1
|
Zhu S H, Wu Y, Mao J, Xu J, Walsh PJ, Shi H. C-H functionalization through benzylic deprotonation with π-coordination or cation-π-interactions. Chem Soc Rev 2025; 54:2520-2542. [PMID: 39911075 DOI: 10.1039/d4cs00466c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2025]
Abstract
Benzylic C-H functionalization is a valuable tool to make complex aromatic molecules from simple, readily available alkylbenzenes. While methods that involve benzylic radicals or cations generated by hydrogen atom transfer or oxidation have been well demonstrated, they often require oxidative conditions. In contrast, deprotonation methods offer a complementary approach to transform benzylic C-H bonds through a benzylic carbanion generated by deprotonation. Electrophilic transition metal complexes acidify benzylic protons upon π-coordination to the phenyl ring of substrates, facilitating deprotonation by stabilizing the corresponding benzylic carbanion. Cation-complexes with group(I) metals also acidify benzylic C-H bonds. These approaches enable a significant expansion of the scope and diversity of alkylarenes with various electrophilic reagents. In this review, we discuss the development of benzylic functionalization through deprotonation of η6-arene complexes of transition-metals and cation-π interactions with group(I) metals, as well as progress made in catalysis through reversible arene-metal interactions.
Collapse
Affiliation(s)
- Hui Zhu S
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Yu Wu
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jingkai Xu
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, USA.
| | - Hang Shi
- Department of Chemistry, Zhejiang University, Hangzhou, Zhejiang Province 310058, China.
| |
Collapse
|
2
|
Anderson DE, Truong AHN, Hevia E. Dual Basicity and Nucleophilicity of Organosodium Reagents in Benzylic C-H Additions of Toluenes to Diarylethenes and Ketones. Chemistry 2024; 30:e202400492. [PMID: 38651778 DOI: 10.1002/chem.202400492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 04/25/2024]
Abstract
Profiting from the dual high basicity and nucleophilicity of organosodium complexes, here we report the stepwise lateral metalation of a wide range of alkyl arenes (MeAr), mediated by hydrocarbon-soluble NaCH2SiMe3 ⋅ PMDETA (PMDETA=N,N,N',N'',N''-pentamethyldiethylenetriamine), followed by nucleophilic addition to diarylethenes of the newly generated NaCH2Ar ⋅ PMDETA complexes. This method grants access to a range of functionalised hydrocarbons in excellent yields and can be upgraded to catalytic regimes when using trans-stilbene, a 10 mol% of the alkyl sodium base and toluene as a solvent. Extending this approach to aromatic ketones leads to the formation of stilbenes under mild reaction conditions, resulting from the deprotonative coupling of toluenes with ketones. Combining spectroscopic studies with the trapping and characterisation of key reaction intermediates, mechanistic insights have been gained, advancing the understanding of coordination effects in organosodium chemistry, and shedding light on their special reactivity profiles.
Collapse
Affiliation(s)
- David E Anderson
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Alex H N Truong
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Departement für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
3
|
Weindl C, Hintermann L. Synthesis of Indolines via Base-Mediated C-H Activation and Defluorinative C-N Coupling, with no Need for Transition-Metals. Chemistry 2024; 30:e202401034. [PMID: 38693605 DOI: 10.1002/chem.202401034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/20/2024] [Accepted: 04/28/2024] [Indexed: 05/03/2024]
Abstract
Syntheses of (partially) aromatic nitrogen heterocycles increasingly rely on transition-metal catalyzed C-C- and C-N-cross-coupling reactions. Here we describe a different approach to the synthesis of indolines by a domino C(sp3)-H activation, 1,2-addition, and defluorinative SNAr-cyclization sequence to provide the target 1,2-diarylindolines (1,2-diaryl-2,3-dihydroindoles) from ortho-fluorinated methyl-arenes and N-aryl imines (benzylidene anilines) in a cyclocondensation that is mediated by potassium hexamethyldisilazide (KHMDS) as base exclusively. This transition-metal-free process via C-H and C-F bond activation provides a one-step entry into a wide array of indoline scaffolds (43 examples, up to 96 % yield). This privileged substructure is common in natural products and pharmaceuticals alike, and cannot be accessed by traditional condensation reactions.
Collapse
Affiliation(s)
- Christian Weindl
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| | - Lukas Hintermann
- School of Natural Science, Department Chemie, Technische Universität München, Lichtenbergstr. 4, Garching bei München, 85748, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, Garching bei München, 85748, Germany
| |
Collapse
|
4
|
Sreedharan R, Gandhi T. Masters of Mediation: MN(SiMe 3) 2 in Functionalization of C(sp 3)-H Latent Nucleophiles. Chemistry 2024; 30:e202400435. [PMID: 38497321 DOI: 10.1002/chem.202400435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/16/2024] [Accepted: 03/18/2024] [Indexed: 03/19/2024]
Abstract
Organoalkali compounds have undergone a far-reaching transformation being a coupling partner to a mediator in unusual organic conversions which finds its spot in the field of sustainable synthesis. Transition-metal catalysis has always been the priority in C(sp3)-H bond functionalization, however alternatively, in recent times this has been seriously challenged by earth-abundant alkali metals and their complexes arriving at new sustainable organometallic reagents. In this line, the importance of MN(SiMe3)2 (M=Li, Na, K & Cs) reagent revived in C(sp3)-H bond functionalization over recent years in organic synthesis is showcased in this minireview. MN(SiMe3)2 reagent with higher reactivity, enhanced stability, and bespoke cation-π interaction have shown eye-opening mediated processes such as C(sp3)-C(sp3) cross-coupling, radical-radical cross-coupling, aminobenzylation, annulation, aroylation, and other transformations to utilize readily available petrochemical feedstocks. This article also emphasizes the unusual reactivity of MN(SiMe3)2 reagent in unreactive and robust C-X (X=O, N, F, C) bond cleavage reactions that occurred alongside the C(sp3)-H bond functionalization. Overall, this review encourages the community to exploit the untapped potential of MN(SiMe3)2 reagent and also inspires them to take up this subject to even greater heights.
