1
|
Kim J, Rodriguez KX, Eckert KE, Oliver AG, Ashfeld BL. A Rh II-Catalyzed [4 + 3]-Cycloaddition via the Stereoselective Cyclopropanation of Vinyl Allenes En Route to Oxepino[ b]indoles and Subsequent Elaboration to Spirooxindole Frameworks. Org Lett 2025; 27:5003-5008. [PMID: 40311032 DOI: 10.1021/acs.orglett.5c01329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2025]
Abstract
Oxepino[b]indoles were obtained in good to excellent yields employing a [4 + 3]-cycloaddition initiated by a stereo- and regioselective, RhII-catalyzed cyclopropanation between a vinyl allene and diazooxindole to afford an intermediate cyclopropyl allene that engaged the oxindole carbonyl in a spontaneous hetero-[3,3]-rearrangement. A survey of functional group tolerance revealed a diverse array of substrates amenable to oxepino[b]indole formation. In addition to the intriguing architecture of the cycloadducts, exposure to either Brønsted acid or base enables the assembly of functionalized spirroxindoles via the unusual conversion of a 5-7 fused ring system to a 5-5 spirocycle.
Collapse
Affiliation(s)
- Jiyoon Kim
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kevin X Rodriguez
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Kaitlyn E Eckert
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Allen G Oliver
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Brandon L Ashfeld
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| |
Collapse
|
2
|
Ye J, Qi L, Deng S, Wang D, Cong H, Qi X, Zhou Q, Cheng HG. Triple cross-electrophile coupling enabled by palladium/norbornene cooperative catalysis. SCIENCE ADVANCES 2025; 11:eadu4573. [PMID: 40305612 PMCID: PMC12042901 DOI: 10.1126/sciadv.adu4573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/26/2025] [Indexed: 05/02/2025]
Abstract
Cross-electrophile coupling (XEC) is a powerful strategy for forming C-C bonds in synthetic organic chemistry. While XEC reactions between two electrophiles are well established, those involving three distinct electrophiles have remained underdeveloped. Herein, we report an intriguing formal triple XEC enabled by palladium/norbornene cooperative catalysis. Readily available aryl iodides, alkyl/aryl bromides, and propargyl esters are used as the distinct electrophilic coupling partners, leading to the synthesis of a diverse array of tetrasubstituted allenes. In particular, the challenging asymmetric formal triple XEC has also been realized through palladium/chiral norbornene cooperative catalysis, which uses the sterically hindered 2,6-disubstituted aryl bromides as the arylating reagents to prepare tetrasubstituted allenes bearing an axially chiral biaryl unit. Density functional theory calculations reveal that the selection of propargyl esters as electrophilic terminating reagents is key to the success of this reaction because it enables a thermodynamically favored pathway for reaction termination involving alkyne insertion followed by β-O elimination.
Collapse
Affiliation(s)
| | | | - Shuang Deng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds and Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072 Wuhan, China
| | - Dandan Wang
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds and Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072 Wuhan, China
| | - Hengjiang Cong
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds and Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072 Wuhan, China
| | - Xiaotian Qi
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds and Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072 Wuhan, China
| | - Qianghui Zhou
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds and Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072 Wuhan, China
| | - Hong-Gang Cheng
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Engineering Research Center of Organosilicon Compounds and Materials (Ministry of Education), Hubei Key Lab on Organic and Polymeric OptoElectronic Materials, College of Chemistry and Molecular Sciences, The Institute for Advanced Studies, and TaiKang Center for Life and Medical Sciences, Wuhan University, 430072 Wuhan, China
| |
Collapse
|
3
|
Ivanov KL, Budynina EM. Cyclohepta[ b]indole Core Construction via the Michael Addition/Friedel-Crafts Condensation Sequence. J Org Chem 2025; 90:4225-4231. [PMID: 40091231 DOI: 10.1021/acs.joc.4c03006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2025]
Abstract
An approach to cyclohepta[b]indoles via the formal (4 + 3) annulation of readily synthesized 2-indolyl-derived 1,3-dicarbonyl compounds to acrolein and enones was developed. The process is initiated by catalytic Michael addition, wherein the adduct was generated in situ. The subsequent addition of a Bro̷nsted acid catalyst triggers a cascade process that includes intramolecular Friedel-Crafts hydroxylalkylation followed by dehydration. The cascade reaction is relatively undemanding since even degrading chloroform is able to initiate it. The obtained tetrahydrocyclohepta[b]indoles were prone toward easy dimerization, underscoring the high reactivity of the double bond in the seven-membered ring.
