1
|
Paul S, Brown MK. Synthesis of Secondary Boronates via Deaminative Cross-Coupling of Alkyl Nitroso Carbamates and Boronic Acids. Angew Chem Int Ed Engl 2024; 63:e202408432. [PMID: 39092618 PMCID: PMC11733801 DOI: 10.1002/anie.202408432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Indexed: 08/04/2024]
Abstract
A strategy for transition metal-free cross-coupling of alkyl nitroso-carbamates and boronic acids is reported. The N-nitroso carbamates are easily prepared from the corresponding amine in two simple steps. This method allows for the synthesis of a wide variety of secondary boronates, benzylic boronates and formal Csp3-Csp2 cross-coupling products under operationally simple conditions. Functional group tolerance is also demonstrated and applied in the modification of lysine to make non-canonical amino acids.
Collapse
Affiliation(s)
- Shashwati Paul
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| | - M Kevin Brown
- Department of Chemistry, Indiana University, 800 E. Kirkwood Ave., Bloomington, IN 47405, USA
| |
Collapse
|
2
|
Xiao W, Wang J, Ye J, Wang H, Wu J, Ye S. Electrochemical Synthesis of Spirolactones from α-Tetralone Derivatives with Methanol as a C1 Source. Org Lett 2024; 26:5016-5020. [PMID: 38825794 DOI: 10.1021/acs.orglett.4c01678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Spirolactones are widely found in pharmaceuticals and bioactive natural products. However, efficient and environmentally friendly approaches to accessing spirolactones are still highly desirable. Herein, a novel electrochemical synthesis of spirolactones from α-tetralone derivatives with methanol as a C1 source is described. This electrochemical reaction exhibits a high efficiency and good functional group tolerance.
Collapse
Affiliation(s)
- Wei Xiao
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jianyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jiamin Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Hongyan Wang
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Shengqing Ye
- School of Pharmaceutical and Chemical Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| |
Collapse
|
3
|
Advances in Catalytic C–F Bond Activation and Transformation of Aromatic Fluorides. Catalysts 2022. [DOI: 10.3390/catal12121665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The activation and transformation of C–F bonds in fluoro-aromatics is a highly desirable process in organic chemistry. It provides synthetic methods/protocols for the generation of organic compounds possessing single or multiple C–F bonds, and effective catalytic systems for further study of the activation mode of inert chemical bonds. Due to the high polarity of the C–F bond and it having the highest bond energy in organics, C–F activation often faces considerable academic challenges. In this mini-review, the important research achievements in the activation and transformation of aromatic C–F bond, catalyzed by transition metal and metal-free systems, are presented.
Collapse
|
4
|
Xie D, Wang Y, Zhang X, Fu Z, Niu D. Alkyl/Glycosyl Sulfoxides as Radical Precursors and Their Use in the Synthesis of Pyridine Derivatives. Angew Chem Int Ed Engl 2022; 61:e202204922. [PMID: 35641436 DOI: 10.1002/anie.202204922] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Indexed: 02/05/2023]
Abstract
We report here the use of simple and readily available alkyl sulfoxides as precursors to radicals and their application in the preparation of pyridine derivatives. We show that alkyl sulfoxides, N-methoxy pyridinium salts and fluoride anions form electron donor-acceptor (EDA) complexes in solution, which, upon visible light irradiation, undergo a radical chain process to afford various pyridine derivatives smoothly. This reaction displays broad scope with respect to both sulfoxides and N-methoxy pyridiniums. The synthetic versatility of sulfoxides as a handle in chemistry adds to their power as radical precursors. Glycosyl sulfoxides are converted to the corresponding pyridyl C-glycosides with high stereoselectivities. Computational and experimental studies provide insights into the reaction mechanism.
