1
|
Sakthivel K, Gana RJ, Shoji T, Takenaga N, Dohi T, Singh FV. Recent progress in metal assisted multicomponent reactions in organic synthesis. Front Chem 2023; 11:1217744. [PMID: 37744060 PMCID: PMC10514581 DOI: 10.3389/fchem.2023.1217744] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/21/2023] [Indexed: 09/26/2023] Open
Abstract
To prepare complicated organic molecules, straightforward, sustainable, and clean methodologies are urgently required. Thus, researchers are attempting to develop imaginative approaches. Metal-catalyzed multicomponent reactions (MCRs) offer optimal molecular diversity, high atomic efficiency, and energy savings in a single reaction step. These versatile protocols are often used to synthesize numerous natural compounds, heterocyclic molecules, and medications. Thus far, the majority of metal-catalyzed MCRs under investigation are based on metal catalysts such as copper and palladium; however, current research is focused on developing novel, environmentally friendly catalytic systems. In this regard, this study demonstrates the effectiveness of metal catalysts in MCRs. The aim of this study is to provide an overview of metal catalysts for safe application in MCRs.
Collapse
Affiliation(s)
- Kokila Sakthivel
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - R. J. Gana
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| | - Toshitaka Shoji
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | | | - Toshifumi Dohi
- Graduate School of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Fateh V. Singh
- Chemistry Division, School of Advanced Sciences, Vellore Institute of Technology (VIT), Chennai, Tamil Nadu, India
| |
Collapse
|
2
|
Vinoth P, Karuppasamy M, Gupta A, Nagarajan S, Maheswari CU, Sridharan V. Intramolecular oxypalladation-initiated domino sequence: One-pot, two-step regioselective synthesis of isoquinolines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
3
|
Zheng F, Zhou J, Fang F, Li J, Wang J, Zheng M, Liu H, Xu Y, Zhou Y. Rh(III)-Catalyzed C-H Activation and [4+1+1] Sequential Cyclization Cascade to Give Highly Fused Indano[1,2- b]azirines. Org Lett 2022; 24:5688-5692. [PMID: 35921178 DOI: 10.1021/acs.orglett.2c02070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A Rh(III)-catalyzed C-H activation of α-keto oximes and a cyclization cascade with diazo compounds were developed to construct the highly fused indano[1,2-b]azirine frameworks in good yields with a broad range of substrates under mild reaction conditions. More intriguingly, a [4+1+1] sequential annulation cascade is demonstrated for the first time in this reaction and opened a new reaction mode for α-keto oximes. These fused indano[1,2-b]azirine derivatives could also be further transformed into intriguing privileged drug scaffolds.
Collapse
Affiliation(s)
- Fuqiang Zheng
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jianhui Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Feifei Fang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jiyuan Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Jing Wang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Miao Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Hong Liu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China.,State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Yungen Xu
- Department of Medicinal Chemistry, China Pharmaceutical University, Nanjing 210009, China
| | - Yu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China.,School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| |
Collapse
|
4
|
Das S, Mondal R, Guin AK, Paul ND. Ligand centered redox enabled sustainable synthesis of triazines and pyrimidines using a zinc-stabilized azo-anion radical catalyst. Org Biomol Chem 2022; 20:3105-3117. [PMID: 35088804 DOI: 10.1039/d1ob02428k] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Herein, we report ligand-centered redox controlled Zn(II)-catalyzed multicomponent approaches for synthesizing pyrimidines and triazines. Taking advantage of the ligand-centered redox events and using a well-defined Zn(II)-catalyst (1a) bearing (E)-2-((4-chlorophenyl)diazenyl)-1,10-phenanthroline (L1a) as the redox-active ligand, a wide variety of substituted pyrimidines and triazines were prepared via dehydrogenative alcohol functionalization reactions. Pyrimidines were prepared via two pathways: (i) dehydrogenative coupling of primary and secondary alcohols with amidines and (ii) dehydrogenative coupling of primary alcohols with alkynes and amidines. Triazines were prepared via dehydrogenative coupling of alcohols and amidines. Catalyst 1a is well tolerant to a wide range of substrates yielding the desired pyrimidines and triazines in moderate to good isolated yields. A series of control reactions were performed to predict the plausible mechanism, suggesting that the active participation of the ligand-centered redox events enables the Zn(II)-complex 1a to act as an efficient catalyst for synthesizing these N-heterocycles. Electron transfer processes occur at the azo-aromatic ligand throughout the catalytic reaction, and the Zn(II)-center serves only as a template.
