1
|
Ahmed MR, Anaya IO, Nishina Y. Investigating the radical properties of oxidized carbon materials under photo-irradiation: behavior of carbon radicals and their application in catalytic reactions. Chem Commun (Camb) 2024; 60:10544-10547. [PMID: 39229730 DOI: 10.1039/d4cc03101f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Oxidized carbon materials have abundant surface functional groups and customizable properties, making them an excellent platform for generating radicals. Unlike reactive oxygen species such as hydroxide or superoxide radicals that have been reported previously, oxidized carbon also produces stable carbon radicals under photo-irradiation. This has been confirmed through electron spin resonance. Among the various oxidized carbon materials synthesized, graphene oxide shows the largest number of carbon radicals when exposed to blue LED light. The light absorption capacity, high surface area, and unique structural characteristics of oxidized carbon materials offer a unique function for radical-mediated oxidative reactions.
Collapse
Affiliation(s)
- Md Razu Ahmed
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
- Faculty of Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh
| | - Israel Ortiz Anaya
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| | - Yuta Nishina
- Research Institute for Interdisciplinary Science, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan.
| |
Collapse
|
2
|
Vidal M, Pandey J, Navarro-Ruiz J, Langlois J, Tison Y, Yoshii T, Wakabayashi K, Nishihara H, Frenkel AI, Stavitski E, Urrutigoïty M, Campos CH, Godard C, Placke T, Del Rosal I, Gerber IC, Petkov V, Serp P. Probing Basal and Prismatic Planes of Graphitic Materials for Metal Single Atom and Subnanometer Cluster Stabilization. Chemistry 2024; 30:e202400669. [PMID: 38924194 DOI: 10.1002/chem.202400669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 06/28/2024]
Abstract
Supported metal single atom catalysis is a dynamic research area in catalysis science combining the advantages of homogeneous and heterogeneous catalysis. Understanding the interactions between metal single atoms and the support constitutes a challenge facing the development of such catalysts, since these interactions are essential in optimizing the catalytic performance. For conventional carbon supports, two types of surfaces can contribute to single atom stabilization: the basal planes and the prismatic surface; both of which can be decorated by defects and surface oxygen groups. To date, most studies on carbon-supported single atom catalysts focused on nitrogen-doped carbons, which, unlike classic carbon materials, have a fairly well-defined chemical environment. Herein we report the synthesis, characterization and modeling of rhodium single atom catalysts supported on carbon materials presenting distinct concentrations of surface oxygen groups and basal/prismatic surface area. The influence of these parameters on the speciation of the Rh species, their coordination and ultimately on their catalytic performance in hydrogenation and hydroformylation reactions is analyzed. The results obtained show that catalysis itself is an interesting tool for the fine characterization of these materials, for which the detection of small quantities of metal clusters remains a challenge, even when combining several cutting-edge analytical methods.
Collapse
Affiliation(s)
- Mathieu Vidal
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Jyoti Pandey
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Javier Navarro-Ruiz
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Joris Langlois
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Yann Tison
- Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, 64000, Pau, France
| | - Takeharu Yoshii
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Keigo Wakabayashi
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Hirotomo Nishihara
- Advanced Institute for Materials Research/Institute of Multidisciplinary Research for Advanced Materials Tohoku University, 2-1-1 Katahira, Aoba Ward, 980-8577, Sendai Miyagi, Japan
| | - Anatoly I Frenkel
- Department of Materials Science and Chemical Engineering Stony Brook, University Stony Brook, 11794, New York, USA
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Eli Stavitski
- National Synchrotron Light Source (E. Stavitski) and Chemistry Division (A. I. Frenkel), Brookhaven National Laboratory, 11973, New York, USA
| | - Martine Urrutigoïty
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| | - Cristian H Campos
- Departamento de Físico-Química Facultad de Ciencias Químicas, Universidad de Concepción, Edmundo Larenas 129, Casilla 160-C, Concepción, Chile
| | - Cyril Godard
- Departament de Química Física i Inorgánica, Universitat Rovira i Virgili, Carrer de Marcel⋅lí Domingo 1, 43007, Tarragona, Spain
| | - Tobias Placke
- MEET Battery Research Center, University of Münster, Corrensstraße 46, 48149, Münster, Germany
| | - Iker Del Rosal
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Iann C Gerber
- LPCNO, INSA-CNRS-UPS Université de Toulouse, 135 Avenue de Rangueil, F-31077, Toulouse, France
| | - Valeri Petkov
- Department of Physics, Central Michigan University, Dow Hall 203, MI 48859, Mount Pleasant, USA
| | - Philippe Serp
