1
|
Chen H, Su W, Li T, Wang Y, Li Z, Xiong L, Chen ZS, Zhang C, Wang T. Recent advances in small molecule design strategies against hepatic fibrosis. Eur J Med Chem 2025; 286:117281. [PMID: 39854939 DOI: 10.1016/j.ejmech.2025.117281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 01/06/2025] [Accepted: 01/12/2025] [Indexed: 01/27/2025]
Abstract
Hepatic fibrosis, a widespread pathological process observed across various liver diseases, is acknowledged as a potentially reversible condition. In recent years, liver fibrosis has garnered extensive research attention, with a primary emphasis on developing drugs that can directly block or reverse this condition. This paper presents a comprehensive review of the design strategies for various anti-hepatic fibrosis agents that have been many efficacious small-molecule drugs. This review encompasses the synthesis and design of nuclear receptor ligands (such as VDR and Nurr7), kinase inhibitors (including ALK5 and JAK1), selective PDE inhibitors, small-molecule monomers derived from natural products, and other small molecules. The aim of this review is to provide promising avenues and valuable insights for the continued development of anti-hepatic fibrosis drugs.
Collapse
Affiliation(s)
- Heming Chen
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Wei Su
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Tingting Li
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Yun Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhuangyu Li
- College of Traditional Chinese Medicine, Yunnan University of Traditional Chinese Medicine, Kunming, 650500, China
| | - Liyan Xiong
- School of Medicine, Shanghai University, Shanghai, 200444, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, 11439, USA.
| | - Chuan Zhang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| | - Tingfang Wang
- School of Medicine, Shanghai University, Shanghai, 200444, China.
| |
Collapse
|
2
|
Qian BC, Zhu XQ, Shen GB. Thermodynamic Cards of Classic NADH Models and Their Related Photoexcited States Releasing Hydrides in Nine Elementary Steps and Their Applications. Molecules 2025; 30:1053. [PMID: 40076277 PMCID: PMC11902174 DOI: 10.3390/molecules30051053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 02/22/2025] [Accepted: 02/24/2025] [Indexed: 03/14/2025] Open
Abstract
Thermodynamic cards of three classic NADH models (XH), namely 1-benzyl-1,4-dihydronicotinamide (BNAH), Hantzsch ester (HEH), and 10-methyl-9,10-dihydroacridine (AcrH), as well as their photoexcited states (XH*: BNAH*, HEH*, AcrH*) releasing hydrides in nine elementary steps in acetonitrile are established. According to these thermodynamic cards, the thermodynamic reducing abilities of XH* are remarkably enhanced upon photoexcitation, rendering them thermodynamically highly potent electron, hydrogen atom, and hydride donors. The application of these thermodynamic cards to imine reduction is demonstrated in detail, revealing that photoexcitation enables XH* to act as better hydride donors, transforming the hydride transfer process from thermodynamically unfeasible to feasible. Most intriguingly, AcrH* is identified as the most thermodynamically favorable electron, hydride, and hydrogen atom donor among the three classic NADH models and their photoexcited states. The exceptional thermodynamic properties of XH* in hydride release inspire further investigation into the excited wavelengths, excited potentials, and excited state stabilities of more organic hydrides, as well as the discovery of novel and highly effective photoexcited organic hydride reductants.
Collapse
Affiliation(s)
- Bao-Chen Qian
- College of Medical Engineering, Jining Medical University, Jining 272000, China;
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai University, Tianjin 300071, China
| | - Guang-Bin Shen
- College of Medical Engineering, Jining Medical University, Jining 272000, China;
| |
Collapse
|
3
|
Zhang Z, Gevorgyan V. Visible Light-Induced Reactions of Diazo Compounds and Their Precursors. Chem Rev 2024; 124:7214-7261. [PMID: 38754038 DOI: 10.1021/acs.chemrev.3c00869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
In recent years, visible light-induced reactions of diazo compounds have attracted increasing attention in organic synthesis, leading to improvement of existing reactions, as well as to the discovery of unprecedented transformations. Thus, photochemical or photocatalytic generation of both carbenes and radicals provide milder tools toward these key intermediates for many valuable transformations. However, the vast majority of the transformations represent new reactivity modes of diazo compounds, which are achieved by the photochemical decomposition of diazo compounds and photoredox catalysis. In particular, the use of a redox-active photocatalysts opens the avenue to a plethora of radical reactions. The application of these methods to diazo compounds led to discovery of transformations inaccessible by the classical reactivity associated with carbenes and metal carbenes. In most cases, diazo compounds act as radical sources but can also serve as radical acceptors. Importantly, the described processes operate under mild, practical conditions. This Review describes this subfield of diazo compound chemistry, particularly focusing on recent advancements.
