1
|
Zheng Z, Duan ZC, Hu XP. Tropos Diphenylmethane-Based Phosphine-Phosphoramidite Ligands: Design, Synthesis, and Application in Catalytic Asymmetric Hydrogenation. Org Lett 2025; 27:651-656. [PMID: 39781661 DOI: 10.1021/acs.orglett.4c04503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
A series of chiral hybrid diphosphorus ligands incorporating a conformationally flexible tropos diphenylmethane-based phosphoramidite unit have been developed and evaluated in the Rh-catalyzed asymmetric hydrogenation of 2-(1-arylvinyl)anilides and α-enamides, leading to up to >99% yield and 99% enantiomeric excess. Preliminary results from comparative studies showcased the extraordinary catalytic performance of these chiral tropos phosphine-phosphoramidite ligands, with a competency essentially superior to those of well-established ligands with a regular rigid backbone.
Collapse
Affiliation(s)
- Zhong Zheng
- School of Chemical and Enviromental Engineering, Hubei Minzu University, Enshi 445000, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Zheng-Chao Duan
- School of Chemical and Enviromental Engineering, Hubei Minzu University, Enshi 445000, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
2
|
Wei H, Luo Y, Li J, Chen J, Gridnev ID, Zhang W. Enantioselective Synthesis of Chiral β 2-Amino Phosphorus Derivatives via Nickel-Catalyzed Asymmetric Hydrogenation. J Am Chem Soc 2025; 147:342-352. [PMID: 39730303 DOI: 10.1021/jacs.4c10623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2024]
Abstract
Compared with chiral β3-amino phosphorus compounds, which can be easily derived from natural optically pure α-amino acids, obtaining chiral β2-amino phosphorus derivatives remains a challenge. These derivatives, which cannot be derived from chiral natural amino acids, possess unique biological activities or potential catalytic activities. Herein, highly enantioselective hydrogenation for the preparation of chiral β2-amino phosphorus derivatives from E-β-enamido phosphorus compounds is reported by using a green and low-cost earth-abundant metal nickel catalyst (13 examples of 99% ee). In particular, this catalytic system provides the same enantiomer product from the E- and Z-alkene substrates, and the E/Z-substrate mixtures provide good results (up to 96% ee). The products can be diversely derivatized, and the derivatives exhibit good catalytic activities as novel chiral β2-aminophosphine ligands. Density functional theory calculations reveal that the weak attractive interactions between the nickel catalyst and the substrate are crucial for achieving perfect enantioselectivities. In addition, the different coordination modes between the E- or Z-substrates and the catalyst may result in the formation of the same enantiomer product.
Collapse
Affiliation(s)
- Hanlin Wei
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Yicong Luo
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jinhui Li
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Jianzhong Chen
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Ilya D Gridnev
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospekt 47, Moscow 119991, Russian Federation
| | - Wanbin Zhang
- Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| |
Collapse
|
3
|
Zhang Y, Tian L, Wang Y, Mo L, Liu Q, Ren Y, Teng F, Yin M, Liu P, He Y. Regio- and Diastereoselective Hydrophosphination and Hydroamidation of gem-Difluorocyclopropenes. J Org Chem 2024; 89:5442-5457. [PMID: 38567881 DOI: 10.1021/acs.joc.3c02890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
In this study, concise, efficient, and modular hydrophosphinylation and hydroamidation of gem-difluorocyclopropenes were disclosed in a mild and transition-metal-free pattern. Through this approach, phosphorus, and nitrogen-containing gem-difluorocyclopropanes were produced in moderate to good yields with excellent regio- and diastereoselectivity. Readily available gem-difluorocyclopropenes and nucleophilic reagents, along with inexpensive inorganic bases, were employed. Multiple synthetic applications, including gram-scale and derivatization reactions and modification of bioactive molecules, were subsequently elaborated.
Collapse
Affiliation(s)
- Yuanshuo Zhang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Limei Tian
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Yali Wang
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Lisha Mo
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Qianwen Liu
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Yifan Ren
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Fan Teng
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Minhai Yin
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| | - Peng Liu
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou 510530, China
| | - Yimiao He
- Guangxi Key Laboratory of Natural Polymer Chemistry and Physics, College of Chemistry and Materials, Nanning Normal University, Nanning 530001, China
| |
Collapse
|
4
|
Liu Y, Wang L, Li Y, Ma B, Chen GQ, Zhang X. Highly efficient synthesis of chiral β-amino phosphine derivatives via direct asymmetric reductive amination with ammonium salts and H2. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
|
5
|
Cabré A, Verdaguer X, Riera A. Recent Advances in the Enantioselective Synthesis of Chiral Amines via Transition Metal-Catalyzed Asymmetric Hydrogenation. Chem Rev 2022; 122:269-339. [PMID: 34677059 PMCID: PMC9998038 DOI: 10.1021/acs.chemrev.1c00496] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Chiral amines are key structural motifs present in a wide variety of natural products, drugs, and other biologically active compounds. During the past decade, significant advances have been made with respect to the enantioselective synthesis of chiral amines, many of them based on catalytic asymmetric hydrogenation (AH). The present review covers the use of AH in the synthesis of chiral amines bearing a stereogenic center either in the α, β, or γ position with respect to the nitrogen atom, reported from 2010 to 2020. Therefore, we provide an overview of the recent advances in the AH of imines, enamides, enamines, allyl amines, and N-heteroaromatic compounds.
