1
|
Xu Y, Wang J, Zhang Q, Hu X, Lv C, Yang H, Sun B, Jin C. Photo- and Cerium-Mediated C─C Bond Cleavage for the Deconstructive Diversification of Cyclic Acids. Angew Chem Int Ed Engl 2025; 64:e202500561. [PMID: 40044629 DOI: 10.1002/anie.202500561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Revised: 02/27/2025] [Accepted: 03/05/2025] [Indexed: 03/14/2025]
Abstract
The selective cleavage of inert carbon-carbon bonds in unstrained rings continues to pose a formidable challenge in chemical synthesis. Current methods for C(sp3) ─C(sp3) bond cleavage are highly limited, typically relying on transition-metal catalysis to facilitate ring-opening via small-ring strain or inducing β-fragmentation after generating radicals from oxygen or nitrogen atoms pre-installed in the substrate. Herein, we introduce an effective strategy for the decarboxylative ring-opening functionalization of α-trisubstituted carboxylic acids, mediated by both light and cerium. This method enables the ring-opening of carboxylic acids with ring sizes ranging from 3 to 12 members, allowing the construction of C─CN, C-halide, C─C, C─Se, and C─oxime bonds. Notably, this reaction does not require the pre-installation of an oxygen atom in the substrate, as the carbonyl group is derived from atmospheric oxygen. Furthermore, late-stage modification establishes distally functionalized carbonyl compounds, which serve as versatile synthons for accessing valuable building blocks.
Collapse
Affiliation(s)
- Yan Xu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Jianjie Wang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Qian Zhang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Xinyao Hu
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Chun Lv
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Heng Yang
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Bin Sun
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| | - Can Jin
- College of Pharmaceutical Science, Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Key Laboratory for Green Pharmaceutical Technologies and Related Equipment of Ministry of Education, Zhejiang Key Laboratory of Green Manufacturing Technology for Chemical Drugs, Zhejiang University of Technology, Hangzhou, 310014, P.R. China
| |
Collapse
|
2
|
Aida K, Hirao M, Saitoh T, Yamamoto T, Einaga Y, Ota E, Yamaguchi J. Selective C-N Bond Cleavage in Unstrained Pyrrolidines Enabled by Lewis Acid and Photoredox Catalysis. J Am Chem Soc 2024; 146:30698-30707. [PMID: 39440606 PMCID: PMC11544709 DOI: 10.1021/jacs.4c13210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 10/08/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Cleavage of inert C-N bonds in unstrained azacycles such as pyrrolidine remains a formidable challenge in synthetic chemistry. To address this, we introduce an effective strategy for the reductive cleavage of the C-N bond in N-benzoyl pyrrolidine, leveraging a combination of Lewis acid and photoredox catalysis. This method involves single-electron transfer to the amide, followed by site-selective cleavage at the C2-N bond. Cyclic voltammetry and NMR studies demonstrated that the Lewis acid is crucial for promoting the single-electron transfer from the photoredox catalyst to the amide carbonyl group. This protocol is widely applicable to various pyrrolidine-containing molecules and enables inert C-N bond cleavage including C-C bond formation via intermolecular radical addition. Furthermore, the current protocol successfully converts pyrrolidines to aziridines, γ-lactones, and tetrahydrofurans, showcasing its potential of the inert C-N bond cleavage for expanding synthetic strategies.
Collapse
Affiliation(s)
- Kazuhiro Aida
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Marina Hirao
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Tsuyoshi Saitoh
- International
Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8575, Japan
| | - Takashi Yamamoto
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Yasuaki Einaga
- Department
of Chemistry, Keio University, Yokohama 223-8522, Japan
| | - Eisuke Ota
- Waseda
Institute for Advanced Study, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| | - Junichiro Yamaguchi
- Department
of Applied Chemistry, Waseda University, 513 Wasedatsurumakicho, Shinjuku, Tokyo 162-0041, Japan
| |
Collapse
|
3
|
Jing Q, Qiao FC, Sun J, Wang JY, Zhou MD. Persulfate promoted carbamoylation of N-arylacrylamides and N-arylcinnamamides with 4-carbamoyl-Hantzsch esters. Org Biomol Chem 2023; 21:7530-7534. [PMID: 37674373 DOI: 10.1039/d3ob01240a] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/08/2023]
Abstract
Carbamoyl-Hantzsch esters were used as carbamoyl radical precursors for oxidative carbamoylation of N-arylacrylamides and N-arylcinnamamides in the presence of inexpensive persulfates. This protocol can be applied to a broad range of substrates with various functional groups, providing a variety of 3,3-disubstituted oxindoles and 3,4-disubstituted dihydroquinolin-2(1H)-ones in moderate to good yields via an intermolecular addition/cyclization process.