Collapse
Affiliation(s)
- Ziyan Zhang
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| | - Vladimir Gevorgyan
- Department of Chemistry and Biochemistry, The University of Texas at Dallas, Richardson, Texas 75080-3021, United States
| |
Collapse
|
4
|
Xie Y, Bao YP, Zhuo XY, Xuan J. Photocatalytic Synthesis of Indanone, Pyrone, and Pyridinone Derivatives with Diazo Compounds as Radical Precursors. Org Lett 2024; 26:1393-1398. [PMID: 38346022 DOI: 10.1021/acs.orglett.3c04331] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
We disclose herein a photocatalytic radical cascade cyclization of diazoalkanes for the divergent synthesis of important carbocycles and heterocycles. Under the optimal reaction conditions, various indanone, pyrone, and pyridinone derivatives can be obtained in moderate to good yields. Mechanistic experiments support the formation of carbon-centered radicals from diazoalkanes through the proton-coupled electron transfer process. Scale-up reaction using continuous flow technology and useful downstream application of the formed heterocycles further render the strategy attractive and valuable.
Collapse
Affiliation(s)
- Yang Xie
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Ye-Peng Bao
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xiao-Yan Zhuo
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, School of Chemistry & Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
- Key Laboratory of Structure and Functional Regulation of Hybrid Materials (Anhui University), Ministry of Education, Hefei 230601, China
| |
Collapse
|
5
|
Heinicke JW. o-Hydroxyarylphosphanes: Strategies for Syntheses of Configurationally Stable, Electronically and Sterically Tunable Ambiphiles with Multiple Applications. Chemistry 2024; 30:e202302740. [PMID: 37905970 DOI: 10.1002/chem.202302740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/02/2023]
Abstract
o-Hydroxyarylphosphanes are fascinating compounds by their multiple-reactivity features, attributed to the ambident hard and soft Lewis- and also Brønstedt acid-base properties, wide tuning opportunities via backbone substituents with ±mesomeric and inductive, at P and in o-position to P and O also steric effects, and in addition, the configurational stability at three-valent phosphorus. Air sensitivity may be overcome by reversible protection with BH3 , but the easy oxidation to P(V)-compounds may also be used. Since the first reports on the title compounds ca. 50 years ago the multiple reactivity has led to versatile applications. This includes various P-E-O and P=C-O heterocycles, a multitude of O-substituted derivatives including acyl derivatives for traceless Staudinger couplings of biomolecules with labels or functional substituents, phosphane-phosphite ligands, which like the o-phosphanylphenols itself form a range of transition metal complexes and catalysts. Also main group metal complexes and (bi)arylphosphonium-organocatalysts are derived. Within this review the various strategies for the access of the starting materials are illuminated, including few hints to selected applications.
Collapse
Affiliation(s)
- Joachim W Heinicke
- Emeritus Inorganic Chemistry, Institute of Biochemistry, University Greifswald, 17487, Greifswald, Germany
| |
Collapse
|
6
|
Li JL, Yang Z, Shen S, Yang XL, Niu X. TEMPO-Mediated Interrupted 6π-Photocyclization of ortho-Biaryl-Appended 1,3-Dicarbonyl Compounds toward 10-Phenanthrenols. J Org Chem 2024; 89:44-56. [PMID: 38088910 DOI: 10.1021/acs.joc.3c01316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2024]
Abstract
In this paper, we present an example of a photoinduced catalyst, halogen-, and base-free TEMPO-mediated interrupted 6π-photocyclization/dehydrogenative aromatization of ortho-biaryl-appended 1,3-dicarbonyl compounds for the preparation of 10-phenanthrenols. The reaction involves rapid photocycloaddition via a 1,2-biradical of 1,3-dicarbonyl compounds, followed by subsequent dehydrogenative aromatization of 1,4-biradical intermediates using TEMPO as the commercially available oxidant rather than trapped by TEMPO to form an alkoxyamine product.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Zhao Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Analytical Science and Technology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Chemical Biology of Hebei Province and College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
- Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Materials Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
7
|
Lücke D, Campbell AS, Petzold M, Sarpong R. Access to Naphthoic Acid Derivatives through an Oxabenzonorbornadiene Rearrangement. Org Lett 2023; 25:7349-7353. [PMID: 37795939 PMCID: PMC10695670 DOI: 10.1021/acs.orglett.3c02823] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/06/2023]
Abstract
Herein, the synthesis of 1-hydroxy-2-naphthoic acid esters through an unexpected Lewis-acid-mediated 1,2-acyl shift of oxabenzonorbornadienes is reported. Using this methodology, novel substitution patterns for 1-hydroxy-2-naphtoic acid esters can be obtained. A mechanistic proposal and rationale for this transformation, the products of which had been previously incorrectly characterized, is given.
Collapse
Affiliation(s)
- Daniel Lücke
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Alexander S Campbell
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Martin Petzold
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| | - Richmond Sarpong
- Department of Chemistry, University of California, Berkeley, California 94720, United States
| |
Collapse
|
8
|
Chakraborty N, Rajbongshi KK, Dahiya A, Das B, Vaishnani A, Patel BK. NIS-initiated photo-induced oxidative decarboxylative sulfoximidation of cinnamic acids. Chem Commun (Camb) 2023; 59:2779-2782. [PMID: 36786510 DOI: 10.1039/d3cc00142c] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
N-Iodosuccinimide catalyzed, visible-light-induced oxidative decarboxylative cross-coupling between cinnamic acids and NH-sulfoximines is presented. This strategy results in the formation of α-keto-N-acyl sulfoximines via the construction of two new CO bonds and one C-N bond. The in situ-generated N-iodosulfoximine serves as the light-absorbing species in the absence of any external photosensitizer. The keto carbonyl and amidic carbonyl oxygen in the resulting product originate from dioxygen and water respectively.
