1
|
Wu Q, Wang D, Zhou J, Li S, Niu X. The Essence of Nature Can Be the Simplest (1)-Warburg Effect: Transition From Intracellular ATP to Extracellular Fenton Chemistry. Chem Biodivers 2025:e202500313. [PMID: 40197846 DOI: 10.1002/cbdv.202500313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/28/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
Here, we explain the energy mechanism behind the Warburg effect of aerobic glycolysis, which has been unsolved for a hundred years. We found that fungal cells that can engage in extracellular Fenton reactions share central carbon metabolism with cancer cells that can produce the Warburg effect. Fungal cells also undergo aerobic glycolysis, significantly reducing intracellular ATP levels and allocating large amounts of oxygen for the extracellular Fenton reactions. The use of aerobic glycolysis for the extracellular Fenton reaction can be a common phenomenon in nature, as glycolysis is a metabolic pathway that occurs in every cell. The development of extracellular Fenton reaction can be divided into rapid and slow formation. Rapid extracellular Fenton reactions occur predominantly in organisms that contain the key biosynthetic genes for secondary metabolite biosynthesis, while endotherms have limited capacity for slow extracellular reactions due to a lack of these critical genes. Endogenous aromatic metabolites can initiate strong extracellular Fenton reactions, and siderophores can sequester and recycle iron and protect the host from extracellular Fenton reactions. Most exogenous aromatics can induce an extracellular Fenton reaction reflux, thereby inhibiting cancer cells and pathogenetic microorganisms that exhibit stronger extracellular Fenton reactions than normal cells and non-pathogenetic microorganisms.
Collapse
Affiliation(s)
- Qunfu Wu
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Donglou Wang
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Jiao Zhou
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| | - Shenghong Li
- State Key Laboratory of Phytochemistry and Natural Medicines, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, People's Republic of China
| | - Xuemei Niu
- School of Life Sciences, State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People's Republic of China
| |
Collapse
|
2
|
Cao G, Liao X, Zhao S, Li M, Xie Z, Yang J, Li Y, Zhu Z, Jin X, Huang R, Guo Z, Niu X, Ji X. Arthrocolin B Impairs Adipogenesis via Delaying Cell Cycle Progression During the Mitotic Clonal Expansion Period. Int J Mol Sci 2025; 26:1474. [PMID: 40003939 PMCID: PMC11855396 DOI: 10.3390/ijms26041474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/01/2025] [Accepted: 02/08/2025] [Indexed: 02/27/2025] Open
Abstract
Obesity and its related diseases severely threaten people's health, causing persistently high morbidity and mortality worldwide. The abnormal proliferation and hypertrophy of adipocytes mediate the expansion of adipose tissue, which is the main cause of obesity-related diseases. Inhibition of cell proliferation during the mitotic clonal expansion (MCE) period of adipogenesis may be a promising strategy for preventing and treating obesity. Arthrocolins are a series of fluorescent dye-like complex xanthenes from engineered Escherichia coli, with potential anti-tumor and antifungal activities. However, the role and underlying mechanisms of these compounds in adipocyte differentiation remain unclear. In this study, we discovered that arthrocolin B, a member of the arthrocolin family, significantly impeded adipogenesis by preventing the accumulation of lipid droplets and triglycerides, as well as by downregulating the expression of key factors involved in adipogenesis, such as SREBP1, C/EBPβ, C/EBPδ, C/EBPα, PPARγ, and FABP4. Moreover, we revealed that this inhibition might be a consequence of cell cycle arrest during the MCE of adipocyte differentiation, most likely by modulating the p53, AKT, and ERK pathways, upregulating the expression of p21 and p27, and repressing the expression of CDK1, CDK4, Cyclin A2, Cyclin D1, and p-Rb. Additionally, arthrocolin B could promote the expression of CPT1A during adipocyte differentiation, implying its potential role in fatty acid oxidation. Overall, our research concludes that arthrocolin B has the ability to suppress the early stages of adipocyte differentiation mainly by modulating the signaling proteins involved in cell cycle progression. This work broadens our understanding of the function and mechanisms of arthrocolins in regulation of adipogenesis and might provide a potential lead compound for treating the obesity.