Collapse
Affiliation(s)
- Siuli Das
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Rakesh Mondal
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Amit Kumar Guin
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| | - Nanda D Paul
- Department of Chemistry, Indian Institute of Engineering Science and Technology, Shibpur, Botanic Garden, Howrah 711103, India.
| |
Collapse
|
5
|
Muralidhar B, Victoria GG, Kumar KS, Sabbsani RR. Copper‐mediated relay strategy using chlorination/oxidation: An effective synthesis of functionalized coumarin derivatives. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Baitinti Muralidhar
- Vellore Institute of Technology: VIT University school of advanced sciences INDIA
| | | | | | | |
Collapse
|
6
|
He Y, Zheng J, Dong L. Rh(III)-Catalyzed Cascade Annulation to Produce N-acetyl Chain of Spiropyrroloisoquinoline Derivatives. Org Biomol Chem 2022; 20:2293-2299. [PMID: 35234789 DOI: 10.1039/d2ob00137c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A new rhodium(III)-catalyzed three-component multistep cascade spirocyclization approach was developed to synthesize nolvel N-acetyl chain of spiropyrroloisoquinoline derivatives using oxadiazoles as the directing group. This one-pot reaction also isolates aryloxadiazole...
Collapse
Affiliation(s)
- Yuan He
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jing Zheng
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Lin Dong
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
7
|
Bakulina O, Inyutina A, Dar’in D, Krasavin M. Multicomponent Reactions Involving Diazo Reagents: A 5-Year Update. Molecules 2021; 26:6563. [PMID: 34770972 PMCID: PMC8587191 DOI: 10.3390/molecules26216563] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/25/2021] [Accepted: 10/26/2021] [Indexed: 01/18/2023] Open
Abstract
This review summarizes recent developments in multicomponent reactions of diazo compounds. The role of diazo reagent and the type of interaction between components was analyzed to structure the discussion. In contrast to previous reviews on related topics mostly focused on metal catalyzed transformations, a substantial amount of organocatalytic or catalyst-free methodologies is covered in this work.
Collapse
Affiliation(s)
- Olga Bakulina
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| | | | | | - Mikhail Krasavin
- Institute of Chemistry, St. Petersburg State University, 26 Universitetskii Pr., 198504 Peterhof, Russia; (A.I.); (D.D.)
| |
Collapse
|
8
|
Hsueh NC, Chen SM, Lin CY, Chang MY. HCl-mediated cascade cyclocondensation of oxygenated arylacetic acids with arylaldehydes: one-pot synthesis of 1-arylisoquinolines. Org Biomol Chem 2021; 19:1047-1059. [PMID: 33416066 DOI: 10.1039/d0ob02431g] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper, a concise, open-vessel synthesis of 1-arylisoquinolines is described via HCl-mediated intermolecular cyclocondensation of oxygenated arylacetic acids with arylaldehydes in the presence of NH2OH and alcoholic solvents under mild and one-pot reaction conditions. A plausible mechanism is proposed and discussed herein. In the overall reaction process, only water was generated as the byproduct. Various environmentally friendly reaction conditions are investigated for convenient transformation via the (4C + 1C + 1N) annulation. This protocol provides a highly effective ring closure via the formations of one carbon-carbon (C-C) bond, two carbon-nitrogen (C-N) bonds and one carbon-oxygen (C-O) bond.
Collapse
Affiliation(s)
- Nai-Chen Hsueh
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Shin-Mei Chen
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Chun-Yi Lin
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan.
| | - Meng-Yang Chang
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 807, Taiwan. and Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
9
|
Alexander JR, Shchepetkina VI, Stankevich KS, Benedict RJ, Bernhard SP, Dreiling RJ, Cook MJ. Pd-Catalyzed Rearrangement of N-Alloc- N-allyl Ynamides via Auto-Tandem Catalysis: Evidence for Reversible C-N Activation and Pd(0)-Accelerated Ketenimine Aza-Claisen Rearrangement. Org Lett 2021; 23:559-564. [PMID: 33410700 DOI: 10.1021/acs.orglett.0c04078] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An auto-tandem catalytic double allylic rearrangement of N-alloc-N-allyl ynamides was developed. This reaction proceeds through two separate and distinct catalytic cycles with both decarboxylative Pd-π-allyl and Pd(0)-promoted aza-Claisen rearrangements occurring. A detailed mechanistic study supported by computations highlights these two separate mechanisms. Previously unreported reversible C-N ionization and a Pd(0)-catalyzed [3,3]-sigmatropic rearrangement were discovered. This study provides new reaction pathways for both π-allyl and sigmatropic rearrangements.