Collapse
Affiliation(s)
- Konstantin L Ivanov
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| | - Ekaterina M Budynina
- Department of Chemistry, Lomonosov Moscow State University, Leninskie gory 1-3, Moscow 119991, Russia
| |
Collapse
|
4
|
Surgenor RR, Lee H. Synthesis of (Hetero)biaryls via Nickel Catalyzed Reductive Cross-Electrophile Coupling Between (Hetero)aryl Iodides and Bromides. Chemistry 2024; 30:e202401552. [PMID: 38723102 DOI: 10.1002/chem.202401552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Indexed: 07/19/2024]
Abstract
(Hetero)biaryls are fundamental building blocks in the pharmaceutical industry and rapid access to these scaffolds is imperative for the success of numerous medicinal chemistry campaigns. Herein, a highly general, mild, and chemoselective reductive cross-electrophile coupling between (hetero)aryl iodides and heteroaryl bromides is reported. By employing more reactive (hetero)aryl halides, a broad range of successful substrates (45 examples) were identified. The reaction was also found to be chemoselective for C(sp2)-C(sp2) bond formation between (hetero)aryl iodides and bromides over (hetero)aryl chlorides, which were generally inert under the described reaction conditions. The efficiency of the procedure is also further demonstrated in parallel synthesis library format, on gram scale, as well as in the formal synthesis of Ruxolitinib, a potent JAK inhibitor. As such, we anticipate this method will find widespread utility in the assembly of (hetero)biaryls for medicinal chemistry efforts.
Collapse
Affiliation(s)
| | - Hyelee Lee
- H3 Biomedicine Inc., 300 Technology Square, Cambridge, MA 02139, USA
| |
Collapse
|
5
|
Zhao Y, Voloshkin VA, Martynova EA, Maity B, Cavallo L, Nolan SP. Synthesis of cyclohepta[ b]indoles via gold mediated energy transfer photocatalysis. Chem Commun (Camb) 2024; 60:3174-3177. [PMID: 38411538 DOI: 10.1039/d4cc00379a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
Photocatalysis involving energy transfer (EnT) has become a valuable technique for building intricate organic frameworks mostly through [2+2]-cycloaddition reactions. Herein, we report a synthetic method leading to functionalized cyclohepta[b]indoles, an important structural motif in natural products and pharmaceuticals, using gold-mediated energy transfer photocatalysis. The scope of this operationally simple and atom-economical strategy is presented. Density functional theory studies were employed in order to gain insights into the mechanism of formation of the cyclohepta[b]indole core.
Collapse
Affiliation(s)
- Yuan Zhao
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Vladislav A Voloshkin
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Ekaterina A Martynova
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| | - Bholanath Maity
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Luigi Cavallo
- KAUST Catalysis Center (KCC) King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia.
| | - Steven P Nolan
- Department of Chemistry and Centre for Sustainable Chemistry Ghent University, Krijgslaan 281, S-3, 9000 Ghent, Belgium.
| |
Collapse
|
6
|
Saint-Jacques K, Ladd CL, Charette AB. Access to hexahydroazepinone heterocycles via palladium-catalysed C(sp 3)-H alkenylation/ring-opening of cyclopropanes. Chem Commun (Camb) 2022; 58:7550-7553. [PMID: 35707937 DOI: 10.1039/d2cc01917e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
In this communication, we describe the synthesis of novel hexahydroazepinone derivatives starting from two simple building blocks in presence of a readily available palladium catalyst. The reaction proceeds through a selective C(sp3)-H alkenylation/ring-opening process to obtain the seven-membered ring products in good to excellent yields on a wide variety of substrates under batch, microwave, and continuous flow conditions.
Collapse
Affiliation(s)
- Kévin Saint-Jacques
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| | - Carolyn L Ladd
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| | - André B Charette
- Centre in Green Chemistry and Catalysis, Centre for Continuous Flow Synthesis, Department of Chemistry, Université de Montréal, 1375, av. Thérèse Lavoie-Roux, Montréal, Québec H2V 0B3, Canada.
| |
Collapse
|
7
|
Babu SA, Aggarwal Y, Patel P, Tomar R. Diastereoselective palladium-catalyzed functionalization of prochiral C(sp 3)-H bonds of aliphatic and alicyclic compounds. Chem Commun (Camb) 2022; 58:2612-2633. [PMID: 35113087 DOI: 10.1039/d1cc05649b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
We highlight the reported developments of the palladium-catalyzed C-H activation and functionalization of the inactive/unreactive prochiral C(sp3)-H bonds of aliphatic and alicyclic compounds. There exist numerous classical methods for generating contiguous stereogenic centers in a compound with a high degree of stereocontrol. Along similar lines, the Pd(II)-catalyzed, directing group-aided functionalization of inactive prochiral/diastereotopic C(sp3)-H bonds have been exploited to accomplish the stereoselective construction of stereo-arrays in organic compounds. We present a concise discussion on how specific strategies consisting of Pd(II)-catalyzed, directing group-aided C(sp3)-H functionalization have been utilized to generate two or more stereogenic centers in aliphatic and alicyclic compounds.
