation of the key step to generate the carboxyl radical intermediates.
Collapse
Affiliation(s)
- Yu Zhang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Jiahui Qian
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Miao Wang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yahao Huang
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Peng Hu
- Lehn Institute of Functional Materials, School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| |
Collapse
|
49
|
Xiong N, Dong Y, Xu B, Li Y, Zeng R. Mild Amide Synthesis Using Nitrobenzene under Neutral Conditions. Org Lett 2022; 24:4766-4771. [PMID: 35758649 DOI: 10.1021/acs.orglett.2c01743] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Amide synthesis is one of the most important transformations in organic chemistry due to the broad application in pharmaceutical drugs and organic materials. In this report, we describe a mild protocol for amide formation using the readily available nitroarenes as nitrogen sources and an inexpensive iron complex as a catalyst. Because of the use of the pH-neutral conditions and the avoidance of the strong oxidant or reductant, a wide range of aromatic and aliphatic aldehydes as well as nitroarenes with various functional groups could be tolerated well. A plausible mechanism is proposed based on the detailed studies, in which iron catalyst initiates the radical process and the solvent plays a key role as O-atom acceptor.
Collapse
Affiliation(s)
- Ni Xiong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yuanqi Dong
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Bin Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Yang Li
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China
| | - Rong Zeng
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, P. R. China.,Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, Guangdong, P. R. China
| |
Collapse
|
50
|
Jang YJ, An H, Choi S, Hong J, Lee SH, Ahn KH, You Y, Kang EJ. Green-Light-Driven Fe(III)(btz) 3 Photocatalysis in the Radical Cationic [4+2] Cycloaddition Reaction. Org Lett 2022; 24:4479-4484. [PMID: 35687841 DOI: 10.1021/acs.orglett.2c01779] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Green-light-driven FeIII(btz)3 photocatalysis for the radical cationic [4+2] cycloaddition of terminal styrenes and nucleophilic dienes has been investigated. The Fe-MIC (mesoionic carbene) complex forms a ligand-to-metal charge-transfer transition state with relatively high excited-state reduction potentials that can selectively oxidize terminal styrene derivatives. Unique multisubstituted cyclohexenes and structurally complex biorelevant cyclohexenes were constructed, highlighting the usefulness of this mild and practical first-row transition metal complex system.
Collapse
Affiliation(s)
- Yu Jeong Jang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Hyeju An
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Seunghee Choi
- Division of Chemical Engineering and Materials Science and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Jayeon Hong
- Division of Chemical Engineering and Materials Science and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Seung Hyun Lee
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Kwang-Hyun Ahn
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - Youngmin You
- Division of Chemical Engineering and Materials Science and Graduate Program in System Health Science and Engineering, Ewha Womans University, Seoul 03760, Korea
| | - Eun Joo Kang
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| |
Collapse
|