Collapse
Affiliation(s)
- Guang Cao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Xuemei Liao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Shuang Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Mengwen Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Zhengyuan Xie
- NHC Key Laboratory of Healthy Birth and Birth Defect Prevention in Western China, Yunnan Population and Family Planning Research Institute, Kunming 650021, China;
| | - Jinglan Yang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Yanze Li
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Zihao Zhu
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Xiaoru Jin
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Rui Huang
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Ziyin Guo
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| | - Xuemei Niu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming 650500, China
| | - Xu Ji
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Provincial Center for Research & Development of Natural Products, School of Pharmacy, Yunnan University, Kunming 650500, China; (G.C.); (X.L.); (S.Z.); (M.L.); (J.Y.); (Y.L.); (Z.Z.); (X.J.); (R.H.); (Z.G.)
| |
Collapse
|
3
|
Wang D, He J, Chen Y, Liu B, Wu Z, Pan X, Niu X. Harnessing in vivo synthesis of bioactive multiarylmethanes in Escherichia coli via oxygen-mediated free radical reaction induced by simple phenols. Microb Cell Fact 2024; 23:219. [PMID: 39103877 DOI: 10.1186/s12934-024-02494-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/29/2024] [Indexed: 08/07/2024] Open
Abstract
BACKGROUND Xanthenes and multi-aryl carbon core containing compounds represent different types of complex and condensed architectures that have impressive wide range of pharmacological, industrial and synthetic applications. Moreover, indoles as building blocks were only found in naturally occurring metabolites with di-aryl carbon cores and in chemically synthesized tri-aryl carbon core containing compounds. Up to date, rare xanthenes with indole bearing multicaryl carbon core have been reported in natural or synthetic products. The underlying mechanism of fluorescein-like arthrocolins with tetra-arylmethyl core were synthesized in an engineered Escherichia coli fed with toluquinol remained unclear. RESULTS In this study, the Keio collection of single gene knockout strains of 3901 mutants of E. coli BW25113, together with 14 distinct E. coli strains, was applied to explore the origins of endogenous building blocks and the biogenesis for arthrocolin assemblage. Deficiency in bacterial respiratory and aromatic compound degradation genes ubiX, cydB, sucA and ssuE inhibited the mutant growth fed with toluquinol. Metabolomics of the cultures of 3897 mutants revealed that only disruption of tnaA involving in transforming tryptophan to indole, resulted in absence of arthrocolins. Further media optimization, thermal cell killing and cell free analysis indicated that a non-enzyme reaction was involved in the arthrocolin biosynthesis in E. coli. Evaluation of redox potentials and free radicals suggested that an oxygen-mediated free radical reaction was responsible for arthrocolins formation in E. coli. Regulation of oxygen combined with distinct phenol derivatives as inducer, 31 arylmethyl core containing metabolites including 13 new and 8 biological active, were isolated and characterized. Among them, novel arthrocolins with p-hydroxylbenzene ring from tyrosine were achieved through large scale of aerobic fermentation and elucidated x-ray diffraction analysis. Moreover, most of the known compounds in this study were for the first time synthesized in a microbe instead of chemical synthesis. Through feeding the rat with toluquinol after colonizing the intestines of rat with E. coli, arthrocolins also appeared in the rat blood. CONCLUSION Our findings provide a mechanistic insight into in vivo synthesis of complex and condensed arthrocolins induced by simple phenols and exploits a quinol based method to generate endogenous aromatic building blocks, as well as a methylidene unit, for the bacteria-facilitated synthesis of multiarylmethanes.
Collapse
Affiliation(s)
- Donglou Wang
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Jiangbo He
- Kunming Key Laboratory of Respiratory Disease, Kunming University, Kunming, 650214, P. R. China
| | - Yonghong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Boran Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Zhuang Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Xuerong Pan
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China
| | - Xuemei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources & Key Laboratory for Microbial Resources of the Ministry of Education, School of Life Sciences, Yunnan University, Kunming, 650091, P. R. China.
