1
|
Cheng Z, Zhang P, Shao Y, Sun J, Tang S. Rhodium-Catalyzed Asymmetric N2-C5 Allylation of Indazoles with Dienyl Allylic Alcohols. Org Lett 2024; 26:5646-5651. [PMID: 38953867 DOI: 10.1021/acs.orglett.4c01558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
The development of site-selective and regio- and enantioselective reactions of substrates with multiple active sites is an important topic and remains a substantial challenge in synthetic chemistry. Here, we describe a rhodium-catalyzed asymmetric N2-C5 allylation of indazoles with dienyl allylic alcohols under mild conditions. In the presence of a Rh/(P/olefin) catalyst and formic acid, chiral N2-C5 allylic indazoles were formed in good yields with excellent enantioselectivities (up to 97% ee). The mechanism proceeds through an elusive intermediate Int B, which represents a challenging task on asymmetric allylic substitution (AAS) of dienyl substrates.
Collapse
Affiliation(s)
- Zhangru Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
2
|
Zhang P, Zhang Y, Shao Y, Sun J, Tang S. Iridium-Catalyzed Regio- and Enantioselective N-Allylation of Pyrazoles with Dienyl/Monoallylic Alcohols. Org Lett 2024; 26:3966-3971. [PMID: 38669214 DOI: 10.1021/acs.orglett.4c01201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/28/2024]
Abstract
Here we report the first example of iridium-catalyzed asymmetric N-allylation of pyrazoles with dienyl allylic alcohols under mild conditions with broad functional group tolerance, exhibiting excellent N1/C3-site selectivities and enantioselectivities (up to >99% ee). In addition to pyrazoles, other nucleophiles including benzotriazole, triazole, and pyrazole precursors (aryl vinyldiazos) are also suitable in this method. Notably, with the use of Sc(OTf)3 as additive and reactions performed at 30 °C for 24 h, the N1-C5 or N1-C1 selective alkylated pyrazoles are also obtained.
Collapse
Affiliation(s)
- Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Yulu Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, People's Republic of China
| |
Collapse
|
3
|
He C, Tang Y, Tang S, Sun J. Iridium-Catalyzed Diastereo- and Enantioselective [4 + 1] Cycloaddition of Hydroxyallyl Anilines with Sulfoxonium Ylides. Org Lett 2023. [PMID: 37319271 DOI: 10.1021/acs.orglett.3c01217] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
We present here an iridium-catalyzed diastereo- and enantioselective [4 + 1] cycloaddition reaction of hydroxyallyl anilines with sulfoxonium ylides under mild reaction conditions, leading to 3-vinyl indolines in moderate to good yields with excellent enantioselectivities. Control experiments disclosed a plausible reaction mechanism.
Collapse
Affiliation(s)
- Chunlan He
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yaping Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
4
|
Tang S, Cheng Z, Zhang P, Shao Y, Sun J. Access to Chiral Tetrahydroquinazolines/1,3-Benzoxazines via Iridium-Catalyzed Asymmetric [4 + 2] Cycloaddition. Org Lett 2023; 25:3639-3643. [PMID: 37191318 DOI: 10.1021/acs.orglett.3c01004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
An iridium-catalyzed asymmetric [4 + 2] cycloaddition of 1,3,5-triazinanes with 2-(1-hydroxyallyl)anilines/2-(1-hydroxyallyl)phenols has been developed, providing a straightforward and efficient approach to a wide range of tetrahydroquinazolines in good yields and excellent enantioselectivities (up to >99% ee). Typically, chiral 1,3-benzoxazines, which are challenging substrates in asymmetric [4 + 2] cycloaddition, could be obtained in excellent enantioselectivities via this protocol.