Collapse
Affiliation(s)
- Qi Jing
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Fu-Ci Qiao
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Jing Sun
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| | - Jing-Yun Wang
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
| | - Ming-Dong Zhou
- College of Chemical Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China.
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
| |
Collapse
|
4
|
Soro D, Roque JB, Rackl JW, Park B, Payer S, Shi Y, Ruble JC, Kaledin AL, Baik MH, Musaev DG, Sarpong R. Photo- and Metal-Mediated Deconstructive Approaches to Cyclic Aliphatic Amine Diversification. J Am Chem Soc 2023; 145:11245-11257. [PMID: 37171220 PMCID: PMC10214453 DOI: 10.1021/jacs.3c01318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Indexed: 05/13/2023]
Abstract
Described herein are studies toward the core modification of cyclic aliphatic amines using either a riboflavin/photo-irradiation approach or Cu(I) and Ag(I) to mediate the process. Structural remodeling of cyclic amines is explored through oxidative C-N and C-C bond cleavage using peroxydisulfate (persulfate) as an oxidant. Ring-opening reactions to access linear aldehydes or carboxylic acids with flavin-derived photocatalysis or Cu salts, respectively, are demonstrated. A complementary ring-opening process mediated by Ag(I) facilitates decarboxylative Csp3-Csp2 coupling in Minisci-type reactions through a key alkyl radical intermediate. Heterocycle interconversion is demonstrated through the transformation of N-acyl cyclic amines to oxazines using Cu(II) oxidation of the alkyl radical. These transformations are investigated by computation to inform the proposed mechanistic pathways. Computational studies indicate that persulfate mediates oxidation of cyclic amines with concomitant reduction of riboflavin. Persulfate is subsequently reduced by formal hydride transfer from the reduced riboflavin catalyst. Oxidation of the cyclic aliphatic amines with a Cu(I) salt is proposed to be initiated by homolysis of the peroxy bond of persulfate followed by α-HAT from the cyclic amine and radical recombination to form an α-sulfate adduct, which is hydrolyzed to the hemiaminal. Investigation of the pathway to form oxazines indicates a kinetic preference for cyclization over more typical elimination pathways to form olefins through Cu(II) oxidation of alkyl radicals.
Collapse
Affiliation(s)
- David
M. Soro
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jose B. Roque
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Jonas W. Rackl
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Bohyun Park
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Stefan Payer
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| | - Yuan Shi
- Discovery
Chemistry Research and Technologies, Eli
Lilly and Company, Indianapolis, Indiana 46285, United States
| | - J. Craig Ruble
- Discovery
Chemistry Research and Technologies, Eli
Lilly and Company, Indianapolis, Indiana 46285, United States
| | - Alexey L. Kaledin
- Cherry
L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Mu-Hyun Baik
- Department
of Chemistry, Korea Advanced Institute of
Science and Technology (KAIST), Daejeon 34141, Korea
- Center
for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Djamaladdin G. Musaev
- Cherry
L. Emerson Center for Scientific Computation, and Department of Chemistry, Emory University, 1515 Dickey Drive, Atlanta, Georgia 30322, United States
| | - Richmond Sarpong
- Department
of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
5
|
Peng Y, Oestreich M. B(C 6 F 5 ) 3 -Catalyzed Regioselective Ring Opening of Cyclic Amines with Hydrosilanes. Chemistry 2023; 29:e202203721. [PMID: 36448647 DOI: 10.1002/chem.202203721] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 11/29/2022] [Accepted: 11/30/2022] [Indexed: 12/02/2022]
Abstract
Opening the ring of cyclic amines by regioselective fission of one of the carbon-nitrogen bonds greatly expands the repertoire of available nitrogen-containing skeletons. Unlike approaches starting from cyclic tertiary amines, methods that can directly open secondary amines are still scarce. The present work discloses an efficient reductive ring opening of either of these cyclic amines using PhSiH3 under B(C6 F5 )3 catalysis. By this, the direct transformation of unstrained cyclic amines into the corresponding acyclic amines is achieved in a simple one-pot operation. A stepwise mechanism proceeding through the intermediacy of silylammonium ions followed by reductive cleavage of a carbon-nitrogen bond was experimentally verified.