- Laboratoire de Chimie de Coordination (LCC) UPR 8241 CNRS, Toulouse INP Université de Toulouse LCC, composante ENSIACET, 4 allée Emile Monso, F-31030, Toulouse, France
| |
Collapse
|
3
|
Ortiz-Anaya I, Nishina Y. Unveiling the Reduction Process of Graphene Oxide by Ascorbic Acid: Grafting and Reduction Sequences for High Surface Area Graphene Materials. Chempluschem 2023; 88:e202300328. [PMID: 37428458 DOI: 10.1002/cplu.202300328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 07/08/2023] [Accepted: 07/10/2023] [Indexed: 07/11/2023]
Abstract
This work reports the synthesis of high surface area reduced graphene oxides using L-ascorbic acid as a reducing agent by precisely controlling the interaction between graphene oxide and L-ascorbic acid. Based on the structural characterization, such as textural properties (specific surface area, pore structure), crystallinity, and carbon chemical state, we identified that the temperature and reaction time are critical parameters to control the stacking degree of the final reduced product. Besides, by performing a time course analysis of the reaction, we identified the side products of the reducing agent by LC-MS and verified the reduction mechanism. Following our results, we proposed an optimum condition for producing a graphene derivative adsorbent with a high surface area. This graphene derivative was tested in an aqueous solution with organic and inorganic pollutants such as methylene blue, methyl orange, and cadmium.
Collapse
Affiliation(s)
- Israel Ortiz-Anaya
- Graduate School of Natural Sciences and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuta Nishina
- Graduate School of Natural Sciences and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
4
|
Saida Y, Shikata R, En-Ya K, Ohmura S, Nishina Y, Hada M. Development of a Multitimescale Time-Resolved Electron Diffraction Setup: Photoinduced Dynamics of Oxygen Radicals on Graphene Oxide. J Phys Chem A 2022; 126:6301-6308. [PMID: 36063425 DOI: 10.1021/acs.jpca.2c04075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We developed a multitimescale time-resolved electron diffraction setup by electrically synchronizing a nanosecond laser with our table-top picosecond time-resolved electron diffractometer. The setup covers the photoinduced structural dynamics of target materials at timescales ranging from picoseconds to submilliseconds. Using this setup, we sequentially observed the ultraviolet (UV) photoinduced bond dissociation, radical formation, and relaxation dynamics of the oxygen atoms in the epoxy functional group on the basal plane of graphene oxide (GO). The results show that oxygen radicals formed via UV photoexcitation on the basal plane of GO in several tens of picoseconds and then relaxed back to the initial state on the microsecond timescale. The results of first-principles calculations also support the formation of oxygen radicals in the excited state on an early timescale. These results are essential for the further discussion of the reactivities on the basal plane of GO, such as catalytic reactions and antibacterial and antiviral activities. The results also suggest that the multitimescale time-resolved electron diffraction system is a promising tool for laboratory-based molecular dynamics studies of materials and chemical systems.
Collapse
Affiliation(s)
- Yuri Saida
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Ryo Shikata
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Kaito En-Ya
- College of Engineering Sciences, University of Tsukuba, Tsukuba 305-8573, Japan
| | - Satoshi Ohmura
- Faculty of Engineering, Hiroshima Institute of Technology, Hiroshima 731-5193, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, Okayama 700-8530, Japan
| | - Masaki Hada
- Graduate School of Science and Technology, University of Tsukuba, Tsukuba 305-8573, Japan.,Tsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba 305-8573, Japan
| |
Collapse
|
5
|
Heterogenized manganese catalyst for C-, and N-alkylation of ketones and amines with alcohols by pyrolysis of molecularly defined complexes. MOLECULAR CATALYSIS 2022. [DOI: 10.1016/j.mcat.2022.112390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
6
|
Singha R, Basak P, Ghosh P. Catalytic applications of graphene oxide towards the synthesis of bioactive scaffolds through the formation of carbon–carbon and carbon–heteroatom bonds. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
During the past several decades, metal-based catalysis is one of the major and direct approaches for the synthesis of organic molecules. Nowadays, materials containing predominantly carbon element which are termed as carbocatalysts, become the most promising area of research to replace transition metal catalysts. In this context of carbocatalysis, the use of graphene oxide (GO) and GO-based materials are under spotlight due to their sustainability, environmental benignity and large scale-availability. The presence of oxygen containing functional groups in GO makes it benign oxidant and slightly acidic catalyst. This chapter provides a broad discussion on graphene oxide (GO) as well as its preparation, properties and vast area of application. The catalytic activity of GO has been explored in different organic transformations and it has been recognized as an oxidation catalyst for various organic reactions.