Collapse
Affiliation(s)
- Demeng Xie
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Yingwei Wang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Xia Zhang
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Zhengyan Fu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| | - Dawen Niu
- Department of Emergency, State Key Laboratory of Biotherapy, West China Hospital, and School of Chemical Engineering, Sichuan University, No. 17 Renmin Nan Road, Chengdu, 610041, China
| |
Collapse
|
5
|
Xie D, Wang Y, Zhang X, Fu Z, Niu D. Alkyl/Glycosyl Sulfoxides as Radical Precursors and Their Use in the Synthesis of Pyridine Derivatives**. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202204922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Demeng Xie
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Yingwei Wang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Xia Zhang
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Zhengyan Fu
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| | - Dawen Niu
- Department of Emergency State Key Laboratory of Biotherapy West China Hospital and School of Chemical Engineering Sichuan University No. 17 Renmin Nan Road Chengdu 610041 China
| |
Collapse
|
6
|
Gao Y, Jiang S, Mao ND, Xiang H, Duan JL, Ye XY, Wang LW, Ye Y, Xie T. Recent Progress in Fragmentation of Katritzky Salts Enabling Formation of C-C, C-B, and C-S Bonds. Top Curr Chem (Cham) 2022; 380:25. [PMID: 35585362 DOI: 10.1007/s41061-022-00381-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Accepted: 04/21/2022] [Indexed: 02/07/2023]
Abstract
Since their discovery in 1970s, Katritzky salts have emerged as one of the most important classes of building blocks for use in organic synthesis and drug discovery. These bulky pyridinium salts derived from alkylamine can readily generate alkyl radical and undergo a variety of organic transformation reactions such as alkylation, arylation, alkenylation, alkynylation, carbonylation, sulfonylation, and borylation. Through these transformations, complexed molecules bearing new C-C, C-B, or C-S bonds can be constructed in easy ways and in simple steps. This review aims to summarize recent advances in these versatile building blocks in well-classified categories. Representative examples and their reaction mechanisms are discussed. The hope is to provide the scientific community with convenient access to collective information and accelerate further research.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.,Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine, Shanghai, 200000, China.,School of Clinical Medicine, Guangdong Pharmaceutical University, Guangzhou, 510000, Guangdong, China
| | - Songwei Jiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Nian-Dong Mao
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Huan Xiang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Ji-Long Duan
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Xiang-Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China.,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China.,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China.,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China
| | - Li-Wei Wang
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| | - Yang Ye
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| | - Tian Xie
- School of Pharmacy, Hangzhou Normal University, Hangzhou, 311121, Zhejiang, China. .,Key Laboratory of Elemene Class Anti-Cancer Chinese Medicine of Zhejiang Province, Hangzhou, China. .,Engineering Laboratory of Development and Application of Traditional Chinese Medicine from Zhejiang Province, Hangzhou, China. .,Collaborative Innovation Center of Chinese Medicines from Zhejiang Province, Hangzhou, China.
| |
Collapse
|
7
|
Xu JX, Kuai CS, Wu XF. Cobalt-Catalyzed Four-Component Carbonylation of Methylarenes with Ethylene and Alcohols. J Org Chem 2022; 87:6371-6377. [PMID: 35468297 DOI: 10.1021/acs.joc.2c00008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Direct conversion of raw materials to fine chemicals is greatly economically influential. We developed a non-expensive cobalt-catalyzed multicomponent carbonylative reaction for the synthesis of γ-aryl carboxylic acid esters from readily available methylarene, ethylene, and CO, which are widely found in multiple FDA-approved drugs.
Collapse
Affiliation(s)
- Jian-Xing Xu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China
| | - Chang-Sheng Kuai
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Science, 116023 Dalian, Liaoning, China.,Leibniz-Institut für Katalyse e.V., Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
8
|
Cui P, Li S, Wang X, Li M, Wang C, Wu L. Visible-Light-Promoted Unsymmetrical Phosphine Synthesis from Benzylamines. Org Lett 2022; 24:1566-1570. [PMID: 35157457 DOI: 10.1021/acs.orglett.2c00317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Herein, by applying visible-light photoredox catalysis, we have achieved the catalytic deaminative alkylation of diphenylphosphine and phenyl phosphine with benzylamine-derived Katritzky salts at room temperature. The use of Eosin Y as photoredox catalyst and visible light can largely promote the reaction. A series of unsymmetrical tertiary phosphines were successfully synthesized, including phosphines with three different substituents that are otherwise difficult to obtain.