| |
Collapse
|
4
|
Zhou H, Yang N, Li W, Peng X, Dong J, Jiang Y, Yan L, Zhang D, Jin Y. Exploration of Baicalein-Core Derivatives as Potent Antifungal Agents: SAR and Mechanism Insights. Molecules 2023; 28:6340. [PMID: 37687172 PMCID: PMC10489750 DOI: 10.3390/molecules28176340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/23/2023] [Accepted: 08/28/2023] [Indexed: 09/10/2023] Open
Abstract
Baicalein (BE), the major component of Scutellaria Baicalensis, exhibited potently antifungal activity against drug-resistant Candida albicans, and strong inhibition on biofilm formation. Therefore, a series of baicalein-core derivatives were designed and synthesized to find more potent compounds and investigate structure-activity relationship (SAR) and mode of action (MoA). Results demonstrate that A4 and B5 exert a more potent antifungal effect (MIC80 = 0.125 μg/mL) than BE (MIC80 = 4 μg/mL) when used in combination with fluconazole (FLC), while the MIC80 of FLC dropped from 128 μg/mL to 1 μg/mL. SAR analysis indicates that the presence of 5-OH is crucial for synergistic antifungal activities, while o-dihydroxyls and vic-trihydroxyls are an essential pharmacophore, whether they are located on the A ring or the B ring of flavonoids. The MoA demonstrated that these compounds exhibited potent antifungal effects by inhibiting hypha formation of C. albicans. However, sterol composition assay and enzymatic assay conducted in vitro indicated minimal impact of these compounds on sterol biosynthesis and Eno1. These findings were further confirmed by the results of the in-silico assay, which assessed the stability of the complexes. Moreover, the inhibition of hypha of this kind of compound could be attributed to their effect on the catalytic subunit of 1,3-β-d-glucan synthase, 1,3-β-d-glucan-UDP glucosyltransferase and glycosyl-phosphatidylinositol protein, rather than inhibiting ergosterol biosynthesis and Eno1 activity by Induced-Fit Docking and Molecular Dynamics Simulations. This study presents potential antifungal agents with synergistic effects that can effectively inhibit hypha formation. It also provides new insights into the MoA.
Collapse
Affiliation(s)
- Heyang Zhou
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Niao Yang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Wei Li
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Xuemi Peng
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Jiaxiao Dong
- School of Pharmacy, Anhui Medical University, Hefei 230022, China
| | - Yuanying Jiang
- Department of Pharmacy, Shanghai Tenth People’s Hospital, School of Medicine, Tongji University, Shanghai 200072, China;
| | - Lan Yan
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Dazhi Zhang
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| | - Yongsheng Jin
- School of Pharmacy, Naval Medical University, Shanghai 200433, China; (H.Z.); (L.Y.)
| |
Collapse
|
5
|
Wu Z, Wu QF, Yuan WL, Chen YH, Hu D, Deng DY, Zhang LL, Niu XM. Arthrocolins Synergizing with Fluconazole Inhibit Fluconazole-Resistant Candida albicans by Increasing Riboflavin Metabolism and Causing Mitochondrial Dysfunction and Autophagy. Microbiol Spectr 2023; 11:e0405122. [PMID: 36847492 PMCID: PMC10101122 DOI: 10.1128/spectrum.04051-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 02/03/2023] [Indexed: 03/01/2023] Open
Abstract
Our previous study reported that seminaturally occurring arthrocolins A to C with unprecedented carbon skeletons could restore the antifungal activity of fluconazole against fluconazole-resistant Candida albicans. Here, we showed that arthrocolins synergized with fluconazole, reducing the fluconazole minimum and dramatically augmenting the survivals of 293T human cells and nematode Caenorhabditis elegans infected with fluconazole-resistant C. albicans. Mechanistically, fluconazole can induce fungal membrane permeability to arthrocolins, leading to the intracellular arthrocolins that were critical to the antifungal activity of the combination therapy by inducing abnormal cell membranes and mitochondrial dysfunctions in the fungus. Transcriptomics and reverse transcription-quantitative PCR (qRT-PCR) analysis indicated that the intracellular arthrocolins induced the strongest upregulated genes that were involved in membrane transports while the downregulated genes were responsible for fungal pathogenesis. Moreover, riboflavin metabolism and proteasomes were the most upregulated pathways, which were accompanied by inhibition of protein biosynthesis and increased levels of reactive oxygen species (ROS), lipids, and autophagy. Our results suggested that arthrocolins should be a novel class of synergistic antifungal compounds by inducing mitochondrial dysfunctions in combination with fluconazole and provided a new perspective for the design of new bioactive antifungal compounds with potential pharmacological properties. IMPORTANCE The prevalence of antifungal-resistant Candida albicans, which is a common human fungal pathogen causing life-threatening systemic infections, has become a challenge in the treatment of fungal infections. Arthrocolins are a new type of xanthene obtained from Escherichia coli fed with a key fungal precursor toluquinol. Different from those artificially synthesized xanthenes used as important medications, arthrocolins can synergize with fluconazole against fluconazole-resistant Candida albicans. Fluconazole can induce the fungal permeability of arthrocolins into fungal cells, and then the intracellular arthrocolins exerted detrimental effects on the fungus by inducing fungal mitochondrial dysfunctions, leading to dramatically reduced fungal pathogenicity. Importantly, the combination of arthrocolins and fluconazole are effective against C. albicans in two models, including human cell line 293T and nematode Caenorhabditis elegans. Arthrocolins should be a novel class of antifungal compounds with potential pharmacological properties.