Collapse
Affiliation(s)
- Ramdas Sreedharan
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore, 632014, Tamil Nadu, India
| |
Collapse
|
5
|
Zheng J, Hua R, Wang YE, Lin T, Ou M, Wu Y, Shi EH, He J, Xiong D, Mao J. Synthesis of Homoallylamines Enabled by Cobalt or Palladium Catalyzed Allylic Substitution of Azaarylmethylamines. Org Lett 2024; 26:2982-2986. [PMID: 38602341 DOI: 10.1021/acs.orglett.4c00551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
Pd(OAc)2/Nixantphos or CoI2/Nixantphos catalyzed allylic substitutions with weakly acidic C(sp)3-H bonds of azaarylmethylamines are described. This method facilitates access to various kinds of heteroaryl rings containing homoallylamines (39 examples, 30-98% yields) with excellent functional group tolerance and diastereoselectivity. Compared with the Pd/Nixantphos complex, the Co/Nixantphos catalysis could obtain the cyclic products with good to excellent diastereoselectivities. Importantly, the CoI2/(R,R)-Me-Duphos catalyzed reactions exhibit moderate enantioselectivity. Additionally, the scalability of this transformation is successfully demonstrated.
Collapse
Affiliation(s)
- Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Rui Hua
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Tingzhi Lin
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Mingjie Ou
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yu Wu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - En-Hao Shi
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jing He
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
6
|
Zhu Q, Long J, Song X, Wang K, Zeng J, Fan Y. KO tBu/DMF-Mediated Hydroalkylation of Alkenes via Benzylic C-H Bond Activation. J Org Chem 2024; 89:3726-3731. [PMID: 38417109 DOI: 10.1021/acs.joc.3c02238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
Catalytic hydroalkylation reaction of alkenes with benzylic hydrocarbons involving t-BuOK/DMF-mediated benzylic C-H bond activation is demonstrated. This direct and operational simple protocol affords a rapid and reliable access to a wide scope of benzylic compounds in good-to-excellent yields. The benzylic C-H's of either activated diarylmethanes (pKa ∼ 32.2) and benzyl thioethers (pKa ∼ 30.8) or inert alkylbenzenes could all act as useful synthetic platforms to be conveniently alkylated under mild reaction conditions.
Collapse
Affiliation(s)
- Qiming Zhu
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jiajia Long
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Xianchen Song
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Kaifang Wang
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Jingkai Zeng
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| | - Yuyuan Fan
- Institution Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530100, P. R. China
| |
Collapse
|
7
|
Ma R, Wang YE, Xiong D, Mao J. A Tandem Madelung Indole Synthesis Mediated by a LiN(SiMe 3) 2/CsF System. Org Lett 2023; 25:7557-7561. [PMID: 37818792 DOI: 10.1021/acs.orglett.3c02927] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
A tandem Madelung indole synthesis by the reaction of methyl benzoate and N-methyl-o-toluidine has been discovered. The combination of LiN(SiMe3)2 with CsF is the key factor, which secures the high efficiency of such tandem transformations. Simply combining methyl benzoate, N-methyl-o-toluidine LiN(SiMe3)2, and CsF generated a diverse array of N-methyl-2-phenylindoles (31 examples, 50-90% yields). Furthermore, the scalability and the poststructural modifications of this indole synthesis were demonstrated.
Collapse
Affiliation(s)
- Ruyuan Ma
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), State Key Laboratory of Materials Oriented Chemical Engineering (MCE), School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
8
|
Dong J, Wu S, Geng F, Yan Y, Liu L, Zhou Y. Selective Oxidative Methyl C-H Functionalization of Butylated Hydroxytoluene toward Arylimines/ N-Heterocycles. J Org Chem 2023; 88:14649-14658. [PMID: 37816698 DOI: 10.1021/acs.joc.3c01643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/12/2023]
Abstract
A metal-free and selective oxidative methyl C-H functionalization of BHT with aniline compounds has been developed. This innovative method enables the facile and efficient synthesis of a diverse array of BHT-functionalized N-containing skeletons, including arylamines, benzoxazoles, benzothiazoles, benzimidazoles, quinazolines, and quinazolinones, all of which are challenging to access. The control experiment involving TEMP18O suggests that the radical adduct of TEMPO with the benzyl radical of BHT may serve as an intermediate.