Collapse
Affiliation(s)
- Penglei Cui
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Sida Li
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xianjin Wang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China.,University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Ming Li
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Chun Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lipeng Wu
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP), Chinese Academy of Sciences, Lanzhou 730000, P. R. China
| |
Collapse
|
9
|
Ramesh V, Gangadhar M, Nanubolu JB, Adiyala PR. Visible-Light-Induced Deaminative Alkylation/Cyclization of Alkyl Amines with N-Methacryloyl-2-phenylbenzoimidazoles in Continuous-Flow Organo-Photocatalysis. J Org Chem 2021; 86:12908-12921. [PMID: 34477379 DOI: 10.1021/acs.joc.1c01555] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Herein, we present a metal-free visible-light-induced eosin-y-catalyzed deaminative strategy for the sequential alkylation/cyclization of N-methacryloyl-2-phenylbenzoimidazoles with alkyl amine-derived Katritzky salts, which provides an efficient avenue for the construction of various benzo[4,5]imidazo[2,1-a]isoquinolin-6(5H)-one derivatives in moderate to excellent yields under mild reaction conditions. The key enabling feature of this novel reaction includes utilization of redox-active pyridinium salts from abundant and inexpensive primary amine feedstocks that were converted into alkyl radicals via C-N bond scission and subsequent alkylation/cyclization with N-methacryloyl-2-phenylbenzoimidazoles by the formation of two new C-C bonds. In addition, we implemented this protocol for a variety of amino acids, affording the products in moderate yields. Moreover, the novel, environmentally benign batch protocol was further carried out in a continuous-flow regime by utilizing a perfluoroalkoxy alkane tubing microreactor under optimized reaction conditions with a blue light-emitting diode light source, enabling excellent yields and a shorter reaction time (19 min) versus the long reaction time (16 h) of the batch reaction. The reaction displays excellent functional group tolerance, easy operation, scalability, mild reaction conditions, and broad synthetic utility.
Collapse
Affiliation(s)
- Vankudoth Ramesh
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Maram Gangadhar
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Jagadeesh Babu Nanubolu
- Centre for NMR and Structural Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Praveen Reddy Adiyala
- Department of Organic Synthesis and Process Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad 500007, Telangana, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
Liu T, Wan JP, Liu Y. Metal-free enaminone C-N bond cyanation for the stereoselective synthesis of ( E)- and ( Z)-β-cyano enones. Chem Commun (Camb) 2021; 57:9112-9115. [PMID: 34498638 DOI: 10.1039/d1cc03292e] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A highly practical method for C-CN bond formation by C-N bond cleavage on enaminones leading to the efficient synthesis of β-cyano enones is developed. The reactions take place efficiently to provide (E)-β-cyano enones with only a molecular iodine catalyst. In addition, the additional employment of oxalic acid enables the selective synthesis of (Z)-β-cyano enones.
Collapse
Affiliation(s)
- Ting Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Jie-Ping Wan
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| | - Yunyun Liu
- College of Chemistry and Chemical Engineering, Jiangxi Normal University, Nanchang 330022, P. R. China.
| |
Collapse
|
11
|
Zhang X, Qi D, Jiao C, Liu X, Zhang G. Nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts enabled by NN 2 pincer ligand. Nat Commun 2021; 12:4904. [PMID: 34385455 PMCID: PMC8361081 DOI: 10.1038/s41467-021-25222-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/27/2021] [Indexed: 11/09/2022] Open
Abstract
Alkynes are amongst the most valuable functional groups in organic chemistry and widely used in chemical biology, pharmacy, and materials science. However, the preparation of alkyl-substituted alkynes still remains elusive. Here, we show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts. Key to the success of this coupling is the development of an easily accessible and bench-stable amide-type pincer ligand. This ligand allows naturally abundant alkyl amines as alkylating agents in Sonogashira reactions, and produces diverse alkynes in excellent yields under mild conditions. Salient merits of this chemistry include broad substrate scope and functional group tolerance, gram-scale synthesis, one-pot transformation, versatile late-stage derivatizations as well as the use of inexpensive pre-catalyst and readily available substrates. The high efficiency and strong practicability bode well for the widespread applications of this strategy in constructing functional molecules, materials, and fine chemicals. Alkynes are amongst the most valuable functional groups in organic chemistry, however, the preparation of alkyl-substituted alkynes still remains elusive. Here the authors show a nickel-catalyzed deaminative Sonogashira coupling of alkylpyridinium salts.