Collapse
Affiliation(s)
- Nikita Chakraborty
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Kamal K Rajbongshi
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India. .,Department of Chemistry, Handique Girls' College, Guwahati, 781001, Assam, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Bubul Das
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| | - Akshar Vaishnani
- Department of Chemistry, REVA University, Bangalore, 560064, Bengaluru, India
| | - Bhisma K Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
9
|
Zhao B, Li H, Jiang F, Wan JP, Cheng K, Liu Y. Synergistic Visible Light and Pd-Catalyzed C-H Alkylation of 1-Naphthylamines with α-Diazoesters. J Org Chem 2023; 88:640-646. [PMID: 36538361 DOI: 10.1021/acs.joc.2c01702] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
The combination of visible light irradiation and Pd-catalysis has been practically employed for the C-H alkylation reactions of naphthylamines and α-diazo esters, leading to the synthesis of α-naphthyl functionalized acetates via C-C bond construction under mild reaction conditions and under solvent-free conditions. The light irradiation has been proven to play a pivotal role in the reactions, probably by promoting the generation of active carbene species from α-diazo esters.
Collapse
Affiliation(s)
- Baoli Zhao
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China.,Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Haifeng Li
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Fengxuan Jiang
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| | - Kai Cheng
- Zhejiang Key Laboratory of Alternative Technologies for Fine Chemicals Process, Shaoxing University, Shaoxing 312000, China
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, China
| |
Collapse
|
10
|
Li JL, Yang XL, Shen S, Niu X. Synthesis of 10-Phenanthrenols via Photosensitized Triplet Energy Transfer, Photoinduced Electron Transfer, and Cobalt Catalysis. J Org Chem 2022; 87:16458-16472. [PMID: 36441578 DOI: 10.1021/acs.joc.2c02182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Due to the inert redox activity and high triplet energy, radical chemistry of 1,3-dicarbonyl compounds usually requires prefunctionalization substrates, external oxidant, and high-energy UV light. Here, we report a visible-light-driven photocatalyst/cobaloxime system composed of a photosensitized energy transfer reaction (PEnT) and photoinduced electron transfer reaction (PET) and with an interrupted 6π-photocyclization/dehydrogenative aromatization in one pot to synthesize 10-phenanthrenols. Preliminary mechanistic studies revealed that fac-Ir(ppy)3 plays the dual roles of energy transfer catalysis for photocycloaddition via 1,2-biradical intermediates of 1,3-dicarbonyl compounds and photoredox/cobaloxime catalysis dehydrogenative aromatization of 1,4-biradical rather than the intermediates via 6π photocyclization in the tandem reaction. In contrast to previous well-established radical chemistry of 1,3-dicarbonyl compounds, we provide a new strategy for the activation of 1,3-dicarbonyl compounds under visible light catalysis, affording a novel cyclization strategy with extremely high atom economy for the synthesis of 10-phenanthrenols.
Collapse
Affiliation(s)
- Jun-Li Li
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiu-Long Yang
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Shigang Shen
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| | - Xiaoying Niu
- Key Laboratory of Chemical Biology of Hebei Province, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education and College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China.,Postdoctoral Research Station of Chemistry Affiliated College of Chemistry and Environmental Science, Hebei University, Baoding 071002, P. R. China
| |
Collapse
|
11
|
Wang Q, Liu J, Mei H, Pajkert R, Kessler M, Röschenthaler GV, Han J. Ru-Catalyzed Hydrogen Atom Transfer/C–F Bond Cleavage of Difluoroalkyl Diazos with Hantzsch Ester via a Photocatalytic Radical Process. Org Lett 2022; 24:8036-8040. [DOI: 10.1021/acs.orglett.2c03268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Qian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| | - Jiang Liu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| | - Haibo Mei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| | - Romana Pajkert
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Mira Kessler
- Center for Molecular Materials, Bielefeld University, Universitätsstraße 25, 33615 Bielefeld, Germany
| | - Gerd-Volker Röschenthaler
- Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Campus Ring 1, 28759 Bremen, Germany
| | - Jianlin Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, Jiangsu 210037, People’s Republic of China
| |
Collapse
|
12
|
Koprowski M, Owsianik K, Knopik Ł, Vivek V, Romaniuk A, Różycka-Sokołowska E, Bałczewski P. Comprehensive Review on Synthesis, Properties, and Applications of Phosphorus (P III, P IV, P V) Substituted Acenes with More Than Two Fused Benzene Rings. Molecules 2022; 27:molecules27196611. [PMID: 36235148 PMCID: PMC9570788 DOI: 10.3390/molecules27196611] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 09/27/2022] [Accepted: 09/27/2022] [Indexed: 11/17/2022] Open
Abstract
This comprehensive review, covering the years 1968-2022, is not only a retrospective investigation of a certain group of linearly fused aromatics, called acenes, but also a presentation of the current state of the knowledge on the synthesis, reactions, and applications of these compounds. Their characteristic feature is substitution of the aromatic system by one, two, or three organophosphorus groups, which determine their properties and applications. The (PIII, PIV, PV) phosphorus atom in organophosphorus groups is linked to the acene directly by a P-Csp2 bond or indirectly through an oxygen atom by a P-O-Csp2 bond.