Collapse
Affiliation(s)
- Jianyu Dong
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
| | - Shaofeng Wu
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- State Key Laboratory of Chemistry and Utilization of Carbon Based Energy Resources, Key Laboratory of Oil and Gas Fine Chemicals, Ministry of Education & Xinjiang Uygur Autonomous Region, Urumqi Key Laboratory of Green Catalysis and Synthesis Technology, College of Chemistry, Xinjiang University, Urumqi 830017, China
| | - Furong Geng
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yani Yan
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Long Liu
- School of Physics and Chemistry, Hunan First Normal University, Changsha 410205, China
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yongbo Zhou
- Advanced Catalytic Engineering Research Center of the Ministry of Education, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
9
|
Sahoo RK, Nembenna S. Zinc-Catalyzed Chemoselective Reduction of Nitriles to N-Silylimines through Hydrosilylation: Insights into the Reaction Mechanism. Inorg Chem 2023. [PMID: 37481732 DOI: 10.1021/acs.inorgchem.3c00309] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/25/2023]
Abstract
The N,N'-chelated conjugated bis-guanidinate (CBG) supported zinc hydride (Zn-1) pre-catalyzed highly challenging chemoselective mono-hydrosilylation of a wide range of nitriles to exclusive N-silylimines and/or N,N'-silyldiimines is reported. Furthermore, the effectiveness of pre-catalyst Zn-1 is compared with another pre-catalyst analogue, i.e., DiethylNacNac zinc hydride (Zn-2), to know the ligand effect. We observed that pre-catalyst Zn-1 shows high efficiency and better selectivity than pre-catalyst Zn-2 for reducing nitriles to N-silylimines. Mechanistic studies indicate the insertion of the C≡N bond of nitrile into Zn-H to form the zinc vinylidenamido complexes (Zn-1' and Zn-2'). The active catalysts Zn-1' and Zn-2' are confirmed by NMR, mass spectrometry, and single-crystal X-ray diffraction analyses. A most plausible catalytic cycle has been explored depending on stoichiometric experiments, active catalysts isolation, and in situ studies. Moreover, the synthetic utility of this protocol was demonstrated.
Collapse
Affiliation(s)
- Rajata Kumar Sahoo
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| | - Sharanappa Nembenna
- School of Chemical Sciences, National Institute of Science Education and Research (NISER), Homi Bhabha National Institute (HBNI), Bhubaneswar 752 050, India
| |
Collapse
|
10
|
Weindl C, Helmbrecht SL, Hintermann L. Rapid C-H Transformation: Addition of Diarylmethanes to Imines in Seconds by Catalytic Use of Base. J Org Chem 2023; 88:4155-4161. [PMID: 36972371 DOI: 10.1021/acs.joc.2c02658] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
The addition of diarylmethanes or methylarenes via activation of benzylic C(sp3)-H bonds to N-aryl imines proceeds under catalysis by alkali hexamethyldisilazide (HMDS) base to give N-(1,2,2-triarylethyl)anilines or N-(1,2-diarylethyl)anilines, respectively. In the presence of 10 mol % of LiHMDS at room temperature, the diarylmethane addition equilibrates within 20-30 s and is driven to near completion by cooling the reaction mixture to -25 °C, providing N-(1,2,2-triarylethyl)aniline in a >90% yield.
Collapse
Affiliation(s)
- Christian Weindl
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| | - Sebastian L Helmbrecht
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| | - Lukas Hintermann
- Department Chemie, Technische Universität München, Lichtenbergstr. 4, 85748 Garching bei München, Germany
- TUM Catalysis Research Center, Technische Universität München, Ernst-Otto-Fischer-Str. 1, 85748 Garching bei München, Germany
| |
Collapse
|
11
|
Shigeno M, Kajima A, Toyama E, Korenaga T, Yamakoshi H, Nozawa-Kumada K, Kondo Y. LiHMDS-Mediated Deprotonative Coupling of Toluenes with Ketones. Chemistry 2023; 29:e202203549. [PMID: 36479733 DOI: 10.1002/chem.202203549] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/12/2022]
Abstract
We demonstrate that lithium hexamethyldisilazide (LiHMDS) acts as an effective base for deprotonative coupling reactions of toluenes with ketones to afford stilbenes. Various functionalities (halogen, OCF3 , amide, Me, aryl, alkenyl, alkynyl, SMe, and SPh) are allowed on the toluenes. Notably, this system proved successful with low-reactive toluenes bearing a large pKa value compared to that of the conjugate acid of LiHMDS (hexamethyldisilazane, 25.8, THF), as demonstrated by 4-phenyltoluene (38.57, THF) and toluene itself (∼43, DMSO).
