1
|
Casselman TD, Madhusudhanan MC, Mai BK, Liu P, Stoltz BM. Potassium tert-butoxide mediated stereoselective/direct Mannich reaction of α-substituted-γ-lactams with in situ generated aryl N-silyl imines. Chem Sci 2025:d4sc06391k. [PMID: 40321193 PMCID: PMC12045305 DOI: 10.1039/d4sc06391k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Accepted: 04/12/2025] [Indexed: 05/08/2025] Open
Abstract
A potassium tert-butoxide (KOt-Bu)-mediated Mannich reaction between α-substituted-γ-lactams and N-silyl imines is reported. N-silyl imines are generated in situ from readily available aryl nitriles and directly combined with the lactams, without preformation of the lactam enolate, to afford the α-quaternary center-bearing Mannich bases in high yield and with high diastereoselectivity (24 examples). This reaction is shown to be catalytic with respect to KOt-Bu and the catalytic mechanism has been investigated using density functional theory calculations. The computational investigations suggest that the diastereoselectivity is controlled by explicit interactions between a binuclear potassium complex and both the imine nitrogen and the enolate oxygen atoms in the selectivity-determining transition states. The Mannich products are shown to be useful in accessing novel spirocyclic pyrrolidines.
Collapse
Affiliation(s)
- Tyler D Casselman
- Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology 1200 East California Boulevard Pasadena CA 91125 USA
| | - Mithun C Madhusudhanan
- Department of Chemistry, University of Pittsburgh 4200 Fifth Avenue Pittsburgh PA 15260 USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh 4200 Fifth Avenue Pittsburgh PA 15260 USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh 4200 Fifth Avenue Pittsburgh PA 15260 USA
| | - Brian M Stoltz
- Warren and Katherine Schlinger Laboratory for Chemistry and Chemical Engineering, Division of Chemistry and Chemical Engineering, California Institute of Technology 1200 East California Boulevard Pasadena CA 91125 USA
| |
Collapse
|
2
|
Du HZ, Guan BT. Alkali Metal Amide-Catalyzed α-Deuteration of Sulfides. Org Lett 2024; 26:10458-10463. [PMID: 39620400 DOI: 10.1021/acs.orglett.4c03654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
The catalytic α-deuteration of sulfides was developed under mild conditions by using alkali metal amides [KN(SiMe3)2 and CsN(SiMe3)2] as the catalyst. This approach successfully achieves a selective and efficient H/D exchange reaction of sulfides with D2 without using transition metal catalysts. A series of deuterium-labeled thioanisoles and alkyl methyl sulfides were obtained in good to high levels of deuterium incorporation.
Collapse
Affiliation(s)
- Hui-Zhen Du
- Department of Chemistry, Fudan University, Shanghai 200438, China
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai 200438, China
| |
Collapse
|
3
|
Spivey JA, Collum DB. Potassium Hexamethyldisilazide (KHMDS): Solvent-Dependent Solution Structures. J Am Chem Soc 2024; 146:17827-17837. [PMID: 38901126 PMCID: PMC11373885 DOI: 10.1021/jacs.4c03418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Solution structures of potassium hexamethyldisilazide [KHMDS] and labeled [15N]KHMDS were examined using a number of analytical methods including 29Si NMR spectroscopy and density functional theory computations. A combination of 15N-29Si couplings, 29Si chemical shifts, and the method of continuous variations reveals dimers, monomers, and ion pairs. Weakly coordinating monofunctional ligands such as toluene, N,N-dimethylethylamine, and Et3N afford exclusively dimers. 1,3-Dioxolane, THF, dimethoxyethane, hexamethylphosphoramide, and diglyme provide dimers at low ligand concentrations and monomers at high ligand concentrations. N,N,N',N'-Tetramethylethylenediamine and N,N,N',N'-tetramethylcyclohexanediamine provide exclusively dimers at all ligand concentrations at ambient temperatures and significant monomer at -80 °C. Studies of 12-crown-4 ran into technical problems. Equimolar 15-crown-5 forms a dimer, whereas excess 15-crown-5 affords a putative ion pair. Whereas equimolar 18-crown-6 also affords a dimer, an excess provides a monomer rather than a solvent-separated ion pair. [2.2.2]cryptand affords what is believed to be a contact-ion-paired cryptate. Solvation was probed using largely density functional theory (DFT) computations. Thermally corrected energies are consistent with lower aggregates and higher solvates at low temperatures, but the magnitudes of the computed temperature dependencies were substantially larger than the experimentally derived data.