Collapse
Affiliation(s)
- Marek Koprowski
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Correspondence: (M.K.); (P.B.)
| | - Krzysztof Owsianik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Łucja Knopik
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Vivek Vivek
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Adrian Romaniuk
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
| | - Ewa Różycka-Sokołowska
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
| | - Piotr Bałczewski
- Division of Organic Chemistry, Center of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Łódź, Poland
- Institute of Chemistry, Faculty of Science and Technology, Jan Długosz University in Częstochowa, Armii Krajowej 13/15, 42-200 Częstochowa, Poland
- Correspondence: (M.K.); (P.B.)
| |
Collapse
|
13
|
Ye HB, Zhou XY, Li L, He XK, Xuan J. Photochemical Synthesis of Succinic Ester-Containing Phenanthridines from Diazo Compounds as 1,4-Dicarbonyl Precursors. Org Lett 2022; 24:6018-6023. [PMID: 35947775 DOI: 10.1021/acs.orglett.2c02313] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We disclosed herein a straightforward photochemical method for the construction of phenanthridines containing a synthetically useful succinate unit. The reaction occurred under visible-light irradiation with cheap eosin Y Na as photoredox catalyst and a diazo compound as the succinate precursor. Under the optimal reaction conditions, a wide range of phenanthridines were obtained in moderate to good yields. Note that the succinate units in the final heterocycles could be easily transformed into many valuable structures, such as γ-butyrolactone, dihydrofuran-2(3H)-one, and tetrahydrofuran. Mechanistic experiments were performed to support the proposed mechanism.
Collapse
Affiliation(s)
- Hai-Bing Ye
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xu-Yu Zhou
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Lei Li
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Xiang-Kui He
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China
| | - Jun Xuan
- Anhui Province Key Laboratory of Chemistry for Inorganic/Organic Hybrid Functionalized Materials, College of Chemistry and Chemical Engineering, Anhui University, Hefei, Anhui 230601, China.,Key Laboratory of Structure and Functional Regulation of Hybrid Materials, Ministry of Education, Hefei, Anhui 230601, China
| |
Collapse
|
14
|
Zhu S, Li F, Empel C, Jana S, Pei C, Koenigs RM. Furan synthesis via triplet sensitization of acceptor/acceptor diazoalkanes. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
| | - Fang Li
- RWTH Aachen University GERMANY
| | | | - Sripati Jana
- Indian Institute of Technology Kharagpur Department of Chemistry INDIA
| | | | | |
Collapse
|
15
|
Fu YH, Geng C, Shen GB, Wang K, Zhu XQ. Kinetic Studies of Hantzsch Ester and Dihydrogen Donors Releasing Two Hydrogen Atoms in Acetonitrile. ACS OMEGA 2022; 7:26416-26424. [PMID: 35936422 PMCID: PMC9352257 DOI: 10.1021/acsomega.2c02264] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
In this work, kinetic studies on HEH2, 2-benzylmalononitrile, 2-benzyl-1H-indene-1,3(2H)-dione, 5-benzyl-2,2-dimethyl-1,3-dioxane-4,6-dione, 5-benzyl-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione, 2-(9H-fluoren-9-yl)malononitrile, ethyl 2-cyano-2-(9H-fluoren-9-yl)acetate, diethyl 2-(9H-fluoren-9-yl)malonate, and the derivatives (28 XH2) releasing two hydrogen atoms were carried out. The thermokinetic parameters ΔG ⧧° of 28 dihydrogen donors (XH2) and the corresponding hydrogen atom acceptors (XH•) in acetonitrile at 298 K were determined. The abilities of releasing two hydrogen atoms for these organic dihydrogen donors were researched using their thermokinetic parameters ΔG ⧧°(XH2), which can be used not only to compare the H-donating ability of different XH2 qualitatively and quantitatively but also to predict the rates of HAT reactions. Predictions of rate constants for 12 HAT reactions using thermokinetic parameters were determined, and the reliabilities of the predicted results were also examined.