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan.,JST, PRESTO, Kawaguchi, Saitama, 332-0012, Japan
| | - Akihisa Kajima
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Eito Toyama
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Toshinobu Korenaga
- Department of Chemistry and Biological Sciences Faculty of Science and Engineering, Iwate University Ueda, Morioka, 020-8551, Japan.,Soft-Path Science and Engineering Research Center (SPERC), Iwate University, Ueda, Morioka, 020-8551, Japan
| | - Hiroyuki Yamakoshi
- Central Analytical Center, Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Kanako Nozawa-Kumada
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| | - Yoshinori Kondo
- Department of Biophysical Chemistry Graduate School of Pharmaceutical Science, Tohoku University, 6-3 Aoba, Sendai, 980-8578, Japan
| |
Collapse
|
12
|
Anderson DE, Tortajada A, Hevia E. Highly Reactive Hydrocarbon Soluble Alkylsodium Reagents for Benzylic Aroylation of Toluenes using Weinreb Amides. Angew Chem Int Ed Engl 2023; 62:e202218498. [PMID: 36636916 DOI: 10.1002/anie.202218498] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/14/2023]
Abstract
Deaggregating the alkyl sodium NaCH2 SiMe3 with polydentate nitrogen ligands enables the preparation and characterisation of new, hydrocarbon soluble chelated alkylsodium reagents. Equipped with significantly enhanced metalating power over their organolithium counterparts, these systems can promote controlled sodiation of weakly acidic benzylic C-H bonds from a series of toluene derivatives under mild stoichiometric conditions. This has been demonstrated through the benzylic aroylation of toluenes with Weinreb amides, that delivers a wide range of 2-arylacetophenones in good to excellent yields. Success in isolating and determining the structures of key organometallic intermediates has provided useful mechanistic insight into these new sodium-mediated transformations.
Collapse
Affiliation(s)
- David E Anderson
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Andreu Tortajada
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| | - Eva Hevia
- Department für Chemie, Biochemie und Pharmazie, Universität Bern, Freiestrasse 3, 3012, Bern, Switzerland
| |
Collapse
|
13
|
Du HZ, Fan JZ, Wang ZZ, Strotman NA, Yang H, Guan BT. Cesium Amide-Catalyzed Selective Deuteration of Benzylic C-H Bonds with D 2 and Application for Tritiation of Pharmaceuticals. Angew Chem Int Ed Engl 2023; 62:e202214461. [PMID: 36289047 DOI: 10.1002/anie.202214461] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Indexed: 11/05/2022]
Abstract
Hydrogen isotope exchange (HIE) represents one of the most attractive labeling methods to synthesize deuterium- and tritium-labeled compounds. Catalytic HIE methods that enable site-selective C-H bond activation and exchange labeling with gaseous isotopes D2 and T2 are of vital importance, in particular for high-specific-activity tritiation of pharmaceuticals. As part of our interest in exploring s-block metals for catalytic transformations, we found CsN(SiMe3 )2 to be an efficient catalyst for selective HIE of benzylic C-H bonds with D2 gas. The reaction proceeds through a kinetic deprotonative equilibrium that establishes an exchange pathway between C-H bonds and D2 gas. By virtue of multiple C-H bonds activation and high activity (isotope enrichment up to 99 %), the simple cesium amide catalyst provided a very powerful and practically convenient labeling protocol for synthesis of highly deuterated compounds and high-specific-activity tritiation of pharmaceuticals.
Collapse
Affiliation(s)
- Hui-Zhen Du
- State Key Laboratory and Institute of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, China
| | - Jun-Zhen Fan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Zhong-Zhen Wang
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| | - Neil A Strotman
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Haifeng Yang
- Process Research & Development, Merck & Co., Inc., Rahway, New Jersey 07065, USA
| | - Bing-Tao Guan
- Department of Chemistry, Fudan University, Shanghai, 200438, China
| |
Collapse
|
14
|
Sivaraj C, Gandhi T. Solvent-controlled amidation of acid chlorides at room temperature: new route to access aromatic primary amides and imides amenable for late-stage functionalization †. RSC Adv 2023; 13:9231-9236. [PMID: 36959886 PMCID: PMC10028618 DOI: 10.1039/d3ra00403a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/06/2023] [Indexed: 03/24/2023] Open
Abstract
Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature. A unique feature of this method lies in the sequential silyl amidation of aryol chlorides and nitrogen–silicon bond cleavage of the corresponding N,N-bis(trimethylsilyl)benzamide in a one-pot method in a very short reaction time. This effective strategy was extended to late-stage functionalization. Herein, we report a solvent-controlled highly selective amidation and imidation of aroyl chlorides using an alkali-metal silyl-amide reagent (LiHMDS), which serves as a nitrogen source at room temperature.![]()
Collapse
Affiliation(s)
- Chandrasekaran Sivaraj
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| | - Thirumanavelan Gandhi
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of TechnologyVellore 632014Tamil NaduIndia
| |
Collapse
|
15
|
Kou S, Huo J, Wang Y, Sun S, Xue F, Mao J, Zhang J, Chen L, Walsh PJ. Synthesis of Indoles via Domino Reactions of 2-Methoxytoluene and Nitriles. J Org Chem 2022; 88:5147-5152. [PMID: 36520533 DOI: 10.1021/acs.joc.2c02128] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
2-Arylindoles are privileged structures widely present in biologically active molecules. New sustainable synthetic routes toward their synthesis are, therefore, in high demand. Herein, a mixed base-promoted benzylic C-H deprotonation of commercially available ortho-anisoles, addition of the resulting anion to benzonitriles, and SNAr to displace the methoxy group provide indoles. A diverse array of 2-arylindoles is prepared with good yields (>30 examples, yields up to 99%) without added transition metal catalysts.