Collapse
Affiliation(s)
- Xingjie Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| | - Di Qi
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Chenchen Jiao
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Xiaopan Liu
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China
| | - Guisheng Zhang
- Key Laboratory of Green Chemical Media and Reactions, Ministry of Education, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, Henan Key Laboratory of Organic Functional Molecules and Drug Innovation, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, China.
| |
Collapse
|
12
|
van Putten R, Filonenko GA, Krieger AM, Lutz M, Pidko EA. Manganese-Mediated C-C Bond Formation: Alkoxycarbonylation of Organoboranes. Organometallics 2021; 40:674-681. [PMID: 33776185 PMCID: PMC7988452 DOI: 10.1021/acs.organomet.0c00781] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Indexed: 12/04/2022]
Abstract
![]()
Alkoxycarbonylations
are important and versatile reactions that
result in the formation of a new C–C bond. Herein, we report
on a new and halide-free alkoxycarbonylation reaction that does not
require the application of an external carbon monoxide atmosphere.
Instead, manganese carbonyl complexes and organo(alkoxy)borate salts
react to form an ester product containing the target C–C bond.
The required organo(alkoxy)borate salts are conveniently generated
from the stoichiometric reaction of an organoborane and an alkoxide
salt and can be telescoped without purification. The protocol leads
to the formation of both aromatic and aliphatic esters and gives complete
control over the ester’s substitution (e.g., OMe, OtBu, OPh). A reaction mechanism was proposed on the
basis of stoichiometric reactivity studies, spectroscopy, and DFT
calculations. The new chemistry is particularly relevant for the field
of Mn(I) catalysis and clearly points to a potential pathway toward
irreversible catalyst deactivation.
Collapse
Affiliation(s)
- Robbert van Putten
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Georgy A Filonenko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Annika M Krieger
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Martin Lutz
- Crystal and Structural Chemistry, Bijvoet Centre for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH Utrecht, The Netherlands
| | - Evgeny A Pidko
- Inorganic Systems Engineering, Department of Chemical Engineering, Faculty of Applied Sciences, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| |
Collapse
|
13
|
Zhao F, Ai H, Wu X. Radical Carbonylation under Low
CO
Pressure: Synthesis of Esters from Activated Alkylamines at Transition
Metal‐Free
Conditions. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Fengqian Zhao
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock Albert‐Einstein‐Straße 29a 18059 Rostock Germany
| | - Han‐Jun Ai
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock Albert‐Einstein‐Straße 29a 18059 Rostock Germany
| | - Xiao‐Feng Wu
- Leibniz‐Institut für Katalyse e.V. an der Universität Rostock Albert‐Einstein‐Straße 29a 18059 Rostock Germany
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian Liaoning 116023 China
| |
Collapse
|
14
|
Zhu T, Shen J, Sun Y, Wu J. Deaminative metal-free reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts. Chem Commun (Camb) 2021; 57:915-918. [PMID: 33393531 DOI: 10.1039/d0cc07632e] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A convenient and efficient approach to (E)-alkylsulfonyl olefins via a metal/light-free three-component reaction of alkenylboronic acids, sodium metabisulfite and Katritzky salts is described. This alkylsulfonylation proceeds smoothly with a broad substrate scope, leading to diverse (E)-alkylsulfonyl olefins in moderate to good yields. During the process, excellent functional group tolerance is observed and sodium metabisulfite is used as the source of sulfur dioxide. Mechanistic studies show that the alkyl radical generated in situ from Katritzky salt via a single electron transfer with alkenylboronic acid or DIPEA is the key step for providing an alkyl radical intermediate, which undergoes further alkylsulfonylation with sulfur dioxide.
Collapse
Affiliation(s)
- Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jia Shen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Yuyuan Sun
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China and School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
15
|
|
16
|
Berger KJ, Levin MD. Reframing primary alkyl amines as aliphatic building blocks. Org Biomol Chem 2021; 19:11-36. [PMID: 33078799 DOI: 10.1039/d0ob01807d] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
While primary aliphatic amines are ubiquitous in natural products, they are traditionally considered inert to substitution chemistry. This review highlights historical and recent advances in the field of aliphatic deamination chemistry which demonstrate these moieties can be harnessed as valuable C(sp3) synthons. Cross-coupling and photocatalyzed transformations proceeding through polar and radical mechanisms are compared with oxidative deamination and other transition metal catalyzed reactions.