Collapse
Affiliation(s)
- Yan-Hua Fu
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Cuihuan Geng
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Guang-Bin Shen
- School
of Medical Engineering, Jining Medical University, Jining, Shandong 272000, P.R. China
| | - Kai Wang
- College
of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, P.R. China
| | - Xiao-Qing Zhu
- Department of Chemistry, Nankai
University, Tianjin 300071, P.R. China
| |
Collapse
|
16
|
Li J, Feng W, Dai R, Li B. Rational design, synthesis and activities of phenanthrene derivatives against hepatic fibrosis. Fitoterapia 2022; 159:105176. [DOI: 10.1016/j.fitote.2022.105176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 03/09/2022] [Accepted: 03/09/2022] [Indexed: 11/24/2022]
|
17
|
Li S, Zhou L. Visible Light-Promoted Radical Reactions of Diazo Compounds. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
18
|
Shen GB, Qian BC, Zhang GS, Luo GZ, Fu YH, Zhu XQ. Thermodynamics regulated organic hydride/acid pairs as novel organic hydrogen reductants. Org Chem Front 2022. [DOI: 10.1039/d2qo01605b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Organic hydride/acid pairs could realize transformation of N-substituted organic hydrides from hydride reductants to thermodynamics regulated hydrogen reductants on conveniently choosing suitable organic hydrides and acids with various acidities.
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Bao-Chen Qian
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Gao-Shuai Zhang
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Guang-Ze Luo
- School of Medical Engineering, Jining Medical University, Jining, Shandong, 272000, P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan, 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, Department of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
19
|
Devi L, Pokhriyal A, Shekhar S, Kant R, Mukherjee S, Rastogi N. Organo‐photocatalytic Synthesis of 6‐
β
‐Disubstituted Phenanthridines from
α
‐Diazo‐
β‐
Keto Compounds and Vinyl Azides. ASIAN J ORG CHEM 2021. [DOI: 10.1002/ajoc.202100518] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Lalita Devi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Ayushi Pokhriyal
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Shashi Shekhar
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Ruchir Kant
- Biochemistry & Structural Biology Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
| | - Saptarshi Mukherjee
- Department of Chemistry Indian Institute of Science Education and Research Bhopal Bhopal 462066 Madhya Pradesh India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division CSIR-Central Drug Research Institute Sector 10, Jankipuram Extension, Sitapur Road, P.O. Box 173 Lucknow 226031 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| |
Collapse
|
20
|
Deng Y, Yang T, Wang H, Yang C, Cheng L, Yin SF, Kambe N, Qiu R. Recent Progress on Photocatalytic Synthesis of Ester Derivatives and Reaction Mechanisms. Top Curr Chem (Cham) 2021; 379:42. [PMID: 34668085 DOI: 10.1007/s41061-021-00355-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 10/05/2021] [Indexed: 11/28/2022]
Abstract
Esters and their derivatives are distributed widely in natural products, pharmaceuticals, fine chemicals and other fields. Esters are important building blocks in pharmaceuticals such as clopidogrel, methylphenidate, fenofibrate, travoprost, prasugrel, oseltamivir, eszopiclone and fluticasone. Therefore, esterification reaction becomes more and more popular in the photochemical field. In this review, we highlight three types of reactions to synthesize esters using photochemical strategies. The reaction mechanisms involve mainly single electron transfer, energy transfer or other radical procedures.
Collapse
Affiliation(s)
- Yiqiang Deng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China.
| | - Tianbao Yang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Hui Wang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Chong Yang
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Lihua Cheng
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China
| | - Shuang-Feng Yin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China
| | - Nobuaki Kambe
- The Institute of Scientific and Industrial Research, Osaka University, 8-1 Mihogaoka, Ibaraki, Osaka, 567-0047, Japan
| | - Renhua Qiu
- College of Chemical Engineering, Key Laboratory of Inferior Crude Oil Upgrade Processing of Guangdong Provincial Higher Education Institutes, Guangdong University of Petrochemical Technology, Maoming, 525000, Guangdong, China. .,State Key Laboratory of Chemo/Biosensing and Chemometrics, Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| |
Collapse
|
21
|
Patel SS, Kumar D, Tripathi CB. Brønsted acid catalyzed radical addition to quinone methides. Chem Commun (Camb) 2021; 57:5151-5154. [PMID: 33900314 DOI: 10.1039/d1cc01335a] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
A fundamental quest for alkyl radical generation under mild conditions through photoinduced Brønsted acid catalysis is addressed. The optimized protocol does not require any organic dyes or transition metal photocatalyst. Under blue light irradiation with diphenyl phosphate as a catalyst and dihydropyridine derivatives as a radical source, functionalized arylmethane derivatives are obtained in high yield.
Collapse
Affiliation(s)
- Shiv Shankar Patel
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
| | - Dileep Kumar
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India.
| | - Chandra Bhushan Tripathi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Lucknow-226031, India. and Chemical Sciences Division, Academy of Scientific and Innovative Research (AcSIR), Ghaziabad-201002, India
| |
Collapse
|
22
|
Lu GH, Huang TC, Hsueh HC, Yang SC, Cho TW, Chou HH. Novel N-transfer reagent for converting α-amino acid derivatives to α-diazo compounds. Chem Commun (Camb) 2021; 57:4839-4842. [PMID: 33870368 DOI: 10.1039/d1cc01285a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
A novel universal N-transfer reagent for direct and effective transformation of α-amino ketones, acetamides, and esters to the corresponding α-diazo products under mild basic conditions has been developed. This one-step synthetic approach not only allows for generation of α-substituted-α-diazo carbonyl compounds from α-amino acid derivatives but also permits preparation of α-diazo dipeptides from N-terminal dipeptides (32 examples, up to 91%).