Collapse
Affiliation(s)
- Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ying Wang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Susu Sun
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104-6323, United States
| |
Collapse
|
16
|
Yuan Y, Gu Y, Wang YE, Zheng J, Ji J, Xiong D, Xue F, Mao J. One-Pot Rapid Access to Benzyl Silanes, Germanes, and Stannanes from Toluenes Mediated by a LiN(SiMe 3) 2/CsCl System. J Org Chem 2022; 87:13907-13918. [DOI: 10.1021/acs.joc.2c01612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yaqi Yuan
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yuanyun Gu
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Jiali Zheng
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jiaying Ji
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Fei Xue
- Institute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Jianyou Mao
- School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
17
|
Li Y, Wu W, Zhu H, Kang Q, Xu L, Shi H. Rhodium‐Catalyzed Benzylic Addition Reactions of Alkylarenes to Michael Acceptors. Angew Chem Int Ed Engl 2022; 61:e202207917. [DOI: 10.1002/anie.202207917] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Wen‐Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Qi‐Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
18
|
Li Y, Wu W, Zhu H, Kang Q, Xu L, Shi H. Rhodium‐Catalyzed Benzylic Addition Reactions of Alkylarenes to Michael Acceptors. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yuntong Li
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Wen‐Qiang Wu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hui Zhu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Qi‐Kai Kang
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Lun Xu
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| | - Hang Shi
- Key Laboratory of Precise Synthesis of Functional Molecules of Zhejiang Province Department of Chemistry School of Science Westlake University 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
- Institute of Natural Sciences Westlake Institute for Advanced Study 18 Shilongshan Road Hangzhou 310024, Zhejiang Province China
| |
Collapse
|
19
|
Sreedharan R, Pal PK, Panyam PKR, Priyakumar UD, Gandhi T. Synthesis of α‐aryl ketones by harnessing the non‐innocence of toluene and its derivatives: Enhancing the acidity of methyl arenes by a Brønsted base and their mechanistic aspects. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200372] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ramdas Sreedharan
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - Pradeep Kumar Pal
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Pradeep Kumar Reddy Panyam
- Vellore Institute of Technology: VIT University Department of Chemistry, School of Advanced Sciences INDIA
| | - U Deva Priyakumar
- International Institute of Information Technology Hyderabad Centre for Computational Natural Sciences and Bioinformatics INDIA
| | - Thirumanavelan Gandhi
- VIT University Materials Chemistry Division, School of Advanced Sciences VIT University 632014 Vellore INDIA
| |
Collapse
|
20
|
Huo J, Chen L, Si H, Yuan S, Li J, Dong H, Hu S, Huo J, Kou S, Xiong D, Mao J, Zhang J. 2-Arylindoles: Concise Syntheses and a Privileged Scaffold for Fungicide Discovery. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:6982-6992. [PMID: 35658436 DOI: 10.1021/acs.jafc.1c08085] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Indole is a popular and functional scaffold existing widely in the fields of medicine, pesticides, spices, food and feed additives, dyes, and many others. Among indoles, 2-arylindole represents a particular and interesting subset but has attracted less attention for drug discovery. In this study, we report a general, practical one-pot assembly of a variety of 2-arylindole derivatives. To develop novel fungicide scaffolds, their fungicide activity was also evaluated. The bioassay results showed that many of the synthesized 2-arylindoles exhibited considerable fungicidal activities especially toward Rhizoctonia cerealis, and several demonstrated an inhibition rate of more than 90%. Notably, 4-fluoro-2-phenyl-1H-indole 6e was obtained with a broad spectrum of fungicidal activities, which showed excellent growth inhibition activities against R. cerealis, Rhizoctonia solani, Botrytis cinerea, Magnaporthe oryza, and Sclerotinia sclerotiorum with EC50 values of 2.31, 4.98, 6.78, 10.57, and 17.80 μg/mL, respectively. Preliminary fungicidal mode of action of 6e showed a significant inhibition effect on mycelial growth and spore germination. These results indicated that 2-arylindoles as privileged scaffolds exhibited potential fungicidal activities that deserve further study.
Collapse
Affiliation(s)
- Jingqian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Helong Si
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shitao Yuan
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jiahui Li
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Haijiao Dong
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Shiqi Hu
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jinglei Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engi-neering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engi-neering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jinlin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
- Biological Control Center of Plant Diseases and Plant Pests of Hebei Province, Baoding 071001, P. R. China
| |
Collapse
|
21
|
Meng XH, Xu XC, Wang Z, Liang YX, Zhao YL. NaN(SiMe3)2/CsTFA Copromoted Aminobenzylation/Cyclization of 2-Isocyanobenzaldehydes with Toluene Derivatives or Benzyl Compounds: One-Pot Access to Dihydroquinazolines and Quinazolines. J Org Chem 2022; 87:3156-3166. [DOI: 10.1021/acs.joc.1c02890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xiang-He Meng
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Xue-Cen Xu
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Zhuo Wang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yong-Xin Liang
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| | - Yu-Long Zhao
- Jilin Province Key Laboratory of Organic Functional Molecular Design & Synthesis, Faculty of Chemistry, Northeast Normal University, Changchun 130024, China
| |
Collapse
|
22
|
Ge D, Sun LW, Yu ZL, Luo XL, Xu P, Shen ZL. Regioselective synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds via transition metal-free C-C and C-N bond formation. Org Biomol Chem 2022; 20:1493-1499. [PMID: 35107115 DOI: 10.1039/d1ob02443d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Few methods are known for the synthesis of nitroindole derivatives. A simple and practical Cs2CO3-promoted method for the synthesis of 6-nitroindole derivatives from enaminones and nitroaromatic compounds has been developed. Two new C-C and C-N bonds were formed in a highly regioselective manner under transition metal-free conditions.