Collapse
Affiliation(s)
- Srinivasarao Arulananda Babu
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Yashika Aggarwal
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Pooja Patel
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| | - Radha Tomar
- Department of Chemical Sciences, Indian Institute of Science Education and Research, Mohali, Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O., Punjab, 140306, India.
| |
Collapse
|
8
|
Nájera C, Foubelo F, Sansano JM, Yus M. Enantioselective desymmetrization reactions in asymmetric catalysis. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132629] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
9
|
Xiao JA, Peng H, Liang JS, Meng RF, Su W, Xiao Q, Yang H. Gold/scandium bimetallic relay catalysis of formal [5+2]- and [4+2]-annulations: access to tetracyclic indole scaffolds. Chem Commun (Camb) 2021; 57:13369-13372. [PMID: 34821245 DOI: 10.1039/d1cc05658a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Regiodivergent formal [5+2]- and [4+2]-annulation reactions of indole derivatives with 2-(2-alkynyl)aryl cyclopropane-1,1-diesters (ACPs) have been developed. A series of tetracyclic indole derivatives were delivered in a 77% average yield with excellent regioselectivities enabled by Au(I)/Sc(III) bimetallic relay catalysis. A gram-scale reaction and further transformation of the resulting tetracyclic indoles demonstrated the practical utility of this protocol. Moreover, the photophysical properties of the obtained multicyclic compounds were also investigated.
Collapse
Affiliation(s)
- Jun-An Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Hai Peng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Jin-Shao Liang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Ru-Fang Meng
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Wei Su
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Qi Xiao
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, Nanning Normal University, Nanning 530001, P. R. China.
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China.
| |
Collapse
|
10
|
Fitzgerald LS, O'Duill ML. A Guide to Directing Group Removal: 8-Aminoquinoline. Chemistry 2021; 27:8411-8436. [PMID: 33559933 DOI: 10.1002/chem.202100093] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 02/08/2021] [Indexed: 12/23/2022]
Abstract
The use of directing groups allows high levels of selectivity to be achieved in transition metal-catalyzed transformations. Efficient removal of these auxiliaries after successful functionalization, however, can be very challenging. This review provides a critical overview of strategies used for removal of Daugulis' 8-aminoquinoline (2005-2020), one of the most widely used N,N-bidentate directing groups. The limitations of these strategies are discussed and alternative approaches are suggested for challenging substrates. Our aim is to provide a comprehensive end-users' guide for chemists in academia and industry who want to harness the synthetic power of directing groups-and be able to remove them from their final products.
Collapse
Affiliation(s)
- Liam S Fitzgerald
- School of Chemistry, National University of Ireland Galway, University Road, Galway, H91 TK33, Ireland
| | - Miriam L O'Duill
- School of Chemistry, University of Nottingham, University Park, Nottingham, NG7 2RD, UK
| |
Collapse
|
11
|
Natho P, Rouse AB, Greenfield JL, Allen LA, White AJ, Yang Z, Parsons PJ. Regioselective synthesis of 1- and 4-tetralones from heteroaryl-3-cyclobutanols. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131636] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
12
|
Tymann DC, Benedix L, Iovkova L, Pallach R, Henke S, Tymann D, Hiersemann M. Photochemical Approach to the Cyclohepta[b]indole Scaffold by Annulative Two-Carbon Ring-Expansion. Chemistry 2020; 26:11974-11978. [PMID: 32463529 PMCID: PMC7540574 DOI: 10.1002/chem.202002581] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Indexed: 12/12/2022]
Abstract
We report on the implementation of the concept of a photochemically elicited two-carbon homologation of a π-donor-π-acceptor substituted chromophore by triple-bond insertion. Implementing a phenyl connector between the slide-in module and the chromophore enabled the synthesis of cylohepta[b]indole-type building blocks by a metal-free annulative one-pot two-carbon ring expansion of the five-membered chromophore. Post-irradiative structural elaboration provided founding members of the indolo[2,3-d]tropone family of compounds. Control experiments in combination with computational chemistry on this multibond reorganization process founded the basis for a mechanistic hypothesis.
Collapse
Affiliation(s)
| | - Lars Benedix
- Fakultät für Chemie und Chemische BiologieTU Dortmund44227DortmundGermany
| | - Lyuba Iovkova
- Fakultät für Chemie und Chemische BiologieTU Dortmund44227DortmundGermany
| | - Roman Pallach
- Fakultät für Chemie und Chemische BiologieTU Dortmund44227DortmundGermany
| | - Sebastian Henke
- Fakultät für Chemie und Chemische BiologieTU Dortmund44227DortmundGermany
| | - David Tymann
- Fakultät für Chemie und Chemische BiologieTU Dortmund44227DortmundGermany
| | - Martin Hiersemann
- Fakultät für Chemie und Chemische BiologieTU Dortmund44227DortmundGermany
| |
Collapse
|