Collapse
Affiliation(s)
- Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Zhangru Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, Advanced Catalysis and Green Manufacturing Collaborative Innovation Center, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
5
|
Lu S, Chen X, Chang X, Zhang S, Zhang D, Zhao Y, Yang L, Ma Y, Sun P. Boron-catalysed transition-metal-free arylation and alkenylation of allylic alcohols with boronic acids. RSC Adv 2023; 13:3329-3332. [PMID: 36756407 PMCID: PMC9869934 DOI: 10.1039/d2ra07919d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/15/2023] [Indexed: 01/24/2023] Open
Abstract
The development of efficient catalytic reactions with excellent atom and step economy employing sustainable catalysts is highly sought-after in chemical synthesis to reduce the negative effects on the environment. The most commonly-used strategy to construct allylic compounds relies on the transition-metal-catalysed nucleophilic substitution reaction of allylic alcohol derivatives. These syntheses exhibit good yield and selectivity, albeit at the expense of toxic and expensive catalysts and extra steps. In this paper, we report a transition-metal-free arylation and alkenylation reaction between unprotected allylic alcohols and boronic acids. The reactions were performed with B(C6F5)3 as the catalyst in toluene, and corresponding products were obtained in 23-92% yields. The reaction has mild conditions, scalability, excellent atom and step economy.
Collapse
Affiliation(s)
- Sixian Lu
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Xingyu Chen
- School of Pharmacy, Chengdu UniversityChengduSichuan610106China
| | - Xiaoqiang Chang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Shuaichen Zhang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Dong Zhang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yifan Zhao
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Lan Yang
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Yue Ma
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| | - Peng Sun
- Institute of Chinese Materia Medica and Artemisinin Research Center, Academy of Chinese Medical Sciences Beijing 100700 China
| |
Collapse
|
6
|
Xing H, Chen M, Zhang D, Geng Z, Xie P, Loh TP. Dehydrative Cross-Coupling for C-N Bond Construction under Transition-Metal-Free Conditions. Org Lett 2022; 24:5657-5662. [PMID: 35900372 DOI: 10.1021/acs.orglett.2c01902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A transition-metal-free catalytic system was designed to address the dehydrative cross-coupling of unactivated primary/secondary alcohols with amines/amides under environmentally benign conditions. Mg2+ and counteranion (PF6-) worked synergistically to realize C-OH bond cleavage and concomitant C-N bond formation. A wide range of allylic alcohols and amines/amides were tolerated well in this transformation, which allowed C-N bond construction with high efficiency.
Collapse
Affiliation(s)
- Huicong Xing
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Meijuan Chen
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Dong Zhang
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Zhishuai Geng
- National Engineering Research Center of Flame Retardant Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, P.R. China
| | - Peizhong Xie
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China
| | - Teck-Peng Loh
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P.R. China.,College of Advanced Interdisciplinary Science and Technology, Henan University of Technology, Zhengzhou 450001, P.R. China.,Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore 637371 Singapore
| |
Collapse
|
7
|
Stivala CE, Zbieg JR, Liu P, Krische MJ. Chiral Amines via Enantioselective π-Allyliridium- C, O-Benzoate-Catalyzed Allylic Alkylation: Student Training via Industrial-Academic Collaboration. Acc Chem Res 2022; 55:2138-2147. [PMID: 35830564 PMCID: PMC9608351 DOI: 10.1021/acs.accounts.2c00302] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
ConspectusCyclometalated π-allyliridium-C,O-benzoate complexes discovered in the Krische laboratory display unique amphiphilic properties, catalyzing both nucleophilic carbonyl allylation and electrophilic allylation of diverse amines as well as nitronates. Given the importance of chiral amines in FDA-approved small-molecule drugs, a collaboration with medicinal chemists at Genentech that included on-site graduate student internships was undertaken to explore and expand the scope of π-allyliridium-C,O-benzoate-catalyzed allylic amination and related processes. As described in this Account, our collective experimental studies have unlocked asymmetric allylic aminations of exceptionally broad utility and scope. Specifically, using racemic branched alkyl-substituted allylic acetate proelectrophiles, primary and secondary aliphatic or aromatic amines, including indoles, engage in highly regio- and enantioselective allylic amination. Additionally, unactivated nitronates were found to be competent nucleophilic partners for regio- and enantioselective allylic alkylation, enabling entry to β-stereogenic α-quaternary primary amines. Notably, these π-allyliridium-C,O-benzoate-catalyzed allylic substitutions, which display complete branched regioselectivity in reactions of alkyl-substituted allyl electrophiles, complement the scope of corresponding iridium phosphoramidite-catalyzed allylic aminations, which require aryl-substituted allyl electrophiles to promote high levels of branched regioselectivity. Computational, kinetic, ESI-CID-MS, and isotopic labeling studies were undertaken to understand the mechanism of these processes, including the origins of regio- and enantioselectivity. Isotopic labeling studies suggest that C-N bond formation occurs through outer-sphere addition to the π-allyl. DFT calculations corroborate C-N bond formation via outer-sphere addition and suggest that early transition states and distinct trans effects of diastereomeric chiral-at-iridium π-allyl complexes render the reaction less sensitive to steric effects, accounting for complete levels of branched regioselectivity in reactions of hindered amine and nitronate nucleophiles. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, a first-order dependence on the catalyst, and a fractional-order dependence on the amine. As corroborated by ESI-CID-MS analysis, the 0.4 kinetic order dependence on the amine may reflect the intervention of cesium-bridged amine dimers, which dissociate to form monomeric cesium amide nucleophiles. Hence, the requirement of cesium carbonate (vs lower alkali metal carbonates) in these processes may reside in cesium's capacity for Lewis acid-enhanced Brønsted acidification of the amine pronucleophile. Beyond the development of catalytic processes for the synthesis of novel chiral amines, the present research was conducted by graduate students who benefited from career development experiences associated with training in both academic and industrial laboratories.
