1
|
Sun R, Xie F, Zhang Q, Sun YJ, Dai W. Ferric Nitrate as a Bifunctional Catalyst for Dehydration and Oxidative Cleavage-Esterification of Tertiary Alcohols. J Org Chem 2025. [PMID: 39884743 DOI: 10.1021/acs.joc.4c02592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2025]
Abstract
The selective oxidative cleavage and functionalization of C(OH)-C bonds in tertiary alcohols harbor immense feasibility in organic synthesis and enable the production of high value-added chemicals from renewable biomass. However, it remains a challenge, owing to the inherent kinetic inertness and thermodynamic stability of C(OH)-C bonds and the lack of Cα-H. Taking the huge potential and challenge of C(OH)-C bond activation and functionalization into consideration, herein, we show the first example of an inexpensive bifunctional ferric nitrate catalyst for catalytic direct oxidation of structurally distinct tertiary alcohols to esters with environmentally benign molecular oxygen as an oxidant and MeOH as a solvent, without the assistance of any additives. Detailed mechanistic studies reveal that this tandem catalytic oxidative process is initiated by the synergistic effects of an iron ion and nitrate ion, which serve as Lewis acids for dehydrating and a nitrogen dioxide radical precursor for inducing an oxidative cleavage, respectively.
Collapse
Affiliation(s)
- Ruixia Sun
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Fukai Xie
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Qiang Zhang
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Ying-Ji Sun
- School of Chemistry, Dalian University of Technology, Dalian 116024, China
| | - Wen Dai
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| |
Collapse
|
2
|
Yu P, Huang X, Wang D, Yi H, Song C, Li J. Electrochemical Decarboxylative Cross-Coupling with Nucleophiles. Chemistry 2024; 30:e202402124. [PMID: 38937823 DOI: 10.1002/chem.202402124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/26/2024] [Accepted: 06/27/2024] [Indexed: 06/29/2024]
Abstract
Decarboxylative cross-coupling reactions are powerful tools for carbon-heteroatom bonds formation, but typically require pre-activated carboxylic acids as substrates or heteroelectrophiles as functional groups. Herein, we present an electrochemical decarboxylative cross-coupling of carboxylic acids with structurally diverse fluorine, alcohol, H2O, acid, and amine as nucleophiles. This strategy takes advantage of the ready availability of these building blocks from commercial libraries, as well as the mild and oxidant-free conditions provided by electrochemical system. This reaction demonstrates good functional-group tolerance and its utility in late-stage functionalization.
Collapse
Affiliation(s)
- Pingping Yu
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Xuejin Huang
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Dake Wang
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Hong Yi
- College of Chemistry and Molecular Sciences, Institute for Advanced Studies IAS), Wuhan University, Wuhan, Hubei, 430072, P. R. China
| | - Chunlan Song
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| | - Jiakun Li
- College of Chemistry and Chemical Engineering, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan University, Changsha, 410082, P. R. China
| |
Collapse
|
3
|
Wen Z, Pramanik A, Lewicki SA, Jung YH, Gao ZG, Randle JCR, Cronin C, Chen Z, Giancotti LA, Whitehead GS, Liang BT, Breton S, Salvemini D, Cook DN, Jacobson KA. Alicyclic Ring Size Variation of 4-Phenyl-2-naphthoic Acid Derivatives as P2Y 14 Receptor Antagonists. J Med Chem 2023; 66:9076-9094. [PMID: 37382926 PMCID: PMC10407959 DOI: 10.1021/acs.jmedchem.3c00664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
P2Y14 receptor (P2Y14R) is activated by extracellular UDP-glucose, a damage-associated molecular pattern that promotes inflammation in the kidney, lung, fat tissue, and elsewhere. Thus, selective P2Y14R antagonists are potentially useful for inflammatory and metabolic diseases. The piperidine ring size of potent, competitive P2Y14R antagonist (4-phenyl-2-naphthoic acid derivative) PPTN 1 was varied from 4- to 8-membered rings, with bridging/functional substitution. Conformationally and sterically modified isosteres included N-containing spirocyclic (6-9), fused (11-13), and bridged (14, 15) or large (16-20) ring systems, either saturated or containing alkene or hydroxy/methoxy groups. The alicyclic amines displayed structural preference. An α-hydroxyl group increased the affinity of 4-(4-((1R,5S,6r)-6-hydroxy-3-azabicyclo[3.1.1]heptan-6-yl)phenyl)-7-(4-(trifluoromethyl)phenyl)-2-naphthoic acid 15 (MRS4833) compared to 14 by 89-fold. 15 but not its double prodrug 50 reduced airway eosinophilia in a protease-mediated asthma model, and orally administered 15 and prodrugs reversed chronic neuropathic pain (mouse CCI model). Thus, we identified novel drug leads having in vivo efficacy.