Collapse
Affiliation(s)
- Zhuang Wu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Qun-Fu Wu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Wen-Li Yuan
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University, The second hospital of Yunnan Province, Kunming, Yunnan Province, People’s Republic of China
| | - Yong-Hong Chen
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Di Hu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - De-Yao Deng
- Department of Clinical Laboratory, The Affiliated Hospital of Yunnan University, The second hospital of Yunnan Province, Kunming, Yunnan Province, People’s Republic of China
| | - Long-Long Zhang
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| | - Xue-Mei Niu
- Laboratory for Conservation and Utilization of Bio-Resources, Key Laboratory for Microbial Resources of the Ministry of Education, Yunnan University, Kunming, People’s Republic of China
| |
Collapse
|
6
|
Zhang LL, Liu YJ, Chen YH, Wu Z, Liu BR, Cheng QY, Zhang KQ, Niu XM. Modulating Activity Evaluation of Gut Microbiota with Versatile Toluquinol. Int J Mol Sci 2022; 23:ijms231810700. [PMID: 36142608 PMCID: PMC9505934 DOI: 10.3390/ijms231810700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 09/09/2022] [Accepted: 09/10/2022] [Indexed: 11/23/2022] Open
Abstract
Gut microbiota have important implications for health by affecting the metabolism of diet and drugs. However, the specific microbial mediators and their mechanisms in modulating specific key intermediate metabolites from fungal origins still remain largely unclear. Toluquinol, as a key versatile precursor metabolite, is commonly distributed in many fungi, including Penicillium species and their strains for food production. The common 17 gut microbes were cultivated and fed with and without toluquinol. Metabolic analysis revealed that four strains, including the predominant Enterococcus species, could metabolize toluquinol and produce different metabolites. Chemical investigation on large-scale cultures led to isolation of four targeted metabolites and their structures were characterized with NMR, MS, and X-ray diffraction analysis, as four toluquinol derivatives (1–4) through O1/O4-acetyl and C5/C6-methylsulfonyl substitutions, respectively. The four metabolites were first synthesized in living organisms. Further experiments suggested that the rare methylsulfonyl groups in 3–4 were donated from solvent DMSO through Fenton’s reaction. Metabolite 1 displayed the strongest inhibitory effect on cancer cells A549, A2780, and G401 with IC50 values at 0.224, 0.204, and 0.597 μM, respectively, while metabolite 3 displayed no effect. Our results suggest that the dominant Enterococcus species could modulate potential precursors of fungal origin and change their biological activity.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Xue-Mei Niu
- Correspondence: ; Tel.: +86-871-65032538; Fax: +86-871-65034838
| |
Collapse
|
7
|
Li G, Zhang Z, Wu M, Chen X, Yin M, Jiang Y, Huang X, Jiang C, Han L. The discovery of germacradienol synthase: Construction of genetically-engineered strain, glycosylated modification, bioactive evaluation of germacradienol. Bioorg Chem 2022; 124:105819. [DOI: 10.1016/j.bioorg.2022.105819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 04/14/2022] [Accepted: 04/16/2022] [Indexed: 11/28/2022]
|
8
|
Rodríguez-Molina M, Galicia-Badillo D, Cetina-Mancilla E, Cárdenas J, Olvera LI, Toscano RA, Rodríguez-Molina B, Zolotukhin MG. 9-Trifluoromethylxanthenediols: Synthesis and Supramolecular Motifs. ACS OMEGA 2022; 7:13520-13528. [PMID: 35559143 PMCID: PMC9088779 DOI: 10.1021/acsomega.1c06635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 03/31/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of four derivatives and the single-crystal X-ray structures of six 9-trifluoromethylxanthenediols (TFXdiols) I-VI are analyzed in this work. These compounds were obtained through superacid-catalyzed condensation of dihydroxybenzenes with 1,1,1-trifluoroacetone or 2,2,2-trifluoroacetophenone. The title molecules have a convex molecular structure due to their three fused rings of the xanthene moiety. We have found that, similar to resorcinol, the configuration of the hydroxyl groups is of great relevance for the crystal packing favoring either interactions above and below their molecular plane or lateral interactions that create layers. Considering that reports of TFXdiols are very scarce, our findings contribute to a better understanding of the molecular conformation and intermolecular interactions in their crystal structures. A similar analysis was extended to a fortuitous cocrystal obtained between 9-trifluoromethyl-9-(4'-fluorophenyl)-xanthenediol and 1,4-dihydroxybenzene, showing that these structures might be used to obtain cocrystals in the future.