Collapse
Affiliation(s)
- Guan-Han Lu
- Department of Chemistry, National Cheng Kung University, Tainan 701, Taiwan.
| | | | | | | | | | | |
Collapse
|
23
|
Sanjeev K, Raju S, Chandrasekhar S. Aromaticity-Driven Access to Cycloalkyl-Fused Naphthalenes. Org Lett 2021; 23:4013-4017. [PMID: 33938758 DOI: 10.1021/acs.orglett.1c01220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report the efficient synthesis of cycloalkyl-fused naphthalenes through the [4 + 2]-cycloaddtion/decarboxylative aromatization of alkyne-tethered aryne insertion adducts. These scaffolds were difficult to synthesize using conventional reactions. The reaction proceeds via the formation of a benzopyrylium intermediate followed by intramolecular [4 + 2] cycloaddition and a subsequent decarboxylation pathway. This method is also compatible with allene-tethered substrates to afford similar products. In addition, the one-pot synthesis of polysubstituted naphthalenes via aryne insertion/benzannulation has also been developed in good yield.
Collapse
Affiliation(s)
- Karekar Sanjeev
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Silver Raju
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Srivari Chandrasekhar
- Organic Synthesis & Process Chemistry Department, CSIR-Indian Institute of Chemical Technology (CSIR-IICT), Hyderabad 500007, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
24
|
Dong J, Wang H, Mao S, Wang X, Zhou M, Li L. Visible Light‐Induced [3+2] Cyclization Reactions of Hydrazones with Hypervalent Iodine Diazo Reagents for the Synthesis of 1‐Amino‐1,2,3‐Triazoles. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202001436] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Jun‐Ying Dong
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - He Wang
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Shukuan Mao
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Xin Wang
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Ming‐Dong Zhou
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| | - Lei Li
- School of Chemistry and Materials Science Liaoning Shihua University Dandong Road 1 Fushun 113001 People's Republic of China
| |
Collapse
|
25
|
Zhao B, Zhang Z, Ge Y, Li P, Miao T, Wang L. Photochemical synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones from α-keto acids and alkynes. Org Chem Front 2021. [DOI: 10.1039/d0qo01487g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient method for the synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones has been achieved from α-keto acids and alkynes through photo-initiated transformation, providing a range of products in good to excellent yields.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Zhen Zhang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Yu Ge
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Pinhua Li
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Tao Miao
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| |
Collapse
|
26
|
Abstract
A metal-free two-component alkynylsulfonylation of vinylarenes with aryl alkynylsulfones to afford various β-sulfonyl alkynes in moderate to excellent yields under mild conditions is developed.
Collapse
Affiliation(s)
- Fei Wang
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Huan Zhou
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Yajun Li
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| | - Hongli Bao
- Key Laboratory of Coal to Ethylene Glycol and Its Related Technology
- State Key Laboratory of Structural Chemistry
- Center for Excellence in Molecular Synthesis
- Fujian Institute of Research on the Structure of Matter
- University of Chinese Academy of Sciences
| |
Collapse
|
27
|
Nagode SB, Kant R, Rastogi N. Hantzsch Ester-Mediated Synthesis of Phenanthridines under Visible-Light Irradiation. Chem Asian J 2020; 15:3513-3518. [PMID: 32935472 DOI: 10.1002/asia.202000888] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/09/2020] [Indexed: 01/08/2023]
Abstract
An efficient photocatalytic synthesis of phenanthridines mediated by an organo-photoredox initiator Hantzsch ester has been developed via denitrogenative intramolecular annulation of benzotriazolyl chalcones. The highly reducing photoactivated Hantzsch ester facilitates the transformation of benzotriazolyl chalcones into phenanthridinyl chalcones through photoinduced electron transfer (PET) and hydrogen atom transfer (HAT) processes. The mild reaction conditions utilizing inexpensive Hantzsch ester as photosensitizer, wide reaction scope and excellent functional group tolerance are notable attributes of the methodology.