Collapse
Affiliation(s)
- Juliana R Alexander
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Veronika I Shchepetkina
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Ksenia S Stankevich
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Rory J Benedict
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Samuel P Bernhard
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Reagan J Dreiling
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| | - Matthew J Cook
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, Montana 59717, United States
| |
Collapse
|
10
|
Zhou J, Yin C, Zhong T, Zheng X, Yi X, Chen J, Yu C. A direct synthesis method towards spirocyclic indazole derivatives via Rh( iii)-catalyzed C–H activation and spiroannulation. Org Chem Front 2021. [DOI: 10.1039/d1qo00805f] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A rhodium(iii)-catalyzed [4 + 1] spiroannulation of N-aryl phthalazine-diones (pyridazine-diones) with diazo compounds to construct spirocyclic indazole derivatives with diverse structures is described.
Collapse
Affiliation(s)
- Jian Zhou
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanliu Yin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Tianshuo Zhong
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiangyun Zheng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Xiao Yi
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Junyu Chen
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| | - Chuanming Yu
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. of China
| |
Collapse
|
11
|
Liu H, Lin ML, Chen YJ, Huang YH, Dong L. Rh( iii)-Catalyzed one-pot three-component cyclization reaction: rapid selective synthesis of monohydroxy polycyclic BINOL derivatives. Org Chem Front 2021. [DOI: 10.1039/d1qo00779c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Rh(iii)-catalyzed three-component C–H bond functionalization protocol has been successfully applied to access complex polycyclic BINOL derivatives in which the formation of intermediate amides occurred in situ from aldehydes and amines.
Collapse
Affiliation(s)
- Hao Liu
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Meng-Ling Lin
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Jun Chen
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Yin-Hui Huang
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| | - Lin Dong
- Key Laboratory of Drug Targeting and Drug Delivery System of Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu 610041, China
| |
Collapse
|
12
|
Yu Y, Guan M, Zhao YH, Xie W, Zhou Z, Tang Z. Efficient Synthesis of Isoquinoline and Its Derivatives: From
Metal Сatalysts to Catalyst-free Processes in Water. RUSS J GEN CHEM+ 2020. [DOI: 10.1134/s1070363220100266] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
Duan W, Li Z, Chen F, Zhang M, Deng H, Song L. Facile synthesis of fused polyheterocycles containing trifluromethylated benzo[6,7]chromeno[2,3-c]pyrazoles via one-pot two-step MCRs. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
14
|
Xie H, Jiang J, Wang J. Rhodium(III)‐Catalyzed C−H/N−H Functionalization with Hydrogen Evolution. Chemistry 2020; 26:7365-7368. [DOI: 10.1002/chem.202000950] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/18/2020] [Indexed: 12/19/2022]
Affiliation(s)
- Hui Xie
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jijun Jiang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| | - Jun Wang
- Key Laboratory of Bioinorganic and Synthetic Chemistry, of Ministry of Education School of Chemistry Sun Yat-Sen University Guangzhou 510275 P. R. China
| |
Collapse
|
15
|
Opsomer T, Van Hoof M, D’Angelo A, Dehaen W. 1,2,3-Triazole-Mediated Synthesis of 1-Methyleneisoquinolines: A Three-Step Synthesis of Papaverine and Analogues. Org Lett 2020; 22:3596-3600. [DOI: 10.1021/acs.orglett.0c01069] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Tomas Opsomer
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Max Van Hoof
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Andrea D’Angelo
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| | - Wim Dehaen
- Molecular Design and Synthesis, Department of Chemistry, KU Leuven, Celestijnenlaan 200F, 3001 Leuven, Belgium
| |
Collapse
|
16
|
Qi B, Fang L, Wang Q, Guo S, Shi P, Chu B, Zhu J. Rh(III)-catalyzed synthesis of isoquinolines using the N-Cl bond of N-chloroimines as an internal oxidant. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
17
|
Shilpa T, Dhanya R, Saranya S, Anilkumar G. An Overview of Rhodium‐Catalysed Multi‐Component Reactions. ChemistrySelect 2020. [DOI: 10.1002/slct.201904441] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Thomas Shilpa
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| | - Raju Dhanya
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| | - Salim Saranya
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
- Advanced Molecular Materials Research Centre (AMMRC), Mahatma Gandhi University, Priyadarsini Hills P O, Kottayam Kerala INDIA 686560
| |
Collapse
|
18
|
Xu F, Song YY, Zhu WJ, Liu CS, Lu YZ, Du M. Rhodium-catalyzed multiple C–H activation/highlymeta-selective C–H amination between amidines and alkynes. Chem Commun (Camb) 2020; 56:11227-11230. [DOI: 10.1039/d0cc04885b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
A tandem process of multiple C–H activation, intermolecular highlymeta-selective C–H amination, and intramolecular C–H amination between amidines and alkynes has been developed.