Collapse
Affiliation(s)
- Yi Peng
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| | - Martin Oestreich
- Institut für Chemie, Technische Universität Berlin, Strasse des 17. Juni 115, 10623, Berlin, Germany
| |
Collapse
|
6
|
Li J, Li YA, Wu G, Zhang X. Metal-Free Aminohalogenation of Quinones With Alkylamines and NXS at Room Temperature. Front Chem 2022; 10:917371. [PMID: 35707457 PMCID: PMC9189915 DOI: 10.3389/fchem.2022.917371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 04/19/2022] [Indexed: 12/03/2022] Open
Abstract
A simple and practical strategy for intermolecular aminohalogenation of quinone with alkyl amines and NXS was developed, in which haloamines generated in situ were employed as bifunctional reagents. The reaction system is reliable, efficient and wide in substrate range, which is suitable for the two-fold aminochlorination of 1, 4-benzoquinones, large-scale reaction and late-stage modification of pharmaceuticals.
Collapse
Affiliation(s)
- Jia Li
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yu-An Li
- Department of Orthopaedics Surgery, The Second Affiliated Hospital and Yuying Children’s Hospital of Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yu-An Li, ; Ge Wu,
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yu-An Li, ; Ge Wu,
| | - Xu Zhang
- Department of Neurology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
7
|
de Souza AS, Ribeiro RCB, Costa DCS, Pauli FP, Pinho DR, de Moraes MG, da Silva FDC, Forezi LDSM, Ferreira VF. Menadione: a platform and a target to valuable compounds synthesis. Beilstein J Org Chem 2022; 18:381-419. [PMID: 35529893 PMCID: PMC9039524 DOI: 10.3762/bjoc.18.43] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/30/2022] [Indexed: 01/26/2023] Open
Abstract
Naphthoquinones are important natural or synthetic compounds belonging to the general class of quinones. Many compounds in this class have become drugs that are on the pharmaceutical market for the treatment of various diseases. A special naphthoquinone derivative is menadione, a synthetic naphthoquinone belonging to the vitamin K group. This compound can be synthesized by different methods and it has a broad range of biological and synthetic applications, which will be highlighted in this review.
Collapse
Affiliation(s)
- Acácio S de Souza
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Ruan Carlos B Ribeiro
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| | - Dora C S Costa
- Department of Chemistry, CICECO – Aveiro Institute of Materials, University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Fernanda P Pauli
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - David R Pinho
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Matheus G de Moraes
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Fernando de C da Silva
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Luana da S M Forezi
- Universidade Federal Fluminense, Instituto de Química, Departamento de Química Orgânica, 24020-150 Niterói, RJ, Brazil
| | - Vitor F Ferreira
- Universidade Federal Fluminense, Departamento de Tecnologia Farmacêutica, Faculdade de Farmácia, R. Dr. Mario Vianna, 523, Santa Rosa, CEP 24241-002, Niterói-RJ, Brazil
| |
Collapse
|
8
|
Abstract
We developed an electrochemical carboamidation sequence that affords either cyclic β-amidoamine products via direct functionalization or linear hydroxybisamide products via a ring opening pathway. The reaction pathway was dependent on the nature of the N-acyl activating group, with carbamate groups favoring direct isocyanide addition to the N-acyliminium ion intermediate and the benzoyl activating group favoring the ring opening-functionalization pathway. Both protocols are one-pot reaction sequences, have general applicability, and lead to peptide-like products of greatly increased molecular complexity.
Collapse
Affiliation(s)
- Feijun Wang
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| | - Kevin J Frankowski
- Center for Integrative Chemical Biology and Drug Discovery, UNC Eshelman School of Pharmacy, 125 Mason Farm Road, Chapel Hill, North Carolina 27599, United States
| |
Collapse
|
9
|
Wang L, Liu C, Li L, Wang X, Sun R, Zhou M, Wang H. Visible‐Light‐Promoted
[3 + 2] Cycloaddition of
2
H
‐Azirines
with Quinones: Access to Substituted Benzo[
f
]isoindole‐4,9‐diones. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100728] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Lijia Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Chuang Liu
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Lei Li
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Xin Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ran Sun
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - Ming‐Dong Zhou
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| | - He Wang
- School of Petrochemical Engineering Liaoning Petrochemical University Fushun Liaoning 113001 China
| |
Collapse
|
10
|
Xu X, Huang L, Smits E, Zhong L, Feng H, Van der Eycken EV. Synthesis of N-alkenylisoquinolinones via palladium-catalyzed cyclization/C 4–O bond cleavage of oxazolidines. NEW J CHEM 2022. [DOI: 10.1039/d2nj04127h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
A palladium-catalyzed cascade ring-opening reaction to synthesize N-alkenylisoquinolinones via cyclization and C–O bond cleavage is reported.