Collapse
Affiliation(s)
- Danhua Ge
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Li-Wen Sun
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Zi-Lun Yu
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Xin-Long Luo
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| | - Pei Xu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, School of Pharmacy, Xuzhou Medical University, Xuzhou 221004, China.
| | - Zhi-Liang Shen
- Chemical Experiment Teaching Center, Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China.
| |
Collapse
|
23
|
Xu X, Ou M, Wang YE, Lin T, Xiong D, Xue F, Walsh P, Mao J. Alkali-Amide Controlled Selective Synthesis of 7-Azaindole and 7-Azaindoline through Domino Reactions of 2-Fluoro-3-methylpyridine and Aldehydes. Org Chem Front 2022. [DOI: 10.1039/d2qo00339b] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Azaindoles and azaindolines are important core structures in pharmaceuticals and natural products, which have found wide applications in the field of medicinal chemistrty. In this study, we developed a novel...
Collapse
|
24
|
Cai C, Zou D. Recent Progress in Benzylic C(sp 3)—H Functionalization of Toluene and Its Derivatives. CHINESE J ORG CHEM 2022. [DOI: 10.6023/cjoc202201027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
li J, Dong Z, Wang B, İşcan A, Jin H, Chen L, Fan Z, Walsh P, Liang G. Arylations with Nitroarenes for One-Pot Syntheses of Triaryl-methanols and Tetraarylmethanes. Org Chem Front 2022. [DOI: 10.1039/d2qo00576j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Triarylmethanols are well-known core structures in natural products and pharmacologically relevant compounds. In general, transition metal-based catalysts or highly reactive organometallics are employed for the synthesis of these compounds. Herein,...
Collapse
|
26
|
Gu Y, Zhang Z, Wang YE, Dai Z, Yuan Y, Xiong D, Li J, Walsh PJ, Mao J. Benzylic Aroylation of Toluenes Mediated by a LiN(SiMe 3) 2/Cs + System. J Org Chem 2021; 87:406-418. [PMID: 34958592 DOI: 10.1021/acs.joc.1c02446] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Chemoselective deprotonative functionalization of benzylic C-H bonds is challenging, because the arene ring contains multiple aromatic C(sp2)-H bonds, which can be competitively deprotonated and lead to selectivity issues. Recently it was found that bimetallic [MN(SiMe3)2 M = Li, Na]/Cs+ combinations exhibit excellent benzylic selectivity. Herein, is reported the first deprotonative addition of toluenes to Weinreb amides mediated by LiN(SiMe3)2/CsF for the synthesis of a diverse array of 2-arylacetophenones. Surprisingly, simple methyl benzoates also react with toluenes under similar conditions to form 2-arylacetophenones without double addition to give tertiary alcohol products. This finding greatly increases the practicality and impact of this chemistry. Some challenging substrates with respect to benzylic deprotonations, such as fluoro and methoxy substituted toluenes, are selectively transformed to 2-aryl acetophenones. The value of benzylic deprotonation of 3-fluorotoluene is demonstrated by the synthesis of a key intermediate in the preparation of Polmacoxib.
Collapse
Affiliation(s)
- Yuanyun Gu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Zhen Zhang
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Ziteng Dai
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Yaqi Yuan
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jie Li
- Department of Pharmacy, School of Medicine, Zhejiang University City College, No. 48, Huzhou Road, Hangzhou 310015, P. R. China
| | - Patrick J Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| |
Collapse
|
27
|
Bao CC, Luo YL, Du HZ, Guan BT. Benzylic aroylation of toluenes with unactivated tertiary benzamides promoted by directed ortho-lithiation. Sci China Chem 2021. [DOI: 10.1007/s11426-021-1035-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
28
|
Chen L, Huo JQ, Si HL, Xu XY, Kou S, Mao J, Zhang JL. One-Pot Synthesis of N-H-Free Pyrroles from Aldehydes and Alkynes. Org Lett 2021; 23:4348-4352. [PMID: 34014098 DOI: 10.1021/acs.orglett.1c01287] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The first base-mediated intermolecular cyclization of arylaldehydes and terminal arylacetylenes for the synthesis of a wide range of pyrroles in a single step has been described. The developed methodology used commercially available starting materials and tolerated a broad range of functional groups affording 2,3,5-triaryl-substituted-1H-pyrroles with good yields (up to 92% yield) under mild conditions. The possible mechanism was also discussed.