Collapse
Affiliation(s)
- Savita B Nagode
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Ruchir Kant
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Sec. 10, Jankipuram Extension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India
| | - Namrata Rastogi
- Medicinal & Process Chemistry Division, CSIR-Central Drug Research Institute, Sec. 10, JankipuramExtension, Sitapur Road, P.O. Box 173, Lucknow, 226031, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
28
|
Yang X, Zheng B, Wang Y, Li Y, Liu Q, Pan L. Cs
+
/Alcohol Promoted[4C+2C]Annulation: ASynthetic Strategy for Polysubstituted Phenols. ASIAN J ORG CHEM 2020. [DOI: 10.1002/ajoc.202000435] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Xiaohui Yang
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Baihui Zheng
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yanqing Wang
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Yifei Li
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Qun Liu
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| | - Ling Pan
- Jilin Province Key Laboratory of Organic Functional Molecular, Design & Synthesis, Department of Chemistry Department of Chemistry Northeast Normal University Changchun 130024 P. R. China
| |
Collapse
|
29
|
Shen GB, Fu YH, Zhu XQ. Thermodynamic Network Cards of Hantzsch Ester, Benzothiazoline, and Dihydrophenanthridine Releasing Two Hydrogen Atoms or Ions on 20 Elementary Steps. J Org Chem 2020; 85:12535-12543. [PMID: 32880175 DOI: 10.1021/acs.joc.0c01726] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In this work, thermodynamic driving forces on 20 possible elementary steps of Hantzsch ester (HEH2), benzothiazoline (BTH2), and dihydrophenanthridine (PDH2) releasing two hydrogen atoms or ions were measured or derived from the related thermodynamic data using Hess' law in acetonitrile. Furthermore, thermodynamic network cards of HEH2, BTH2, and PDH2 releasing two hydrogen atoms or ions on 20 elementary steps were first established. Based on the thermodynamic network cards, hydride-donating, hydrogen-atom-donating, and electron-donating abilities of XH2 and XH-, and two hydrogen-atom(ion)-donating abilities of XH2 are discussed in detail. Obviously, the thermodynamic network cards of HEH2, BTH2, and PDH2 not only offer rational data guidance for organic synthetic chemists to properly choose an appropriate reducer among the three reducing agents to hydrogenate various unsaturated compounds but also strongly promote elucidatation of the detailed hydrogenation mechanisms.
Collapse
Affiliation(s)
- Guang-Bin Shen
- College of Chemistry, Nankai University, Tianjin 300071, China.,School of Medical Engineering, Jining Medical University, Jining, Shandong 272000, China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, Henan 455000, China
| | - Xiao-Qing Zhu
- The State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, China
| |
Collapse
|
30
|
Shen GB, Xie L, Yu HY, Liu J, Fu YH, Yan M. Theoretical investigation on the nature of 4-substituted Hantzsch esters as alkylation agents. RSC Adv 2020; 10:31425-31434. [PMID: 35520635 PMCID: PMC9056415 DOI: 10.1039/d0ra06745h] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 08/20/2020] [Indexed: 01/04/2023] Open
Abstract
Recently, a variety of 4-substituted Hantzsch esters (XRH) with different structures have been widely researched as alkylation reagents in chemical reactions, and the key step of the chemical process is the elementary step of XRH˙+ releasing R˙. The purpose of this work is to investigate the essential factors which determine whether or not an XRH is a great alkylation reagent using density functional theory (DFT). This study shows that the ability of an XRH acting as an alkylation reagent can be reasonably estimated by its ΔG≠RD(XRH˙+) value, which can be conveniently obtained through DFT computations. Moreover, the data also show that ΔG≠RD(XRH˙+) has no simple correlation with the structural features of XRH, including the electronegativity of the R substituent group and the magnitude of steric resistance; therefore, it is difficult to judge whether an XRH can provide R˙ solely by experience. Thus, these results are helpful for chemists to design 4-substituted Hantzsch esters (XRH) with novel structures and to guide the application of XRH as a free radical precursor in organic synthesis. This work presents a convenient computation method to estimate whether a 4-substituted Hantzsch ester can be a good alkyl radical donor.![]()
Collapse
Affiliation(s)
- Guang-Bin Shen
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Li Xie
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Hao-Yun Yu
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Jie Liu
- School of Medical Engineering, Jining Medical University Jining Shandong 272000 P. R. China
| | - Yan-Hua Fu
- College of Chemistry and Environmental Engineering, Anyang Institute of Technology Anyang Henan 455000 P. R. China
| | - Maocai Yan
- School of Pharmacy, Jining Medical University Rizhao Shandong 276800 P. R. China
| |
Collapse
|
31
|
Wu L, Yu B, Li E. Recent Advances in Organocatalyst‐Mediated Benzannulation Reactions. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000608] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Lulu Wu
- School of Science Henan Agricultural University Zhengzhou 450002 People's Republic of China
| | - Bing Yu
- College of Chemistry Green Catalysis Center Zhengzhou University Zhengzhou 450001 People's Republic of China
| | - Er‐Qing Li
- College of Chemistry Green Catalysis Center Zhengzhou University Zhengzhou 450001 People's Republic of China
| |
Collapse
|
32
|
Li W, Zhang J. Synthesis of Heterocycles through Denitrogenative Cyclization of Triazoles and Benzotriazoles. Chemistry 2020; 26:11931-11945. [DOI: 10.1002/chem.202000674] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 05/07/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Wenbo Li
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 20062 P. R. China
| | - Junliang Zhang
- Shanghai Key Laboratory of Green Chemistry and Chemical ProcessesSchool of Chemistry and Molecular EngineeringEast China Normal University 3663 N. Zhongshan Road Shanghai 20062 P. R. China