Collapse
Affiliation(s)
- Jesse A Spivey
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| | - David B Collum
- Department of Chemistry and Chemical Biology, Baker Laboratory, Cornell University, Ithaca, New York 14853-1301, United States
| |
Collapse
|
4
|
Zhu Q, Long J, Song X, Wang K, Zeng J, Fan Y. KO tBu/DMF-Mediated Hydroalkylation of Alkenes via Benzylic C-H Bond Activation. J Org Chem 2024; 89:3726-3731. [PMID: 38417109 DOI: 10.1021/acs.joc.3c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Catalytic hydroalkylation reaction of alkenes with benzylic hydrocarbons involving t-BuOK/DMF-mediated benzylic C-H bond activation is demonstrated. This direct and operational simple protocol affords a rapid and reliable access to a wide scope of benzylic compounds in good-to-excellent yields. The benzylic C-H's of either activated diarylmethanes (pKa ∼ 32.2) and benzyl thioethers (pKa ∼ 30.8) or inert alkylbenzenes could all act as useful synthetic platforms to be conveniently alkylated under mild reaction conditions.
Collapse
Affiliation(s)
- Qiming Zhu
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jiajia Long
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Xianchen Song
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Kaifang Wang
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jingkai Zeng
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Yuyuan Fan
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| |
Collapse
|
5
|
Shigeno M, Kajima A, Toyama E, Korenaga T, Yamakoshi H, Nozawa-Kumada K, Kondo Y. LiHMDS-Mediated Deprotonative Coupling of Toluenes with Ketones. Chemistry 2023; 29:e202203549. [PMID: 36479733 DOI: 10.1002/chem.202203549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
We demonstrate that lithium hexamethyldisilazide (LiHMDS) acts as an effective base for deprotonative coupling reactions of toluenes with ketones to afford stilbenes. Various functionalities (halogen, OCF3 , amide, Me, aryl, alkenyl, alkynyl, SMe, and SPh) are allowed on the toluenes. Notably, this system proved successful with low-reactive toluenes bearing a large pKa value compared to that of the conjugate acid of LiHMDS (hexamethyldisilazane, 25.8, THF), as demonstrated by 4-phenyltoluene (38.57, THF) and toluene itself (∼43, DMSO).
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihisa Kajima
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Eito Toyama
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering, Iwate University Ueda, Morioka, 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka, 020-8551, Japan
| | - Hiroyuki Yamakoshi
- Central Analytical Center, Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
6
|
Zhou Y, Wu P, Cao F, Shi L, Zhang N, Xue Z, Luo G. Mechanistic insights into rare-earth-catalysed C-H alkylation of sulfides: sulfide facilitating alkene insertion and beyond. RSC Adv 2022; 12:13593-13599. [PMID: 35530397 PMCID: PMC9069833 DOI: 10.1039/d2ra02180c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 04/29/2022] [Indexed: 12/22/2022] Open
Abstract
The catalytic C-H alkylation with alkenes is of much interest and importance, as it offers a 100% atom efficient route for C-C bond construction. In the past decade, great progress in rare-earth catalysed C-H alkylation of various heteroatom-containing substrates with alkenes has been made. However, whether or how a heteroatom-containing substrate would influence the coordination or insertion of an alkene at the catalyst metal center remained elusive. In this work, the mechanism of Sc-catalysed C-H alkylation of sulfides with alkenes and dienes has been carefully examined by DFT calculations, which revealed that the alkene insertion could proceed via a sulfide-facilitated mechanism. It has been found that a similar mechanism may also work for the C-H alkylation of other heteroatom-containing substrates such as pyridine and anisole. Moreover, the substrate-facilitated alkene insertion mechanism and a substrate-free one could be switched by fine-tuning the sterics of catalysts and substrates. This work provides new insights into the role of heteroatom-containing substrates in alkene-insertion-involved reactions, and may help guide designing new catalysis systems.