Collapse
Affiliation(s)
- Lai Chen
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jing-Qian Huo
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - He-Long Si
- College of Life Sciences, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Xin-Yu Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Song Kou
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - Jin-Lin Zhang
- College of Plant Protection, Hebei Agricultural University, Baoding 071001, P. R. China
| |
Collapse
|
29
|
Gauld RM, McLellan R, Kennedy AR, Carson FJ, Barker J, Reid J, O'Hara CT, Mulvey RE. Structural Studies of Donor‐Free and Donor‐Solvated Sodium Carboxylates. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100167] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Richard M. Gauld
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde G1 1XL Glasgow UK
- Current address: Fakultät für Chemie und Biochemie Ruhr-Universität Bochum Universitätsstrasse 150 44801 Bochum Germany
| | - Ross McLellan
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde G1 1XL Glasgow UK
| | - Alan R. Kennedy
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde G1 1XL Glasgow UK
| | - Freya J. Carson
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde G1 1XL Glasgow UK
| | - Jim Barker
- Innospec Ltd, Innospec Manufacturing Park Oil Sites Road CH65 4EY Ellesmere Port Cheshire UK
| | - Jacqueline Reid
- Innospec Ltd, Innospec Manufacturing Park Oil Sites Road CH65 4EY Ellesmere Port Cheshire UK
| | - Charles T. O'Hara
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde G1 1XL Glasgow UK
| | - Robert E. Mulvey
- WestCHEM Department of Pure and Applied Chemistry University of Strathclyde G1 1XL Glasgow UK
| |
Collapse
|
30
|
Gentner TX, Mulvey RE. Alkali-Metal Mediation: Diversity of Applications in Main-Group Organometallic Chemistry. Angew Chem Int Ed Engl 2021; 60:9247-9262. [PMID: 33017511 PMCID: PMC8247348 DOI: 10.1002/anie.202010963] [Citation(s) in RCA: 109] [Impact Index Per Article: 27.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Indexed: 12/23/2022]
Abstract
Organolithium compounds have been at the forefront of synthetic chemistry for over a century, as they mediate the synthesis of myriads of compounds that are utilised worldwide in academic and industrial settings. For that reason, lithium has always been the most important alkali metal in organometallic chemistry. Today, that importance is being seriously challenged by sodium and potassium, as the alkali-metal mediation of organic reactions in general has started branching off in several new directions. Recent examples covering main-group homogeneous catalysis, stoichiometric organic synthesis, low-valent main-group metal chemistry, polymerization, and green chemistry are showcased in this Review. Since alkali-metal compounds are often not the end products of these applications, their roles are rarely given top billing. Thus, this Review has been written to alert the community to this rising unifying phenomenon of "alkali-metal mediation".
Collapse
Affiliation(s)
- Thomas X. Gentner
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| | - Robert E. Mulvey
- Department of Pure and Applied ChemistryUniversity of StrathclydeGlasgowG1 1XLUK
| |
Collapse
|
31
|
Lin T, Qian P, Wang YE, Ou M, Jiang L, Zhu C, Xu Y, Xiong D, Mao J. Palladium-Catalyzed Direct Arylation of 2-Pyridylmethyl Silanes with Aryl Bromides. Org Lett 2021; 23:3000-3003. [PMID: 33779175 DOI: 10.1021/acs.orglett.1c00677] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The first palladium-catalyzed direct arylation of 2-pyridylmethyl silanes with aryl bromides to generate a diverse array of aryl(2-pyridyl)-methyl silane derivatives has been developed. This protocol facilitates access to various kinds of heterocycle-containing silanes in good to excellent yields (40 examples, 66-97% yield) with good functional group tolerance. The scalability of this transformation is demonstrated.
Collapse
Affiliation(s)
- Tingzhi Lin
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Pengcheng Qian
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Yan-En Wang
- College of Science, Hebei Agricultural University, Baoding 071000, P. R. China
| | - Mingjie Ou
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Long Jiang
- Institute of Advanced Synthesis (IAS), Northwestern Polytechnical University (NPU), Xi'an 710072, China.,Yangtze River Delta Research Institute of NPU, Taicang, Jiangsu 215400, P. R. China
| | - Chen Zhu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Yuchuan Xu
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Dan Xiong
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211800, P. R. China
| |
Collapse
|
32
|
Chen S, Yang L, Shang Y, Mao J, Walsh PJ. Base-Promoted Tandem Synthesis of 2-Azaaryl Tetrahydroquinolines. Org Lett 2021; 23:1594-1599. [DOI: 10.1021/acs.orglett.0c04306] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Shuguang Chen
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Langxuan Yang
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th St., Philadelphia, Pennsylvania 19104, United States
| | - Yongjia Shang
- Key Laboratory of Functional Molecular Solids, Ministry of Education, Anhui Laboratory of Molecule-Based Materials (State Key Laboratory Cultivation Base), College of Chemistry and Materials Science, Anhui Normal University, Wuhu 241000, P. R. China
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, China
| | - Patrick J. Walsh
- P. Roy and Diana T. Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 S 34th St., Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
33
|
Shigeno M, Kajima A, Nakaji K, Nozawa-Kumada K, Kondo Y. Catalytic amide base system generated in situ for 1,3-diene formation from allylbenzenes and carbonyls. Org Biomol Chem 2021; 19:983-987. [PMID: 33146220 DOI: 10.1039/d0ob02007a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The amide base generated in situ from tetramethylammonium fluoride and N(TMS)3 catalyzes the synthesis of 1,3-diene from an allylbenzene and carbonyl compound. The system is applicable to the transformations of a variety of allylbenzenes with functional groups (halogen, methyl, phenyl, methoxy, dimethylamino, ester, and amide moieties). Acyclic and cyclic diaryl ketones, pivalophenone, pivalaldehyde, and isobutyrophenone are used as coupling partners. The role of transβ-methyl stilbenes in product formation is also elucidated.