Collapse
Affiliation(s)
- Xianjun Xu
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Liliang Huang
- College of Chemistry and Chemical Engineering & Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Eva Smits
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
| | - Ling Zhong
- College of Chemistry and Chemical Engineering & Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering & Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Shanghai University of Engineering Science, Shanghai, 201620, China
| | - Erik V. Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, KU Leuven, Celestijnenlaan 200F, Leuven, B-3001, Belgium
- Peoples’ Friendship University of Russia (RUDN University), Miklukho-Maklaya Street 6, Moscow, 117198, Russia
| |
Collapse
|
11
|
Affiliation(s)
- Feng Liu
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
- Department of Chemistry Fudan University 2005 Songhu Rd. Shanghai 200438 P. R. China
| | - Zhen Zhang
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
| | - Hai‐yan Diao
- School of Perfume and Aroma Technology Shanghai Institute of Technology 100 Haiquan Rd. Shanghai 201418 P. R. China
| | - Zhang‐jie Shi
- Department of Chemistry Fudan University 2005 Songhu Rd. Shanghai 200438 P. R. China
| |
Collapse
|
12
|
Zhang W, Yao Y, Xu Y, Zhou X, Wu G. Amine hydrochloride salts as bifunctional reagents for the radical aminochlorination of maleimides. Org Chem Front 2021. [DOI: 10.1039/d1qo00916h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Amine hydrochloride salts have been typically used as amination reagents.
Collapse
Affiliation(s)
- Wenliang Zhang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yujing Yao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Yaling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Xueying Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, People's Republic of China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
13
|
Wang B, Xu H, Zhang H, Zhang GM, Li FY, He S, Shi ZC, Wang JY. B(C6F5)3-catalyzed three-component tandem reaction to construct novel polycyclic quinone derivatives: synthesis of a carbonate salt chromogenic chemosensor. Org Chem Front 2021. [DOI: 10.1039/d1qo01199e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series novel polycyclic quinone derivatives were constructed providing a carbonate salt chromogenic chemosensor.
Collapse
Affiliation(s)
- Bei Wang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hong Xu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hua Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Guo-Ming Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Fu-Yu Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuai He
- Southwest Minzu University, Chengdu 610041, PR China
| | - Zhi-Chuan Shi
- Southwest Minzu University, Chengdu 610041, PR China
| | - Ji-Yu Wang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
- Department of Chemistry, Xihua University, China
| |
Collapse
|
14
|
Fang H, Han Y, Sun J, Yan C. Domino β‐C−H Functionalization and [3+2] Cycloaddition for Efficient Synthesis of Diverse Spiro and Polycyclic Compounds. ChemistrySelect 2020. [DOI: 10.1002/slct.202003342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hui‐Lin Fang
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Ying Han
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Jing Sun
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| | - Chao‐Guo Yan
- School of Chemistry & Chemical Engineering Yangzhou University Yangzhou 225002 China
| |
Collapse
|
15
|
Voutyritsa E, Garreau M, Kokotou MG, Triandafillidi I, Waser J, Kokotos CG. Photochemical Functionalization of Heterocycles with EBX Reagents: C−H Alkynylation versus Deconstructive Ring Cleavage**. Chemistry 2020; 26:14453-14460. [DOI: 10.1002/chem.202002868] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/11/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Errika Voutyritsa
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Marion Garreau
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Maroula G. Kokotou
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Ierasia Triandafillidi
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| | - Jérôme Waser
- Laboratory of Catalysis and Organic Synthesis Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne Switzerland
| | - Christoforos G. Kokotos
- Laboratory of Organic Chemistry Department of Chemistry National and Kapodistrian University of Athens Panepistimiopolis 15771 Athens Greece
| |
Collapse
|
16
|
Pandaram S, T P AK, Ilangovan A. The silver catalyzed direct C-H functionalization of quinones with dialkyl amides. Org Biomol Chem 2020; 18:3027-3031. [PMID: 32239012 DOI: 10.1039/d0ob00323a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
DMA and other dialkylamides were successfully used as synthons for the C-H functionalization of quinones. This novel amidoalkylation reaction works with a variety of substituted quinones and dialkyl/alkyl amides, such as DMF, NMP and NMA, and the corresponding products were obtained in moderate to good yields. The amidoalkylation of quinones is demonstrated for the first time. A suitable mechanism and the synthetic utility of these compounds are demonstrated. The molecular docking of compound 5 with an Alzheimer's disease (AD) associated AChE target site was studied.