Collapse
Affiliation(s)
- Yu Zhou
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Ping Wu
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Fanshu Cao
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Lei Shi
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Ni Zhang
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Zuqian Xue
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| | - Gen Luo
- Institutes of Physical Science and Information Technology, Anhui University Hefei 230601 China
| |
Collapse
|
7
|
Kuciński K, Stachowiak H, Lewandowski D, Gruszczyński M, Lampasiak P, Hreczycho G. A review of the R3Si–NH–SiR3–type disilazanes: From synthesis to applications. J Organomet Chem 2022. [DOI: 10.1016/j.jorganchem.2021.122127] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
8
|
Tang L, Hu Q, Yang K, Elsaid M, Liu C, Ge H. Recent advances in direct α-C(sp3)-H bond functionalization of thioethers. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.02.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
|
9
|
Bao CC, Du HZ, Luo YL, Guan BT. Direct alkylation of N,N-dialkyl benzamides with methyl sulfides under transition metal-free conditions. Commun Chem 2021; 4:138. [PMID: 36697564 PMCID: PMC9814863 DOI: 10.1038/s42004-021-00575-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/19/2021] [Indexed: 01/28/2023] Open
Abstract
Amides are a fundamental and widespread functional group, and are usually considered as poor electrophiles owing to resonance stabilization of the amide bond. Various approaches have been developed to address challenges in amide transformations. Nonetheless, most methods use activated amides, organometallic reagents or transition metal catalysts. Here, we report the direct alkylation of N,N-dialkyl benzamides with methyl sulfides promoted by the readily available base LDA (lithium diisopropylamide). This approach successfully achieves an efficient and selective synthesis of α-sulfenylated ketones without using transition-metal catalysts or organometallic reagents. Preliminary mechanism studies reveal that the deprotonative aroylation of methyl sulfides is promoted by the directed ortho-lithiation of the tertiary benzamide with LDA.
Collapse
Affiliation(s)
- Can-Can Bao
- grid.216938.70000 0000 9878 7032College of Chemistry, Nankai University, Tianjin, China
| | - Hui-Zhen Du
- grid.216938.70000 0000 9878 7032College of Chemistry, Nankai University, Tianjin, China
| | - Yan-Long Luo
- grid.216938.70000 0000 9878 7032College of Chemistry, Nankai University, Tianjin, China
| | - Bing-Tao Guan
- grid.8547.e0000 0001 0125 2443Department of Chemistry, Fudan University, Shanghai, China
| |
Collapse
|
10
|
Pang JH, Wang B, Watanabe K, Takita R, Chiba S. Hydroalkylation of Styrenes with Benzylamines by Potassium Hydride. Helv Chim Acta 2021. [DOI: 10.1002/hlca.202100120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Jia Hao Pang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Bin Wang
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| | - Kohei Watanabe
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Ryo Takita
- Graduate School of Pharmaceutical Sciences The University of Tokyo 7-3-1 Hongo Bunkyo-ku Tokyo 113-0033 Japan
| | - Shunsuke Chiba
- Division of Chemistry and Biological Chemistry School of Physical and Mathematical Sciences Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
11
|
Bao CC, Luo YL, Du HZ, Guan BT. Benzylic aroylation of toluenes with unactivated tertiary benzamides promoted by directed ortho-lithiation. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1035-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
12
|
Yamashita Y, Noguchi A, Fushimi S, Hatanaka M, Kobayashi S. Chiral Metal Salts as Ligands for Catalytic Asymmetric Mannich Reactions with Simple Amides. J Am Chem Soc 2021; 143:5598-5604. [PMID: 33821631 DOI: 10.1021/jacs.0c13317] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Catalytic asymmetric Mannich reactions of imines with weakly acidic simple amides were developed using a chiral potassium hexamethyldisilazide (KHMDS)-bis(oxazoline) potassium salt (K-Box) catalyst system. The desired reactions proceeded to afford the target compounds in high yields with high diastereo- and enantioselectivities. It was suggested that a K enolate interacted with K-Box to form a chiral K enolate that reacted with imines efficiently. In this system, K-Box (potassium salt of Box) worked as a chiral ligand of the active potassium species.