Collapse
Affiliation(s)
- Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
8
|
Zou LM, Huang XY, Zheng C, Cheng YZ, You SL. Chiral Brønsted Acid-Catalyzed Intramolecular Asymmetric Allylic Alkylation of Indoles with Primary Alcohols. Org Lett 2022; 24:3544-3548. [PMID: 35533379 DOI: 10.1021/acs.orglett.2c01253] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Herein, chiral Brønsted acid-catalyzed intramolecular asymmetric allylic alkylation of indoles with allylic primary alcohols is described. The allyl alcohols were directly employed as the allylic precursors in this metal-free protocol, without preactivation or any additional activating reagents. This method provides the convenient synthesis of a broad range of functionalized tetrahydrocarbazoles in excellent yields (≤97%) with good enantioselectivity (≤93% ee). The optimal conditions are compatible for gram-scale reaction.
Collapse
Affiliation(s)
- Lei-Ming Zou
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Xian-Yun Huang
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Chao Zheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Yuan-Zheng Cheng
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shu-Li You
- School of Pharmacy, East China University of Science and Technology, 130 Mei-Long Road, Shanghai 200237, China.,State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
9
|
Jung WO, Mai BK, Yoo M, Shields SWJ, Zbieg JR, Stivala CE, Liu P, Krische MJ. Kinetic, ESI-CID-MS and Computational Studies of π-Allyliridium C,O-Benzoate-Catalyzed Allylic Amination: Understanding the Effect of Cesium Ion. ACS Catal 2022; 12:3660-3668. [PMID: 36092640 PMCID: PMC9456326 DOI: 10.1021/acscatal.2c00470] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination was studied by (a) reaction progress kinetic analysis (RPKA), (b) tandem ESI-MS analysis, and (c) computational studies involving density functional theory (DFT) calculations. Reaction progress kinetic analysis (RPKA) reveals a zero-order dependence on allyl acetate, first-order dependence on catalyst and fractional-order dependence on amine. These data corroborate rapid ionization of the allylic acetate followed by turnover limiting C-N bond formation. To illuminate the origins of the 0.4 kinetic order dependence on amine, ESI-MS analyses of quaternary ammonium-labelled piperazine with multistage collision induced dissociation (CID) were conducted that corroborate intervention of cesium-bridged amine dimers that dissociate to form monomeric cesium amide nucleophiles. Computational data align with RPKA and ESI-CID-MS analyses and suggest early transition states mitigate the impact of steric factors, thus enabling formation of highly substituted C-N bonds with complete levels of branched regioselectivity. Specifically, trans-effects of the iridium complex facilitate nucleophilic attack at the more substituted allyl terminus trans to phosphorus with enantioselectivity governed by steric repulsions between the chiral bisphosphine ligand and the π-allyl of a dominant diastereomer of the stereogenic-at-metal complex. Beyond defining aspects of the mechanism of π-allyliridium C,O-benzoate-catalyzed allylic amination, these data reveal that a key feature of cesium carbonate not only lies in its enhanced basicity, but also its capacity for Lewis-acid enhanced Brønsted acidification of amines.