Collapse
Affiliation(s)
- Zhiwei Wen
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Asmita Pramanik
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Sarah A Lewicki
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Young-Hwan Jung
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Zhan-Guo Gao
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - John C R Randle
- Random Walk Ventures, LLC, 108 Lincoln Street Unit 6B, Boston, Massachusetts 02111, United States
| | - Chunxia Cronin
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Zhoumou Chen
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Luigino A Giancotti
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Gregory S Whitehead
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Bruce T Liang
- Pat and Jim Calhoun Cardiology Center, University of Connecticut Health Center, Farmington, Connecticut 06030, United States
| | - Sylvie Breton
- Centre de Recherche du CHU de Québec, Département d'Obstétrique, de Gynécologie et Reproduction, Faculté de Médecine, Université Laval, Laval, Québec G1V 4G2, Canada
| | - Daniela Salvemini
- Department of Pharmacology and Physiology and the Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 South Grand Blvd., St. Louis, Missouri 63104, United States
| | - Donald N Cook
- Immunity, Inflammation and Disease Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, North Carolina 27709, United States
| | - Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, United States
| |
Collapse
|
4
|
Xing Q, Zhao J, Zhu Y, Hou X, Wang Y. Triphosgene: an efficient chlorination reagent for synthesis of 5-chloro-2-pentanone from 3-acetyl-1-propanol. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04886-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Yang P, Li YY, Tian H, Qian GL, Wang Y, Hong X, Gui J. Syntheses of Bufospirostenin A and Ophiopogonol A by a Conformation-Controlled Transannular Prins Cyclization. J Am Chem Soc 2022; 144:17769-17775. [PMID: 36125970 DOI: 10.1021/jacs.2c07944] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Controlling the conformation of medium-sized rings is challenging because of their flexibility and ring strain effects. Herein, we report non-Curtin-Hammett conditions for the precise control of the conformation of cyclodecenones to effect the first cis-selective transannular Prins cyclization, which enabled concise syntheses of the 5(10→1)abeo-steroids bufospirostenin A and ophiopogonol A in only seven steps from inexpensive starting materials. Computational results indicated that the key cyclization was kinetically controlled and proceeded via either a Prins pathway or a carbonyl-ene pathway, depending on the reaction conditions. Moreover, conformational isomerization played a critical role in determining the stereochemistry of the products.