Collapse
Affiliation(s)
- Kathleen J Berger
- Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, USA.
| | | |
Collapse
|
17
|
Hu S, Feng H, Xi H, Meng Y, Li M, Huang L, Huang J. Copper-catalyzed deaminative alkynylation of secondary amines with alkynes: selectivity switch in the synthesis of diverse propargylamines. Org Chem Front 2021. [DOI: 10.1039/d1qo01240a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The copper-catalyzed selective deamination and alkynylation of the unsymmetrical secondary amines with terminal alkynes was reported with a broad substrate scope and excellent functional compatibility.
Collapse
Affiliation(s)
- Shengyun Hu
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Huangdi Feng
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
- Shanghai Key Laboratory of Chemical Biology, East China University of Science and Technology, Shanghai 200237, China
| | - Hui Xi
- Key Laboratory of Tobacco Flavor Basic Research of CNTC, Zhengzhou Tobacco Research Institute of CNTC, Zhengzhou 450001, China
| | - Yuchen Meng
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Ming Li
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| | - Liliang Huang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Junhai Huang
- State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, China State Institute of Pharmaceutical Industry, Shanghai 201203, China
| |
Collapse
|
18
|
Zhao F, Wu XF. Deaminative carbonylative thioesterification of activated alkylamines with thiophenols under transition-metal-free conditions. Org Chem Front 2021. [DOI: 10.1039/d0qo01479f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
A transition-metal-free radical carbonylation of activated alkylamines with thiophenols has been successfully developed. Various thioesters were selectively produced with moderate to good yields.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
| |
Collapse
|
19
|
Garcı́a-Cárceles J, Bahou KA, Bower JF. Recent Methodologies That Exploit Oxidative Addition of C–N Bonds to Transition Metals. ACS Catal 2020. [DOI: 10.1021/acscatal.0c03341] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | - Karim A. Bahou
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| | - John F. Bower
- School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom
- Department of Chemistry, University of Liverpool, Crown Street, Liverpool L69 7ZD, United Kingdom
| |
Collapse
|
20
|
Affiliation(s)
- Zhiping Yin
- School of Pharmacy, Jiangsu University, Zhenjiang 212013, P. R. China
| | - Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
- Department of Chemistry, Zhejiang Sci-Tech University, Hangzhou 310018, People’s Republic of China
| |
Collapse
|
21
|
Ma Y, Pang Y, Chabbra S, Reijerse EJ, Schnegg A, Niski J, Leutzsch M, Cornella J. Radical C-N Borylation of Aromatic Amines Enabled by a Pyrylium Reagent. Chemistry 2020; 26:3738-3743. [PMID: 31994764 PMCID: PMC7155052 DOI: 10.1002/chem.202000412] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Indexed: 11/25/2022]
Abstract
Herein, we report a radical borylation of aromatic amines through a homolytic C(sp2 )-N bond cleavage. This method capitalizes on a simple and mild activation via a pyrylium reagent (Sc Pyry-OTf) thus priming the amino group for reactivity. The combination of terpyridine and a diboron reagent triggers a radical reaction which cleaves the C(sp2 )-N bond and forges a new C(sp2 )-B bond. The unique non-planar structure of the pyridinium intermediate, provides the necessary driving force for the aryl radical formation. The method permits borylation of a wide variety of aromatic amines indistinctively of the electronic environment.
Collapse
Affiliation(s)
- Yuanhong Ma
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Yue Pang
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Sonia Chabbra
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Edward J. Reijerse
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Alexander Schnegg
- Max-Planck-Institut für Chemische EnergiekonversionStiftstrasse 34–36Mülheim an der Ruhr45470Germany
| | - Jan Niski
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Markus Leutzsch
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| | - Josep Cornella
- Max-Planck-Institut für KohlenforschungKaiser-Wilhelm-Platz 1Mülheim an der Ruhr45470Germany
| |
Collapse
|
22
|
Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z. Visible-Light-Promoted C(sp 3 )-H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural α-Amino Acids and Late-Stage Modification of Peptides. Angew Chem Int Ed Engl 2020; 59:7461-7466. [PMID: 32078758 DOI: 10.1002/anie.201914555] [Citation(s) in RCA: 114] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Revised: 02/16/2020] [Indexed: 02/03/2023]
Abstract
Disclosed herein is the visible-light-promoted deaminative C(sp3 )-H alkylation of glycine and peptides using Katritzky salts as electrophiles. Simple reaction conditions and excellent functional-group tolerance provide a general strategy for the efficient preparation of unnatural α-amino acids and precise modification of peptides with unnatural α-amino-acid residues. Mechanistic studies suggest that visible-light-promoted intermolecular charge transfer within a glycine-Katritzky salt electron donor-acceptor (EDA) complex induces a single-electron transfer process without the assistance of photocatalyst.