Collapse
Affiliation(s)
- Woo-Ok Jung
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Binh Khanh Mai
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Minjin Yoo
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Samuel W J Shields
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| | - Jason R Zbieg
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Craig E Stivala
- Discovery Chemistry, Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, USA
| | - Peng Liu
- Department of Chemistry, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Michael J Krische
- University of Texas at Austin, Department of Chemistry, Austin, TX 78712, USA
| |
Collapse
|
10
|
Jung WO, Yoo M, Migliozzi MM, Zbieg JR, Stivala CE, Krische MJ. Regio- and Enantioselective Iridium-Catalyzed Amination of Alkyl-Substituted Allylic Acetates with Secondary Amines. Org Lett 2022; 24:441-445. [PMID: 34905364 PMCID: PMC8764998 DOI: 10.1021/acs.orglett.1c04135] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Robust air-stable cyclometalated π-allyliridium C,O-benzoates modified by (S)-tol-BINAP catalyze the reaction of secondary aliphatic amines with racemic alkyl-substituted allylic acetates to furnish products of allylic amination with high levels of enantioselectivity. Complete branched regioselectivities were observed despite the formation of more highly substituted C-N bonds.
Collapse
Affiliation(s)
- Woo-Ok Jung
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Minjin Yoo
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| | - Madyson M Migliozzi
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Jason R Zbieg
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Craig E Stivala
- Genentech, Inc., 1 DNA Way, South San Francisco, California 94080, United States
| | - Michael J Krische
- Department of Chemistry, University of Texas at Austin, Austin, Texas 78712, United States
| |
Collapse
|
11
|
Sawano T, Takeuchi R. Recent advances in iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00316c] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
This minireview describes the recent progress of iridium-catalyzed enantioselective allylic substitution using phosphoramidite-alkene ligands realizing highly enantioselective carbon–carbon and carbon–heteroatom bond formation.
Collapse
Affiliation(s)
- Takahiro Sawano
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| | - Ryo Takeuchi
- Department of Chemistry and Biological Science, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara, Kanagawa 252-5258, Japan
| |
Collapse
|
12
|
Fan T, Liu Y. Recent Advances in Synthesis of Chiral Tertiary Amines via Asymmetric Catalysis Involving Metal-Hydride Species. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202206032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
13
|
Zhuang H, Lu N, Ji N, Han F, Miao C. Bu
4
NHSO
4
‐Catalyzed Direct
N
‐Allylation of Pyrazole and its Derivatives with Allylic Alcohols in Water: A Metal‐Free, Recyclable and Sustainable System. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100864] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Hongfeng Zhuang
- College of Chemistry and Material Science Shandong Agricultural University Tai'an 271018 Shandong People's Republic of China
| | - Nan Lu
- College of Chemistry and Material Science Shandong Agricultural University Tai'an 271018 Shandong People's Republic of China
| | - Na Ji
- College of Chemistry and Material Science Shandong Agricultural University Tai'an 271018 Shandong People's Republic of China
| | - Feng Han
- College of Chemistry and Material Science Shandong Agricultural University Tai'an 271018 Shandong People's Republic of China
| | - Chengxia Miao
- College of Chemistry and Material Science Shandong Agricultural University Tai'an 271018 Shandong People's Republic of China
| |
Collapse
|
14
|
Tang S, Zhang P, Wang C, Shao Y, Sun J. Iridium-catalyzed regio- and enantioselective allylic esterification of secondary allylic alcohols with carboxylic acids. Chem Commun (Camb) 2021; 57:11080-11083. [PMID: 34617093 DOI: 10.1039/d1cc04861a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We report herein an iridium-catalyzed asymmetric allylic esterification of racemic secondary allylic alcohols using free carboxylic acids as nucleophiles under mild conditions with broad functional group tolerance, exhibiting excellent regio- and enantioselectivity .