Collapse
Affiliation(s)
- Rabindranath Singha
- Department of Chemistry , University of North Bengal , Dist-Darjeeling , West Bengal , India
| | - Puja Basak
- Department of Chemistry , University of North Bengal , Dist-Darjeeling , West Bengal , India
| | - Pranab Ghosh
- Department of Chemistry , University of North Bengal , Dist-Darjeeling , West Bengal , India
| |
Collapse
|
7
|
Guo J, Feng X, Wang S, Wu Q, Lv S, Zhou Y, Li H, Chen Z, Zhang Y. Facile synthesis of hexagonal α-Co(OH) 2 nanosheets and their superior activity in the selective reduction of nitro compounds. Dalton Trans 2021; 50:18061-18068. [PMID: 34842870 DOI: 10.1039/d1dt03407c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Novel hexagonal α-cobalt hydroxide nanosheets are synthesized through a 2-methylimidazole-induced hydrolysis strategy with cetyltrimethylammonium bromide (CTAB) as a surfactant. The weak alkaline environment provides favorable conditions for the formation of metastable α-Co(OH)2, while the same raw material will produce β-Co(OH)2 when a strong alkali solution is used. CTAB plays a vital role not only in hexagonal oriented growth, but also in the formation of the hydrotalcite-like structure of α-Co(OH)2 with high crystallinity. The crystallinity of both α- and β-Co(OH)2 is very poor without CTAB as a surfactant. The Co in this Co(OH)2-x layer presents most of the CoII and a small part of the CoIII, and the interlayer nitrate anion balances the positive charge of the host layer. The redox function produced by the CoII and CoIII of α-Co(OH)2 together with the large layer spacing jointly promotes the electron and mass transfer. The use of hydrazine hydrate for transfer hydrogenation involves the transport of protons and electrons produced by decomposition, and the rapid transport is bound to be conducive to the reduction process. Nitro compounds with varieties of functional groups can be smoothly reduced to the corresponding amines with high selectivity, when α-Co(OH)2 was used as a catalyst under mild conditions.
Collapse
Affiliation(s)
- Jiahui Guo
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Xueqing Feng
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Songrui Wang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Qikang Wu
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Shanshan Lv
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Yan Zhou
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Han Li
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Zheng Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| | - Yuzhong Zhang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, College of Chemistry and Materials Science, Anhui Normal University, Wuhu, 241002, China.
| |
Collapse
|
8
|
Binary CuO/TiO2 nanocomposites as high-performance catalysts for tandem hydrogenation of nitroaromatics. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127383] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
9
|
Das UK, Kar S, Ben‐David Y, Diskin‐Posner Y, Milstein D. Manganese Catalyzed Hydrogenation of Azo (N=N) Bonds to Amines. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100440] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Uttam Kumar Das
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 76100 Israel
| | - Sayan Kar
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 76100 Israel
| | - Yehoshoa Ben‐David
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 76100 Israel
| | - Yael Diskin‐Posner
- Department of Chemical Research Support Weizmann Institute of Science Rehovot 76100 Israel
| | - David Milstein
- Department of Molecular Chemistry and Materials Science Weizmann Institute of Science Rehovot 76100 Israel
| |
Collapse
|
10
|
Hori Y, Kubo K, Nishina Y. Unveiling the Mechanism of Polymer Grafting on Graphene for Functional Composites: The Behavior of Radicals. Macromol Rapid Commun 2020; 42:e2000577. [PMID: 33251648 DOI: 10.1002/marc.202000577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 11/08/2020] [Indexed: 11/07/2022]
Abstract
Polymer-graphene composites have attracted significant attention; however, their formation mechanisms are a focus of debate. This work tries to clarify how grafting occurs on graphene by electron spin resonance techniques. As a result, two pathways are found. One passes through the radicals formed by cleaving CO bonds on graphene are transferred to monomers, then grafting and polymerization proceed. Another mechanism passes through the oxy-radicals, which react with monomers in solution and finally react with carbon radicals on graphene. Based on the mechanism, various types of polymer-graphene composites are prepared, and applied to electrical conductive sheets, basic catalysts, and acidic catalysts.