Collapse
Affiliation(s)
- Chao Wang
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Rupeng Qi
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Hongxiang Xue
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yuxuan Shen
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Min Chang
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, 222 South Tianshui Road, Lanzhou, 730000, China
| | - Yaqiong Chen
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Rui Wang
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| | - Zhaoqing Xu
- Institute of Drug Design & Synthesis, Institute of Pharmacology, Key Laboratory of Preclinical Study for New Drugs of Gansu Province, School of Basic Medical Science, Lanzhou University, 199 West Donggang Road, Lanzhou, 730000, China
| |
Collapse
|
23
|
Xu JX, Zhao F, Yuan Y, Wu XF. Ruthenium-Catalyzed Carbonylative Coupling of Anilines with Organoboranes by the Cleavage of Neutral Aryl C–N Bond. Org Lett 2020; 22:2756-2760. [DOI: 10.1021/acs.orglett.0c00736] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jian-Xing Xu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Yang Yuan
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock, Albert-Einstein-Straße 29a, 18059 Rostock, Germany
| |
Collapse
|
24
|
Wang C, Qi R, Xue H, Shen Y, Chang M, Chen Y, Wang R, Xu Z. Visible‐Light‐Promoted C(sp
3
)−H Alkylation by Intermolecular Charge Transfer: Preparation of Unnatural α‐Amino Acids and Late‐Stage Modification of Peptides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.201914555] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Chao Wang
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Rupeng Qi
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Hongxiang Xue
- Institute of Biochemistry and Molecular BiologySchool of Life SciencesLanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Yuxuan Shen
- Institute of Biochemistry and Molecular BiologySchool of Life SciencesLanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Min Chang
- Institute of Biochemistry and Molecular BiologySchool of Life SciencesLanzhou University 222 South Tianshui Road Lanzhou 730000 China
| | - Yaqiong Chen
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Rui Wang
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| | - Zhaoqing Xu
- Institute of Drug Design & SynthesisInstitute of PharmacologyKey Laboratory of Preclinical Study for New Drugs of Gansu ProvinceSchool of Basic Medical ScienceLanzhou University 199 West Donggang Road Lanzhou 730000 China
| |
Collapse
|
25
|
Wang S, Li X, Zang J, Liu M, Zhang S, Jiang G, Ji F. Palladium-Catalyzed Multistep Tandem Carbonylation/N-Dealkylation/Carbonylation Reaction: Access to Isatoic Anhydrides. J Org Chem 2020; 85:2672-2679. [PMID: 31887040 DOI: 10.1021/acs.joc.9b02771] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
A novel and efficient synthesis of isatoic anhydride derivatives was developed via palladium-catalyzed multistep tandem carbonylation/N-dealkylation/carbonylation reaction with alkyl as the leaving group and tertiary anilines as nitrogen nucleophiles. This approach features good functional group compatibility and readily available starting materials. Furthermore, it provided a convenient approach for the synthesis of biologically and medicinally useful evodiamine.
Collapse
Affiliation(s)
- Shoucai Wang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Xuan Li
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Jiawang Zang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Meichen Liu
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Siyu Zhang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Guangbin Jiang
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| | - Fanghua Ji
- Guangxi Key Laboratory of Electrochemical and Magnetochemical Function Materials, College of Chemistry and Bioengineering , Guilin University of Technology , 12 Jiangan Road , Guilin 541004 , China
| |
Collapse
|
26
|
Yu CG, Matsuo Y. Nickel-Catalyzed Deaminative Acylation of Activated Aliphatic Amines with Aromatic Amides via C-N Bond Activation. Org Lett 2020; 22:950-955. [PMID: 31961696 DOI: 10.1021/acs.orglett.9b04497] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Deaminative functionalization of aliphatic primary amines has great synthetic utility. Herein, we describe a Ni-catalyzed reductive deaminative cross-electrophile coupling reaction between Katritzky salts and aromatic amides. This work provides examples of the synthesis of various ketones from alkylpyridinium salts, including both primary and secondary alkylamines. Given its mild reaction conditions and high functional group tolerance, this cross-coupling strategy is expected to be useful for late-stage functionalization of complex compounds.