Collapse
Affiliation(s)
- Peicheng Yang
- Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Yan-Yu Li
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hailong Tian
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Gan-Lu Qian
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yun Wang
- CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| | - Xin Hong
- Center of Chemistry for Frontier Technologies, Department of Chemistry, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.,Beijing National Laboratory for Molecular Sciences, Zhongguancun North First Street No. 2, Beijing 100190, PR China.,Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province, School of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
| | - Jinghan Gui
- Shanghai Frontiers Science Center for TCM Chemical Biology, Innovation Research Institute of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, 1200 Cailun Road, Shanghai 201203, China.,CAS Key Laboratory of Synthetic Chemistry of Natural Substances, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
6
|
Woo J, Christian AH, Burgess SA, Jiang Y, Mansoor UF, Levin MD. Scaffold hopping by net photochemical carbon deletion of azaarenes. Science 2022; 376:527-532. [PMID: 35482853 PMCID: PMC9107930 DOI: 10.1126/science.abo4282] [Citation(s) in RCA: 100] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Discovery chemists routinely identify purpose-tailored molecules through an iterative structural optimization approach, but the preparation of each successive candidate in a compound series can rarely be conducted in a manner matching their thought process. This is because many of the necessary chemical transformations required to modify compound cores in a straightforward fashion are not applicable in complex contexts. We report a method that addresses one facet of this problem by allowing chemists to hop directly between chemically distinct heteroaromatic scaffolds. Specifically, we show that selective photolysis of quinoline N-oxides with 390-nanometer light followed by acid-promoted rearrangement affords N-acylindoles while showing broad compatibility with medicinally relevant functionality. Applications to late-stage skeletal modification of compounds of pharmaceutical interest and more complex transformations involving serial single-atom changes are demonstrated.
Collapse
Affiliation(s)
- Jisoo Woo
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| | | | | | - Yuan Jiang
- Analytical Research and Development, Merck & Co., Inc., Boston, MA, USA
| | | | - Mark D. Levin
- Department of Chemistry, University of Chicago, Chicago, IL, USA
| |
Collapse
|
7
|
Faramarzi Z, Kiyani H. Steglich’s Base Catalyzed Three-Component Synthesis of Isoxazol-5-Ones. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2061533] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Affiliation(s)
| | - Hamzeh Kiyani
- School of Chemistry, Damghan University, Damghan, Iran
- Department of Chemistry, Faculty of Science, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
8
|
Jang D, Choi M, Chen J, Lee C. Enantioselective Total Synthesis of (+)-Garsubellin A. Angew Chem Int Ed Engl 2021; 60:22735-22739. [PMID: 34398517 PMCID: PMC8519110 DOI: 10.1002/anie.202109193] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/05/2021] [Indexed: 01/03/2023]
Abstract
Garsubellin A is a meroterpene capable of enhancing the enzyme choline acetyltransferase whose decreased level is believed to play a central role in the symptoms of Alzheimer's disease. Due to the potentially useful biological activity together with the novel bridged and fused cyclic molecular architecture, garsubellin A has garnered substantial synthetic interest, but its absolute stereostructure has been undetermined. We report here the first enantioselective total synthesis of (+)-garsubellin A. Our synthesis relies on stereoselective fashioning of a cyclohexanone framework and double conjugate addition of 1,2-ethanedithiol that promotes aldol cyclization to build the bicyclic [3.3.1] skeleton. The twelve-step, protecting group-free synthetic route has enabled the syntheses of both the natural (-)-garsubellin A and its unnatural (+)-antipode for biological evaluations.