Collapse
Affiliation(s)
- Yasuhiro Yamashita
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Aika Noguchi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Seiya Fushimi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Miho Hatanaka
- Department of Chemistry, Faculty of Science and Technology, Keio University, Hiyoshi, Kohoku-ku, Yokohama, Kanagawa 223-8522, Japan
| | - Shu Kobayashi
- Department of Chemistry, School of Science, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| |
Collapse
|
13
|
Asymmetric C(sp 3)-H functionalization of unactivated alkylarenes such as toluene enabled by chiral Brønsted base catalysts. Commun Chem 2021; 4:36. [PMID: 36697525 PMCID: PMC9814754 DOI: 10.1038/s42004-021-00459-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 01/18/2021] [Indexed: 01/28/2023] Open
Abstract
Benzylic functionalisation of unactivated alkylarenes remains as a significant challenge in asymmetric catalysis due to their less reactive nature. Here, we show development of catalytic asymmetric C(sp3)-H functionalization of unactivated alkylarenes such as toluene with imines. The reactions proceeded smoothly under proton-transfer conditions using a chiral, strong Brønsted base catalyst system. A chiral Brønsted base prepared from an alkylpotassium and a chiral amine ligand was found to effectively form a promising asymmetric environment around a benzyl anion. Optimization of the reaction conditions revealed that the use of the alkaline metal amide, potassium hexamethyldisilazide (KHMDS), as an additive was most effective, and enantioselective and atom economical carbon-carbon bond-forming reactions at the benzylic positions of unactivated alkylarenes was achieved without using any transition-metal catalyst.
Collapse
|
14
|
Shigeno M, Kajima A, Nakaji K, Nozawa-Kumada K, Kondo Y. Catalytic amide base system generated in situ for 1,3-diene formation from allylbenzenes and carbonyls. Org Biomol Chem 2021; 19:983-987. [PMID: 33146220 DOI: 10.1039/d0ob02007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amide base generated in situ from tetramethylammonium fluoride and N(TMS)3 catalyzes the synthesis of 1,3-diene from an allylbenzene and carbonyl compound. The system is applicable to the transformations of a variety of allylbenzenes with functional groups (halogen, methyl, phenyl, methoxy, dimethylamino, ester, and amide moieties). Acyclic and cyclic diaryl ketones, pivalophenone, pivalaldehyde, and isobutyrophenone are used as coupling partners. The role of transβ-methyl stilbenes in product formation is also elucidated.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
| | | | | | | | | |
Collapse
|
15
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
16
|
Deschamps D, Lohier JF, Richards CJ, Gaumont AC, Perrio S. Functionalization of [2.2]Paracyclophanes via a Reductive Sulfanylation Reaction. J Org Chem 2020; 86:507-514. [DOI: 10.1021/acs.joc.0c02235] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Damien Deschamps
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France
| | | | - Christopher J. Richards
- School of Chemistry, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom
| | | | - Stéphane Perrio
- Normandie Univ, ENSICAEN, UNICAEN, CNRS, LCMT, 14000 Caen, France
| |
Collapse
|
17
|
Mandigma MJP, Domański M, Barham JP. C-Alkylation of alkali metal carbanions with olefins. Org Biomol Chem 2020; 18:7697-7723. [PMID: 32785363 DOI: 10.1039/d0ob01180k] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C-Alkylations of alkali metal carbanions with olefins, first reported five decades ago, is a class of reaction undergoing a resurgence in organic synthesis in recent years. As opposed to expectations from classical chemistry and transition metal-catalysis, here olefins behave as closed-shell electrophiles. Reactions range from highly reactive alkyllithiums giving rise to anionic polymerization, to moderately reactive alkylpotassium or alkylsodium compounds that give rise to defined, controlled and bimolecular chemistry. This review presents a brief historical overview on C-alkylation of alkali metal carbanions with olefins (typically mediated by KOtBu and KHMDS), highlights contemporary applications and features developing mechanistic understanding, thereby serving as a platform for future studies and the widespread use of this class of reaction in organic synthesis.