Collapse
Affiliation(s)
- Manuel Rodríguez-Molina
- Instituto
de Investigaciones en Materiales, Universidad Nacional Autónoma
de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| | - Dazaet Galicia-Badillo
- Instituto
de Química, Universidad Nacional Autónoma de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| | - Enoc Cetina-Mancilla
- Instituto
de Investigaciones en Materiales, Universidad Nacional Autónoma
de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| | - Jorge Cárdenas
- Instituto
de Química, Universidad Nacional Autónoma de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| | - Lilian I. Olvera
- Instituto
de Investigaciones en Materiales, Universidad Nacional Autónoma
de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| | - Rubén A. Toscano
- Instituto
de Química, Universidad Nacional Autónoma de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| | - Braulio Rodríguez-Molina
- Instituto
de Química, Universidad Nacional Autónoma de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| | - Mikhail G. Zolotukhin
- Instituto
de Investigaciones en Materiales, Universidad Nacional Autónoma
de México, Av. Universidad, CU, Coyoacán, 04510 Ciudad de México, México
| |
Collapse
|
9
|
Xiong B, Si L, Liu Y, Xu W, Jiang T, Cao F, Tang KW, Wong WY. Metal-free, Phosphoric Acid-catalyzed Regioselective 1,6-Hydroarylation of para-Quinone Methides with Indoles in Water. Chem Asian J 2022; 17:e202200042. [PMID: 35246930 DOI: 10.1002/asia.202200042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2022] [Revised: 02/19/2022] [Indexed: 11/08/2022]
Abstract
An efficient, cheap and green protocol for the highly regioselective 1,6-hydroarylation of para -quinone methides ( p -QMs) with indoles at the C-3 position has been established by phosphoric acid catalysis in water under the transition-metal-free reaction conditions. A wide range of indole derivatives and para -quinone methides ( p -QMs) are compatible for the reaction, affording the corresponding 1,6-hydroarylation products with good to excellent yields. The possible mechanism of the reaction has been explored by step-by-step control experiments. The protocol is convenient for practical application, leading a safe, green and feasible way for the formation of C-3 diarylmethyl functionalized indole derivatives.
Collapse
Affiliation(s)
- Biquan Xiong
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Lulu Si
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Yu Liu
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Weifeng Xu
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Tao Jiang
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Fan Cao
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Ke-Wen Tang
- Hunan Institute of Science and Technology, Department of Chemistry and Chemical Engineering, Xueyuan Road, 414006, Yueyang, CHINA
| | - Wai-Yeung Wong
- The Hong Kong Polytechnic University, Department of Applied Biology and Chemical Technology, Hung Hom, Hong Kong, HONG KONG
| |
Collapse
|
10
|
Chen YH, Liu X, Dai R, Ou X, Xu ZF, Zhang KQ, Niu XM. Novel Polyketide-Terpenoid Hybrid Metabolites and Increased Fungal Nematocidal Ability by Disruption of Genes 277 and 279 in Nematode-Trapping Fungus Arthrobotrys oligospora. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7870-7879. [PMID: 32525670 DOI: 10.1021/acs.jafc.0c01720] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Nematode-trapping fungus Arthrobotrys oligospora can produce a type of sesquiterpenyl epoxy-cyclohexenoid (SEC) metabolites that are regarded as characteristic chemtaxonomic markers. Here, we reported investigation on the functions of a putatively cupin-like family gene 277 and a dehydrogenase gene 279 by gene engineering, chemical metabolite profiling and phenotype analysis. Ten targeted metabolites were isolated from two mutants Δ277 and Δ279 and four novel metabolites including three polyketide-terpenoid (PK-TP) hybrid ones were characterized. Metabolite C277-1 from mutant Δ277 shared the characteristic feature of the first and simplest PK-TP hybrid precursor, prenyl toluquinol, and metabolites C279-1 and C279-2 from mutant Δ279 shared the basic carbon skeleton of the key PK-TP hybrid precursor, farnesyl toluquinol, for biosynthesis of SEC metabolites. These results suggested that gene 277 should be involved in biosynthesis of the second prenyl unit for farnesyl toluquinol precursor, and gene 279 might be responsible for the diagnostic epoxy formation. Further analysis revealed that genes 277 and 279 might play roles in fungal conidiation, predatory trap formation, and nematode-capturing ability.
Collapse
Affiliation(s)
- Yong-Hong Chen
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xiao Liu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Rong Dai
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xia Ou
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Zi-Fei Xu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| | - Xue-Mei Niu
- State Key Laboratory for Conservation and Utilization of Bio-Resources and Key Laboratory for Microbial Resources of the Ministry of Education, School of life Sciences, Yunnan University, Kunming 650091, People's Republic of China
| |
Collapse
|