Collapse
Affiliation(s)
- Fen Xu
- College of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- China
| | - Yuan-Yuan Song
- College of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- China
| | - Wen-Jing Zhu
- College of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- China
| | - Chun-Sen Liu
- College of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- China
| | - Ya-Zhou Lu
- College of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- China
| | - Miao Du
- College of Material and Chemical Engineering
- Zhengzhou University of Light Industry
- Zhengzhou 450002
- China
| |
Collapse
|
19
|
Mihara G, Noguchi T, Nishii Y, Hayashi Y, Kawauchi S, Miura M. Rhodium-Catalyzed Annulative Coupling of Isothiazoles with Alkynes through N-S Bond Cleavage. Org Lett 2019; 22:661-665. [PMID: 31886679 DOI: 10.1021/acs.orglett.9b04437] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
A Rh(III)-catalyzed annulative coupling of 3,5-diarylisothiazoles and alkynes is reported. The N-S bond in the isothiazole ring acts as an internal oxidant to regenerate the Rh(III) species in combination with an external Cu(II) oxidant, and the corresponding 1:2 coupling products are obtained. The remarkable difference in the reaction outcome between isothiazoles and the relevant isoxazoles has been investigated by DFT calculations, revealing that the relative stability of the enolate intermediates dictates the product selectivity.
Collapse
Affiliation(s)
| | | | | | - Yoshihiro Hayashi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Ookayama, Meguro-ku, Tokyo 152-8552 , Japan
| | - Susumu Kawauchi
- Department of Chemical Science and Engineering, School of Materials and Chemical Technology , Tokyo Institute of Technology , Ookayama, Meguro-ku, Tokyo 152-8552 , Japan
| | | |
Collapse
|
20
|
Yang J, Wu L, Xu H, Gao H, Zhou Z, Yi W. Redox-Neutral [4 + 2] Annulation of N-Methoxybenzamides with Alkynes Enabled by an Osmium(II)/HOAc Catalytic System. Org Lett 2019; 21:9904-9908. [PMID: 31802671 DOI: 10.1021/acs.orglett.9b03827] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
By making use of a direct C-H activation strategy, an efficient osmium(II)-catalyzed redox-neutral [4 + 2] annulation of N-methoxybenzamides with alkynes has been accomplished. Computational and experimental studies revealed that such transformation leading to the synthesis of the isoquinolone core might follow an Os(II)-Os(IV)-Os(II) catalytic pathway, in which an unusual HOAc-assisted oxidative addition of osmium(II) into the N-O bond to generate the osmium(IV) species was involved as one of the key transition states. Further exploration of divergent C-H activation reaction modes enabled by the osmium(II) catalyst has also been exemplified for one-pot assembly of other either linear or cyclic products.
Collapse
Affiliation(s)
- Jian Yang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Liexin Wu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Huiying Xu
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Hui Gao
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Zhi Zhou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| | - Wei Yi
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation & Molecular Target and Clinical Pharmacology, State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & the Fifth Affiliated Hospital , Guangzhou Medical University , Guangzhou , Guangdong 511436 , China
| |
Collapse
|
21
|
Thakur R, Jaiswal Y, Kumar A. Imidates: an emerging synthon for N-heterocycles. Org Biomol Chem 2019; 17:9829-9843. [DOI: 10.1039/c9ob01899a] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
This review highlights the recent application of imidates as building blocks for the synthesis of saturated and un-saturated N-heterocycles via C–N annulation reactions under acid/base/metal-catalyzed/radical-mediated reaction conditions.
Collapse
Affiliation(s)
- Rima Thakur
- Department of Chemistry
- National Institute of Technology
- Patna
- India
| | - Yogesh Jaiswal
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| | - Amit Kumar
- Department of Chemistry
- Indian Institute of Technology Patna
- Bihta
- India
| |
Collapse
|