- Department of ChemistryFudan University 2005 Songhu Road Shanghai 20048 P. R. China
| |
Collapse
|
33
|
Ansari MA, Yadav D, Singh MS. Rhodium(II)-Catalyzed Annulative Coupling of β-Ketothioamides with α-Diazo Compounds: Access to Highly Functionalized Thiazolidin-4-ones and Thiazolines. J Org Chem 2020; 85:8320-8329. [DOI: 10.1021/acs.joc.0c00378] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Monish Arbaz Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Dhananjay Yadav
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Maya Shankar Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
34
|
Alam T, Rakshit A, Begum P, Dahiya A, Patel BK. Visible-Light-Induced Difunctionalization of Styrenes: Synthesis of N-Hydroxybenzimidoyl Cyanides. Org Lett 2020; 22:3728-3733. [DOI: 10.1021/acs.orglett.0c01235] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Tipu Alam
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Amitava Rakshit
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Pakiza Begum
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Anjali Dahiya
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| | - Bhisma K. Patel
- Department of Chemistry, Indian Institute of Technology Guwahati, North Guwahati 781039, India
| |
Collapse
|
35
|
Yang XL, Guo JD, Xiao H, Feng K, Chen B, Tung CH, Wu LZ. Photoredox Catalysis of Aromatic β-Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angew Chem Int Ed Engl 2020; 59:5365-5370. [PMID: 31957949 DOI: 10.1002/anie.201916423] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Indexed: 12/20/2022]
Abstract
Radical formation is the initial step for conventional radical chemistry. Reported herein is a unified strategy to generate radicals in situ from aromatic β-ketoesters by using a photocatalyst. Under visible-light irradiation, a small amount of photocatalyst fac-Ir(ppy)3 generates a transient α-carbonyl radical and persistent ketyl radical in situ. In contrast to the well-established approaches, neither stoichiometric external oxidant nor reductant is required for this reaction. The synthetic utility is demonstrated by pinacol coupling of ketyl radicals and benzannulation of α-carbonyl radicals with alkynes to give a series of highly substituted 1-naphthols in good to excellent yields. The readily available photocatalyst, mild reaction conditions, broad substrate scope, and high functional-group tolerance make this reaction a useful synthetic tool.
Collapse
Affiliation(s)
- Xiu-Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jia-Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyan Xiao
- Key Laboratory of Bio-Inspired Materials and Interface Sciences, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
36
|
Yang X, Guo J, Xiao H, Feng K, Chen B, Tung C, Wu L. Photoredox Catalysis of Aromatic β‐Ketoesters for in Situ Production of Transient and Persistent Radicals for Organic Transformation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201916423] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xiu‐Long Yang
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Jia‐Dong Guo
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Hongyan Xiao
- Key Laboratory of Bio-Inspired Materials and Interface SciencesTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
| | - Ke Feng
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Chen‐Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| | - Li‐Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic MaterialsTechnical Institute of Physics and ChemistryChinese Academy of Sciences Beijing 100190 China
- School of Future TechnologyUniversity of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
37
|
Orłowska K, Rybicka-Jasińska K, Krajewski P, Gryko D. Photochemical Doyle–Kirmse Reaction: A Route to Allenes. Org Lett 2020; 22:1018-1021. [DOI: 10.1021/acs.orglett.9b04560] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Katarzyna Orłowska
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | | | - Piotr Krajewski
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
- Department of Chemistry, Warsaw University of Technology, Noakowskiego 3, 00-664 Warsaw, Poland
| | - Dorota Gryko
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
38
|
Zhou Y, Liu W, Xing Z, Guan J, Song Z, Peng Y. External-photocatalyst-free visible-light-mediated aerobic oxidation and 1,4-bisfunctionalization of N-alkyl isoquinolinium salts. Org Chem Front 2020. [DOI: 10.1039/d0qo00663g] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Visible-light-induced aerobic alternate transformations of N-alkyl isoquinolinium/quinolinium salts in the absence of any external photocatalyst have been developed.
Collapse
Affiliation(s)
- Youkang Zhou
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Wei Liu
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhiming Xing
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Jiali Guan
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Zhibin Song
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| | - Yiyuan Peng
- Key Laboratory of Functional Small Organic Molecules
- Ministry of Education
- College of Chemistry and Chemical Engineering
- Jiangxi Normal University
- Nanchang 330022
| |
Collapse
|
39
|
He MX, Mo ZY, Wang ZQ, Cheng SY, Xie RR, Tang HT, Pan YM. Electrochemical Synthesis of 1-Naphthols by Intermolecular Annulation of Alkynes with 1,3-Dicarbonyl Compounds. Org Lett 2019; 22:724-728. [DOI: 10.1021/acs.orglett.9b04549] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mu-Xue He
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Zu-Yu Mo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Zi-Qiang Wang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Shi-Yan Cheng
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ren-Ren Xie
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Hai-Tao Tang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| | - Ying-Ming Pan
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Sciences of Guangxi Normal University, Guilin 541004, People’s Republic of China
| |
Collapse
|