Collapse
Affiliation(s)
- Sakthivel Pandaram
- Bharathidasan University, School of Chemistry, Tiruchirappalli, Tamil Nadu, India.
| | - Adarsh Krishna T P
- Bharathidasan University, School of Chemistry, Tiruchirappalli, Tamil Nadu, India.
| | - Andivelu Ilangovan
- Bharathidasan University, School of Chemistry, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
17
|
Zhang JW, Wang YR, Pan JH, He YH, Yu W, Han B. Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angew Chem Int Ed Engl 2020; 59:3900-3904. [PMID: 31869508 DOI: 10.1002/anie.201914623] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/18/2019] [Indexed: 12/20/2022]
Abstract
A deconstructive oxygenation of unstrained primary cycloalkanamines has been developed for the first time using an auto-oxidative aromatization promoted C(sp3 )-C(sp3 ) bond cleavage strategy. This metal-free method involves the substitution reaction of cycloalkanamines with hydrazonyl chlorides and subsequent auto-oxidative annulation to in situ generate pre-aromatics, followed by N-radical-promoted ring-opening and further oxygenation by 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) and m-cholorperoxybenzoic acid (mCPBA). Consequently, a series of 1,2,4-triazole-containing acyclic carbonyl compounds were efficiently produced. This protocol features a one-pot operation, mild reaction conditions, high regioselectivity and ring-opening efficiency, broad substrate scope, and is compatible with alkaloids, osamines, and peptides, as well as steroids.
Collapse
Affiliation(s)
- Jian-Wu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yuan-Rui Wang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Jia-Hao Pan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Yi-Heng He
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou, 730000, P. R. China
| |
Collapse
|
18
|
Zhang J, Wang Y, Pan J, He Y, Yu W, Han B. Deconstructive Oxygenation of Unstrained Cycloalkanamines. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914623] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Jian‐Wu Zhang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yuan‐Rui Wang
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Jia‐Hao Pan
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Yi‐Heng He
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Wei Yu
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| | - Bing Han
- State Key Laboratory of Applied Organic Chemistry College of Chemistry and Chemical Engineering Lanzhou University Lanzhou 730000 P. R. China
| |
Collapse
|
19
|
Li D, Shen X. Iron-catalyzed regioselective alkylation of 1,4-quinones and coumarins with functionalized alkyl bromides. Org Biomol Chem 2020; 18:750-754. [DOI: 10.1039/c9ob02289a] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
A simple and efficient Fe-catalyzed regioselective alkylation of 1,4-quinones and coumarins, using functionalized alkyl bromides as alkylating reagents, has been developed.
Collapse
Affiliation(s)
- Dengke Li
- College of Chemistry and Environmental Science
- Qujing Normal University
- Qujing 655011
- China
| | - Xianfu Shen
- Center for Yunnan-Guizhou Plateau Chemical Functional Materials and Pollution Control
- Qujing Normal University
- Qujing 655011
- China
| |
Collapse
|
20
|
Wei WT, Luo MJ, Teng F, Song RJ, Li JH. Silver-catalyzed oxidative 1,2-alkyletherification of unactivated alkenes with α-bromoalkyl carbonyls: facile access to highly substituted 2,3-dihydrofurans. Chem Commun (Camb) 2019; 55:11111-11114. [DOI: 10.1039/c9cc05695e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A silver-catalysed C–Br oxidative functionalization/annulative oxygenation process for producing valuable quaternary-carbon-possessing 2,3-dihydrofuran is presented.
Collapse
Affiliation(s)
- Wen-Ting Wei
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- School of Materials Science and Chemical Engineering
| | - Mu-Jia Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Fan Teng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Ren-Jie Song
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
| | - Jin-Heng Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle
- Nanchang Hangkong University
- Nanchang 330063
- China
- School of Materials Science and Chemical Engineering
| |
Collapse
|