Collapse
Affiliation(s)
- Chu-Guo Yu
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, School of Chemistry and Materials Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China
| | - Yutaka Matsuo
- Hefei National Laboratory for Physical Sciences at Microscale, and Department of Chemistry, School of Chemistry and Materials Science , University of Science and Technology of China , 96 Jinzhai Road , Hefei , Anhui 230026 , China.,Institute of Materials Innovation, Institutes of Innovation for Future Society , Nagoya University , Furo-cho, Chikusa-ku , Nagoya 464-8603 , Japan
| |
Collapse
|
27
|
Zhao F, Li CL, Wu XF. Deaminative carbonylative coupling of alkylamines with styrenes under transition-metal-free conditions. Chem Commun (Camb) 2020; 56:9182-9185. [DOI: 10.1039/d0cc04062b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Transition-metal-free deaminative carbonylation through C–N bonds activation via Katritzky salts has been successful developed. Various α,β-unsaturated ketones were obtained in moderate to good yields with alkylamines and styrenes as the substrates.
Collapse
Affiliation(s)
- Fengqian Zhao
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Chong-Liang Li
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
- Department of Chemistry
- Zhejiang Sci-Tech University
| | - Xiao-Feng Wu
- Leibniz-Institut für Katalyse e. V. an der Universität Rostock
- 18059 Rostock
- Germany
- Department of Chemistry
- Zhejiang Sci-Tech University
| |
Collapse
|
28
|
Xu JX, Zhao F, Wu XF. NHC ligand-powered palladium-catalyzed carbonylative C–S bond cleavage of vinyl sulfides: efficient access to tert-butyl arylacrylates. Org Biomol Chem 2020; 18:9796-9799. [DOI: 10.1039/d0ob02043e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A palladium-catalyzed carbonylative C–S bond activation of divinyl sulfides to synthesize various tert-(E)-butyl arylacrylates under 1 bar of CO has been developed. A series of tert-(E)-butyl acrylates were obtained in moderate to good yields.
Collapse
Affiliation(s)
- Jian-Xing Xu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- China
| | - Fengqian Zhao
- Leibniz-Institut für Katalyse e.V. an der Universität Rostock
- 18059 Rostock
- Germany
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy
- Dalian Institute of Chemical Physics
- Chinese Academy of Science
- Dalian
- China
| |
Collapse
|
29
|
Yang M, Cao T, Xu T, Liao S. Visible-Light-Induced Deaminative Thioesterification of Amino Acid Derived Katritzky Salts via Electron Donor-Acceptor Complex Formation. Org Lett 2019; 21:8673-8678. [PMID: 31638821 DOI: 10.1021/acs.orglett.9b03284] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A visible-light-mediated deaminative thioesterification of amino acid derived Katritzky salts with thiobenzoic acid has been developed, which provides a novel synthetic method for the synthesis of α-mercapto acid derivatives under mild conditions. This photoredox catalyst-free generation of alkyl radicals via C-N bond cleavage is enabled by the formation of an electron-donor-acceptor (EDA) complex between the Katritzky salt and thiobenzoic acid anion, which represents a new entry for EDA complex chemistry.
Collapse
Affiliation(s)
- Mingcheng Yang
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry , Fuzhou University , 2 Xueyuan Road , Fuzhou 350116 , P.R. China
| | - Tianpeng Cao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry , Fuzhou University , 2 Xueyuan Road , Fuzhou 350116 , P.R. China
| | - Tianxiao Xu
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry , Fuzhou University , 2 Xueyuan Road , Fuzhou 350116 , P.R. China
| | - Saihu Liao
- Key Laboratory of Molecule Synthesis and Function Discovery, College of Chemistry , Fuzhou University , 2 Xueyuan Road , Fuzhou 350116 , P.R. China.,Beijing National Laboratory for Molecular Sciences (BNLMS) , Fuzhou University , Fuzhou 350116 , P.R. China
| |
Collapse
|