Collapse
Affiliation(s)
- Mark John P Mandigma
- Universität Regensburg, Fakultät für Chemie und Pharmazie, 93040 Regensburg, Germany.
| | | | | |
Collapse
|
18
|
Donabauer K, Murugesan K, Rozman U, Crespi S, König B. Photocatalytic Reductive Radical-Polar Crossover for a Base-Free Corey-Seebach Reaction. Chemistry 2020; 26:12945-12950. [PMID: 32686166 PMCID: PMC7589390 DOI: 10.1002/chem.202003000] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 07/15/2020] [Indexed: 01/07/2023]
Abstract
A metal-free generation of carbanion nucleophiles is of prime importance in organic synthesis. Herein we report a photocatalytic approach to the Corey-Seebach reaction. The presented method operates under mild redox-neutral and base-free conditions giving the desired product with high functional group tolerance. The reaction is enabled by the combination of photo- and hydrogen atom transfer (HAT) catalysis. This catalytic merger allows a C-H to carbanion activation by the abstraction of a hydrogen atom followed by radical reduction. The generated nucleophilic intermediate is then capable of adding to carbonyl electrophiles. The obtained dithiane can be easily converted to the valuable α-hydroxy carbonyl in a subsequent step. The proposed reaction mechanism is supported by emission quenching, radical-radical homocoupling and deuterium labeling studies as well as by calculated redox-potentials and bond strengths.
Collapse
Affiliation(s)
- Karsten Donabauer
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Kathiravan Murugesan
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Urša Rozman
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| | - Stefano Crespi
- Stratingh Institute for ChemistryUniversity of GroningenNijenborgh 49747 AGGroningenThe Netherlands
| | - Burkhard König
- Department of Organic ChemistryUniversity of RegensburgUniversitätsstraße 3193053RegensburgGermany
| |
Collapse
|
19
|
Kondoh A, Ma C, Terada M. Synthesis of diarylalkanes through an intramolecular/intermolecular addition sequence by auto-tandem catalysis with strong Brønsted base. Chem Commun (Camb) 2020; 56:10894-10897. [PMID: 32940279 DOI: 10.1039/d0cc04512h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An auto-tandem catalysis with a strong Brønsted base enabled the synthesis of diarylalkanes containing a benzofuran moiety. Potassium tert-butoxide efficiently catalyzed both the intramolecular cyclization of less acidic ortho-alkynylaryl benzyl ethers and the following intermolecular addition of diarylmethanes to styrenes, demonstrating the high potential of the catalysis in organic synthesis.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Chaoyan Ma
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
20
|
Barham JP, Fouquet TNJ, Norikane Y. Base-catalyzed C-alkylation of potassium enolates with styrenes via a metal-ene reaction: a mechanistic study. Org Biomol Chem 2020; 18:2063-2075. [PMID: 32100777 DOI: 10.1039/c9ob02495f] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Base-catalyzed, C-alkylation of potassium (K) enolates with styrenes (CAKES) has recently emerged as a highly practical and convenient method for elaboration or synthesis of pharmaceutically-relevant cores. K enolate-type precursors such as alkyl-substituted heterocycles (pyridines, pyrazines and thiophenes), ketones, imines, nitriles and amides undergo C-alkylation reactions with styrene in the presence of KOtBu or KHMDS. Surprisingly, no studies have probed the reaction mechanism beyond the likely initial formation of a K enolate. Herein, a synergistic approach of computational (DFT), kinetic and deuterium labelling studies rationalizes various experimental observations and supports a metal-ene-type reaction for amide CAKES. Moreover, our approach explains experimental observations in other reported C-alkylation reactions of other enolate-type precursors, thus implicating a general mechanism for CAKES.
Collapse
Affiliation(s)
- Joshua P Barham
- National Institute of Advanced Industrial Science and Technology, Tsukuba Central 5, 1-1-1 Higashi, Tsukuba, Ibaraki 305-8565, Japan.
| | | | | |
Collapse
|
21
|
Shan XH, Wang MM, Tie L, Qu JP, Kang YB. CuSO 4-Catalyzed Tandem C(sp 3)-H Insertion Cyclization of Toluenes with Isonitriles to Form Indoles. Org Lett 2019; 22:357-360. [PMID: 31887043 DOI: 10.1021/acs.orglett.9b03751] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A CuSO4-catalyzed tandem benzylic C-H insertion cyclization of toluene derivatives and isonitriles is described. The naturally abundant salt CuSO4 serves as a low-cost ligand-free redox catalyst. This reaction provides a practical modular synthesis of N-aryl indoles from isonitriles.
Collapse
Affiliation(s)
- Xiang-Huan Shan
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Mei-Mei Wang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Lin Tie
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering , Nanjing Tech University , Nanjing 211816 , China
| | - Yan-Biao Kang
- Department of Chemistry , University of Science and Technology of China , Hefei , Anhui 230026 , China
| |
Collapse
|