Collapse
Affiliation(s)
- Masanori Shigeno
- Department of Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Tohoku University, Aoba, Sendai, 980-8578, Japan.
| | | | | | | | | |
Collapse
|
34
|
Kondoh A, Terada M. Development of Molecular Transformations on the Basis of Catalytic Generation of Anionic Species by Organosuperbase. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200308] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aoba-ku, Sendai, Miyagi 980-8578, Japan
| |
Collapse
|
35
|
Wang H, Mao J, Shuai S, Chen S, Zou D, Walsh PJ, Li J. N-Acyl pyrroles: chemoselective pyrrole dance vs. C–H functionalization/aroylation of toluenes. Org Chem Front 2021. [DOI: 10.1039/d1qo00944c] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Chemoselectivity is one of the most challenging issues facing the chemical sciences.
Collapse
Affiliation(s)
- Huan Wang
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Jianyou Mao
- Technical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P. R. China
| | - SuJuan Shuai
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Shuguang Chen
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | - Dong Zou
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, USA
| | - Jie Li
- School of Pharmaceutical Sciences, Hangzhou Medical College, Hangzhou, Zhejiang 311399, China
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China
| |
Collapse
|
36
|
Gentner TX, Mulvey RE. Alkalimetall‐Mediatoren: Vielfältige Anwendungen in der metallorganischen Chemie der Hauptgruppenelemente. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202010963] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Thomas X. Gentner
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| | - Robert E. Mulvey
- Department of Pure and Applied Chemistry University of Strathclyde Glasgow G1 1XL Großbritannien
| |
Collapse
|
37
|
Kondoh A, Ma C, Terada M. Synthesis of diarylalkanes through an intramolecular/intermolecular addition sequence by auto-tandem catalysis with strong Brønsted base. Chem Commun (Camb) 2020; 56:10894-10897. [PMID: 32940279 DOI: 10.1039/d0cc04512h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
An auto-tandem catalysis with a strong Brønsted base enabled the synthesis of diarylalkanes containing a benzofuran moiety. Potassium tert-butoxide efficiently catalyzed both the intramolecular cyclization of less acidic ortho-alkynylaryl benzyl ethers and the following intermolecular addition of diarylmethanes to styrenes, demonstrating the high potential of the catalysis in organic synthesis.
Collapse
Affiliation(s)
- Azusa Kondoh
- Research and Analytical Center for Giant Molecules, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai, 980-8578, Japan.
| | - Chaoyan Ma
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| | - Masahiro Terada
- Department of Chemistry, Graduate School of Science, Tohoku University, Aramaki, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
38
|
Yang F, Zou D, Chen S, Wang H, Zhao Y, Zhao L, Li L, Li J, Walsh PJ. Transition Metal‐Free Aroylation of Diarylmethanes with N‐Bn‐ N‐Boc Arylamides and N‐Acylpyrroles. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000622] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Fan Yang
- Department of PharmacySchool of MedicineZhejiang University City College No. 48, Huzhou Road Hangzhou 310015 People's Republic of China
| | - Dong Zou
- Department of PharmacySchool of MedicineZhejiang University City College No. 48, Huzhou Road Hangzhou 310015 People's Republic of China
| | - Shuguang Chen
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| | - Huan Wang
- Department of PharmacySchool of MedicineZhejiang University City College No. 48, Huzhou Road Hangzhou 310015 People's Republic of China
| | - Yichen Zhao
- Department of PharmacySchool of MedicineZhejiang University City College No. 48, Huzhou Road Hangzhou 310015 People's Republic of China
| | - Liyi Zhao
- Department of PharmacySchool of MedicineZhejiang University City College No. 48, Huzhou Road Hangzhou 310015 People's Republic of China
| | - Linlin Li
- Department of PharmacySchool of MedicineZhejiang University City College No. 48, Huzhou Road Hangzhou 310015 People's Republic of China
| | - Jie Li
- Department of PharmacySchool of MedicineZhejiang University City College No. 48, Huzhou Road Hangzhou 310015 People's Republic of China
| | - Patrick J. Walsh
- Roy and Diana Vagelos LaboratoriesDepartment of ChemistryUniversity of Pennsylvania 231 South 34th Street Philadelphia Pennsylvania 19104-6323 USA
| |
Collapse
|
39
|
Guan H, Cao X, Walsh PJ, Mao J. One-Pot Aminoalkylation of Aldehydes: Diastereoselective Synthesis of Vicinal Diamines with Azaarylmethylamines. Org Lett 2019; 21:8679-8683. [DOI: 10.1021/acs.orglett.9b03287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Haixing Guan
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Xianzhong Cao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| | - Patrick J. Walsh
- Roy and Diana Vagelos Laboratories, Department of Chemistry, University of Pennsylvania, 231 South 34th Street, Philadelphia, Pennsylvania 19104-6323, United States
| | - Jianyou Mao
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, 30 South Puzhu Road, Nanjing 211816, P.R. China
| |
Collapse
|