Collapse
Affiliation(s)
- Yuki Hori
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan.,Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Koichiro Kubo
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
11
|
Campéon BDL, Wang C, Nishina Y. Iron nanoparticle templates for constructing 3D graphene framework with enhanced performance in sodium-ion batteries. NANOSCALE 2020; 12:21780-21787. [PMID: 33103179 DOI: 10.1039/d0nr05682k] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
This study examines the synthesis and electrochemical performance of three-dimensional graphene for Li-ion batteries and Na-ion batteries. The in situ formation of iron hydroxide nanoparticles (Fe(OH)x NPs) of various weights on the surface of graphene oxide, followed by thermal treatment at elevated temperature and washing using hydrochloric acid, furnished 3D graphene. The characterization studies confirmed the prevention of graphene layer stacking by over 90% compared with thermal treatment without Fe(OH)x. The electrochemical performance of the 3D graphene was evaluated as a counter electrode for lithium metal and sodium metal in a half-cell configuration. This material showed good performances with a charging capacity of 507 mA h g-1 at 372 mA g-1 in Li-ion batteries and 252 mA h g-1 at 100 mA g-1 in Na-ion batteries, which is 1.4 and 1.9 times higher, respectively, than the graphene prepared without Fe(OH)x templates.
Collapse
Affiliation(s)
- Benoît D L Campéon
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushima-Naka, Kita-Ku, Okayama 700-8530, Japan.
| | | | | |
Collapse
|
12
|
Pentsak EO, Gordeev EG, Ananikov VP. Carbocatalysis: From Acetylene Trimerization to Modern Organic Synthesis. A Review. DOKLADY PHYSICAL CHEMISTRY 2020. [DOI: 10.1134/s0012501620380017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
13
|
George N, Ofori S, Parkin S, Awuah SG. Mild deprotection of the N- tert-butyloxycarbonyl ( N-Boc) group using oxalyl chloride. RSC Adv 2020; 10:24017-24026. [PMID: 33456769 PMCID: PMC7810210 DOI: 10.1039/d0ra04110f] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
We report a mild method for the selective deprotection of the N-Boc group from a structurally diverse set of compounds, encompassing aliphatic, aromatic, and heterocyclic substrates by using oxalyl chloride in methanol. The reactions take place under room temperature conditions for 1–4 h with yields up to 90%. This mild procedure was applied to a hybrid, medicinally active compound FC1, which is a novel dual inhibitor of IDO1 and DNA Pol gamma. A broader mechanism involving the electrophilic character of oxalyl chloride is postulated for this deprotection strategy. We report a mild method for the selective deprotection of the N-Boc group from a structurally diverse set of compounds, encompassing aliphatic, aromatic, and heterocyclic substrates by using oxalyl chloride in methanol.![]()
Collapse
Affiliation(s)
- Nathaniel George
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Samuel Ofori
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Sean Parkin
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| | - Samuel G Awuah
- Department of Chemistry, University of Kentucky, Lexington, Kentucky 40506, USA
| |
Collapse
|
14
|
Ahmad MS, Nishina Y. Graphene-based carbocatalysts for carbon-carbon bond formation. NANOSCALE 2020; 12:12210-12227. [PMID: 32510079 DOI: 10.1039/d0nr02984j] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Organic transformations are usually catalyzed by metal-based catalysts. In contrast, metal-free catalysts have attracted considerable attention from the viewpoint of sustainability and safety. Among the studies in metal-free catalysis, graphene-based materials have been introduced in the reactions that are usually catalyzed by transition metal catalysts. This review covers the literature (up to the beginning of April 2020) on the use of graphene and its derivatives as carbocatalysts for C-C bond-forming reactions, which are one of the fundamental reactions in organic syntheses. Besides, mechanistic studies are included for the rational understanding of the catalysis. Graphene has significant potential in the field of metal-free catalysis because of the fine-tunable potential of the structure, high stability and durability, and no metal contamination, making it a next-generation candidate material in catalysis.
Collapse
Affiliation(s)
- Muhammad Sohail Ahmad
- Graduate School of Natural Science and Technology, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama, Japan700-8530.
| | | |
Collapse
|