Collapse
Affiliation(s)
- Dongseok Jang
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Minchul Choi
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| | - Jinglong Chen
- Department of ChemistryPrinceton UniversityPrincetonNew Jersey08540USA
- Current address: College of Materials Science and EngineeringFuzhou UniversityFuzhou350108China
| | - Chulbom Lee
- Department of ChemistrySeoul National UniversitySeoul08826Republic of Korea
| |
Collapse
|
9
|
Jang D, Choi M, Chen J, Lee C. Enantioselective Total Synthesis of (+)‐Garsubellin A. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109193] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Dongseok Jang
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Minchul Choi
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| | - Jinglong Chen
- Department of Chemistry Princeton University Princeton New Jersey 08540 USA
- Current address: College of Materials Science and Engineering Fuzhou University Fuzhou 350108 China
| | - Chulbom Lee
- Department of Chemistry Seoul National University Seoul 08826 Republic of Korea
| |
Collapse
|
10
|
Tian X, Karl TA, Reiter S, Yakubov S, de Vivie‐Riedle R, König B, Barham JP. Electro-mediated PhotoRedox Catalysis for Selective C(sp 3 )-O Cleavages of Phosphinated Alcohols to Carbanions. Angew Chem Int Ed Engl 2021; 60:20817-20825. [PMID: 34165861 PMCID: PMC8518744 DOI: 10.1002/anie.202105895] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/21/2021] [Indexed: 12/13/2022]
Abstract
We report a novel example of electro-mediated photoredox catalysis (e-PRC) in the reductive cleavage of C(sp3 )-O bonds of phosphinated alcohols to alkyl carbanions. As well as deoxygenations, olefinations are reported which are E-selective and can be made Z-selective in a tandem reduction/photosensitization process where both steps are photoelectrochemically promoted. Spectroscopy, computation, and catalyst structural variations reveal that our new naphthalene monoimide-type catalyst allows for an intimate dispersive precomplexation of its radical anion form with the phosphinate substrate, facilitating a reactivity-determining C(sp3 )-O cleavage. Surprisingly and in contrast to previously reported photoexcited radical anion chemistries, our conditions tolerate aryl chlorides/bromides and do not give rise to Birch-type reductions.
Collapse
Affiliation(s)
- Xianhai Tian
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Tobias A. Karl
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | | | - Shahboz Yakubov
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | | | - Burkhard König
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| | - Joshua P. Barham
- Institute of Organic ChemistryUniversity of RegensburgUniversitätsstr. 3193053RegensburgGermany
| |
Collapse
|
11
|
Yamamoto K, Toguchi H, Kuriyama M, Watanabe S, Iwasaki F, Onomura O. Electrophotochemical Ring-Opening Bromination of tert-Cycloalkanols. J Org Chem 2021; 86:16177-16186. [PMID: 34461014 DOI: 10.1021/acs.joc.1c01264] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
An electrophotochemical ring-opening bromination of unstrained tert-cycloalkanols has been developed. This electrophotochemical method enables the oxidative transformation of cycloalkanols with 5- to 7-membered rings into synthetically useful ω-bromoketones without the use of chemical oxidants or transition-metal catalysts. Alkoxy radical species would be key intermediates in the present transformation, which generate through homolysis of the O-Br bond in hypobromite intermediates under visible light irradiation.
Collapse
Affiliation(s)
- Kosuke Yamamoto
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Hiroyuki Toguchi
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Masami Kuriyama
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| | - Shin Watanabe
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Fumiaki Iwasaki
- Tsukuba Research Laboratories, Tokuyama Corporation, 40 Wadai, Tsukuba, Ibaraki 300-4247, Japan
| | - Osamu Onomura
- Graduate School of Biomedical Sciences, Nagasaki University, 1-14 Bunkyo-machi, Nagasaki 852-8521, Japan
| |
Collapse
|
12
|
Tian X, Karl TA, Reiter S, Yakubov S, Vivie‐Riedle R, König B, Barham JP. Electro‐mediated PhotoRedox Catalysis for Selective C(sp
3
)–O Cleavages of Phosphinated Alcohols to Carbanions. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202105895] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Xianhai Tian
- Institute of Organic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Tobias A. Karl
- Institute of Organic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | | | - Shahboz Yakubov
- Institute of Organic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | | | - Burkhard König
- Institute of Organic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| | - Joshua P. Barham
- Institute of Organic Chemistry University of Regensburg Universitätsstr. 31 93053 Regensburg Germany
| |
Collapse
|
13
|
Li W, Lv J, Chi YR. N-Heterocyclic carbene catalyzed aza-benzoin reaction for access to α-aminoketone molecules containing benzothiazole fragments. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132311] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
14
|
|
15
|
Ganiu MO, Nepal B, Van Houten JP, Kartika R. A decade review of triphosgene and its applications in organic reactions. Tetrahedron 2020; 76:131553. [PMID: 33883783 PMCID: PMC8054975 DOI: 10.1016/j.tet.2020.131553] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
This review article highlights selected advances in triphosgene-enabled organic synthetic reactions that were reported in the decade of 2010-2019. Triphosgene is a versatile reagent in organic synthesis. It serves as a convenient substitute for the toxic phosgene gas. Despite its first known preparation in the late 19th interestingly began only three decades ago. Despite the relatively short history, triphosgene has been proven to be very useful in facilitating the preparation of a vast scope of value-added compounds, such as organohalides, acid chlorides, isocyanates, carbonyl addition adducts, heterocycles, among others. Furthermore, applications of triphosgene in complex molecules synthesis, polymer synthesis, and other techniques, such as flow chemistry and solid phase synthesis, have also emerged in the literature.