Collapse
Affiliation(s)
- Shengbiao Tang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Peng Zhang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Changkai Wang
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Ying Shao
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| | - Jiangtao Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
15
|
Biya E, Neetha M, Anilkumar G. An Overview of Iridium‐Catalyzed Allylic Amination Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102370] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Elsa Biya
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560Fax: +91-481-2731036
| | - Mohan Neetha
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560Fax: +91-481-2731036
| | - Gopinathan Anilkumar
- School of Chemical Sciences Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560Fax: +91-481-2731036
- Advanced Molecular Materials Research Centre (AMMRC) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560
- Institute for Integrated programmes and Research in Basic Sciences (IIRBS) Mahatma Gandhi University Priyadarsini Hills P O Kottayam Kerala INDIA 686560
| |
Collapse
|
16
|
Counteranion-controlled regioselectivity in palladium-catalyzed allylic amination of dienyl allylic carbonates. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.131996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Yu B, Gao B, Zhang X, Zhang H, Huang H. Palladium‐Catalyzed
Aminomethylation of Nitrodienes and Dienones
via
Double C—N Bond Activation. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000184] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Bangkui Yu
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Bao Gao
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Xuexia Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Haocheng Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
| | - Hanmin Huang
- Hefei National Laboratory for Physical Sciences at the Microscale and Department of Chemistry, University of Science and Technology of China Hefei Anhui 230026 China
- Center for Excellence in Molecular Synthesis of CAS Hefei Anhui 230026 China
| |
Collapse
|
18
|
Soengas RG, Rodríguez-Solla H. Modern Synthetic Methods for the Stereoselective Construction of 1,3-Dienes. Molecules 2021; 26:molecules26020249. [PMID: 33418882 PMCID: PMC7825119 DOI: 10.3390/molecules26020249] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/31/2020] [Accepted: 01/03/2021] [Indexed: 11/16/2022] Open
Abstract
The 1,3-butadiene motif is widely found in many natural products and drug candidates with relevant biological activities. Moreover, dienes are important targets for synthetic chemists, due to their ability to give access to a wide range of functional group transformations, including a broad range of C-C bond-forming processes. Therefore, the stereoselective preparation of dienes have attracted much attention over the past decades, and the search for new synthetic protocols continues unabated. The aim of this review is to give an overview of the diverse methodologies that have emerged in the last decade, with a focus on the synthetic processes that meet the requirements of efficiency and sustainability of modern organic chemistry.
Collapse
|
19
|
Long J, Yu R, Gao J, Fang X. Access to 1,3‐Dinitriles by Enantioselective Auto‐tandem Catalysis: Merging Allylic Cyanation with Asymmetric Hydrocyanation. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202000704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jinguo Long
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jihui Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
20
|
Long J, Yu R, Gao J, Fang X. Access to 1,3‐Dinitriles by Enantioselective Auto‐tandem Catalysis: Merging Allylic Cyanation with Asymmetric Hydrocyanation. Angew Chem Int Ed Engl 2020; 59:6785-6789. [DOI: 10.1002/anie.202000704] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Indexed: 01/14/2023]
Affiliation(s)
- Jinguo Long
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Rongrong Yu
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Jihui Gao
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| | - Xianjie Fang
- Shanghai Key Laboratory for Molecular Engineering of Chiral DrugsSchool of Chemistry and Chemical EngineeringShanghai Jiao Tong University 800 Dongchuan Road Shanghai 200240 P. R. China
| |
Collapse
|
21
|
Ye P, Shao Y, Ye X, Zhang F, Li R, Sun J, Xu B, Chen J. Homoleptic Bis(trimethylsilyl)amides of Yttrium Complexes Catalyzed Hydroboration Reduction of Amides to Amines. Org Lett 2020; 22:1306-1310. [PMID: 32013446 DOI: 10.1021/acs.orglett.9b04606] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Homoleptic lanthanide complex Y[N(TMS)2]3 is an efficient homogeneous catalyst for the hydroboration reduction of secondary amides and tertiary amides to corresponding amines. A series of amides containing different functional groups such as cyano, nitro, and vinyl groups were found to be well-tolerated. This transformation has also been nicely applied to the synthesis of indoles and piribedil. Detailed isotopic labeling experiments, control experiments, and kinetic studies provided cumulative evidence to elucidate the reaction mechanism.
Collapse
Affiliation(s)
- Pengqing Ye
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Yinlin Shao
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China.,Institute of New Materials & Industrial Technology , Wenzhou University , Wenzhou , P.R. China
| | - Xuanzeng Ye
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Fangjun Zhang
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , P.R. China
| | - Renhao Li
- School of Pharmaceutical Sciences , Wenzhou Medical University , Wenzhou 325035 , P.R. China
| | - Jiani Sun
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Beihang Xu
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| | - Jiuxi Chen
- College of Chemistry & Materials Engineering , Wenzhou University , Wenzhou , 325035 , P.R. China
| |
Collapse
|