Collapse
Affiliation(s)
| | | | | | - Rendy Kartika
- Department of Chemistry, 232 Choppin Hall, Louisiana State University, Baton Rouge, LA 70803 United States
| |
Collapse
|
16
|
Zoller B, Stach T, Huy PH. Lewis Base Catalysis Enables the Activation of Alcohols by means of Chloroformates as Phosgene Substitutes. ChemCatChem 2020. [DOI: 10.1002/cctc.202001175] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ben Zoller
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Current address Helmholtz Institute for Pharmaceutical Research Saarland (HIPS) University Campus E8.1, room 2.29 66123 Saarbrücken Germany
| | - Tanja Stach
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Current address: Endotherm GmbH Science Park 2 66123 Saarbrücken Germany
| | - Peter H. Huy
- Saarland University Organic Chemistry P. O. Box 151150 66041 Saarbrücken Germany
- Rostock University Institute for Chemistry Albert-Einstein-Str. 3A 18059 Rostock Germany
| |
Collapse
|
17
|
Wang J, Li YH, Pan SC, Li MF, Du W, Yin H, Li JH. Efficient Phosphorus-Free Chlorination of Hydroxy Aza-Arenes and Their Application in One-Pot Pharmaceutical Synthesis. Org Process Res Dev 2020. [DOI: 10.1021/acs.oprd.9b00407] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Jian Wang
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, P. R. China
| | - Yan-Hui Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Song-Cheng Pan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Ming-Fang Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| | - Wenting Du
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, P. R. China
| | - Hong Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou 310053, P. R. China
| | - Jing-Hua Li
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, P. R. China
| |
Collapse
|
18
|
Mei YL, Zhou W, Huo T, Zhou FS, Xue J, Zhang GY, Ren BT, Zhong C, Deng QH. Rhodium-Catalyzed Successive C-H Bond Functionalizations To Synthesize Complex Indenols Bearing a Benzofuran Unit. Org Lett 2019; 21:9598-9602. [PMID: 31763857 DOI: 10.1021/acs.orglett.9b03766] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An efficient rhodium-catalyzed redox-neutral annulations of N-phenoxyacetamides and ynones via successive double C-H bond activations has been developed. A series of novel and complex indenols bearing a benzofuran unit were generated with moderate to excellent regioselecetivities under mild conditions. Adding N-ethylcyclohexanamine (CyNHEt) could restrict the formation of the mono C-H bond activation byproduct, which is not the intermediate of the reaction demonstrated via the mechanistic investigations.
Collapse
Affiliation(s)
- Yan-Le Mei
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Wei Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Tao Huo
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Fang-Shuai Zhou
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Jing Xue
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Guang-Yi Zhang
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Bing-Tao Ren
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| | - Cheng Zhong
- College of Chemistry and Molecular Sciences , Wuhan University , 199 Bayi Road , Wuhan , Hubei 430072 , China
| | - Qing-Hai Deng
- The Education Ministry Key Lab of Resource Chemistry, Shanghai Key Laboratory of Rare Earth Functional Materials, Joint Laboratory of International Cooperation of Resource Chemistry of Ministry of Education , Shanghai Normal University , Shanghai 200234 , China
| |
Collapse
|