Collapse
Affiliation(s)
- Albert Cabré
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Xavier Verdaguer
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| | - Antoni Riera
- Institute
for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, Barcelona E-08028, Spain
- Departament
de Química Inorgànica i Orgànica, Secció de Química Orgànica, Universitat
de Barcelona, Martí
i Franquès 1, Barcelona E-08028, Spain
| |
Collapse
|
6
|
Nan LF, Chen XS, Chen H, Hu XH, Wang XH, Hu XP. Development of spirocyclic phosphoramidite-based hybrid diphosphorus ligands for enantioselective iridium-catalyzed hydrogenation of imines. Org Biomol Chem 2022; 20:8420-8424. [DOI: 10.1039/d2ob01801b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Novel spirocyclic phosphine–phosphoramidite ligands for highly efficient and enantioselective Ir-catalyzed hydrogenation of various imines.
Collapse
Affiliation(s)
- Long-Fei Nan
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xiu-Shuai Chen
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Hao Chen
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xin-Hu Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Xin-Hong Wang
- School of Textile and Material Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Xiang-Ping Hu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| |
Collapse
|
7
|
Du HQ. Rh-catalyzed asymmetric hydrogenation of α- and β-enamido phosphonates: highly enantioselective access to amino phosphonic acids. Org Biomol Chem 2022; 20:8843-8848. [DOI: 10.1039/d2ob01419j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Broad substrate scope; high isloated yield and enantioselectivity; novel hybrid bisphosphine ligands; gram-scale reaction with lower catalyst usage.
Collapse
Affiliation(s)
- Hong-Quan Du
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
8
|
Xu Y, Zhou X, Chen L, Ma Y, Wu G. The copper-catalyzed radical aminophosphinoylation of maleimides with anilines and diarylphosphine oxides. Org Chem Front 2022. [DOI: 10.1039/d2qo00184e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The radical aminophosphinoylation of maleimides with anilines and diarylphosphine oxides.
Collapse
Affiliation(s)
- Yaling Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Xueying Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Luya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yunfei Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Ge Wu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, China
| |
Collapse
|
9
|
Sen A, Chikkali SH. C 1-Symmetric diphosphorus ligands in metal-catalyzed asymmetric hydrogenation to prepare chiral compounds. Org Biomol Chem 2021; 19:9095-9137. [PMID: 34617539 DOI: 10.1039/d1ob01207j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Asymmetric hydrogenation has remained an important and challenging research area in industry as well as academia due to its high atom economy and ability to induce chirality. Among several types of ligands, chiral bidentate phosphine ligands have played a pivotal role in developing asymmetric hydrogenation. Although C2-symmetric chiral bidentate phosphine ligands have dominated the field, it has been found that several C1-symmetric ligands are equally effective and, in many cases, have outperformed their C2-symmetric counterparts. This review evaluates the possibility of the use of C1-symmetric diphosphorus ligands in asymmetric hydrogenation to produce chiral compounds. The recent strategies and advances in the application of C1-symmetric diphosphorus ligands in the metal-catalyzed asymmetric hydrogenation of a variety of CC bonds have been summarized. The potential of diphosphorus ligands in asymmetric hydrogenation to produce pharmaceutical intermediates, bioactive molecules, drug molecules, agrochemicals, and fragrances is discussed. Although asymmetric hydrogenation appears to be a problem that has been resolved, a deep dive into the recent literature reveals that there are several challenges that are yet to be addressed. The current asymmetric hydrogenation methods mostly employ precious metals, which are depleting at a fast pace. Therefore, scientific interventions to perform asymmetric hydrogenation using base metals or earth-abundant metals that can compete with established precious metals hold significant potential.
Collapse
Affiliation(s)
- Anirban Sen
- Polyolefin Lab, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, U. P., India
| | - Samir H Chikkali
- Polyolefin Lab, Polymer Science and Engineering Division, CSIR-National Chemical Laboratory, Dr Homi Bhabha Road, Pune 411008, India. .,Academy of Scientific and Innovative Research (AcSIR), Sector 19, Kamla Nehru Nagar, Ghaziabad 201002, U. P., India
| |
Collapse
|
10
|
Wang C, Xie F, Guo Q, Xie C, Zi G, Ye W, Zhou Z, Hou G, Zhang Z. Enantioselective Synthesis of Chiral Phosphonates via Rh/f-spiroPhos Catalyzed Asymmetric Hydrogenation of β,β-Disubstituted Unsaturated Phosphonates. J Org Chem 2021; 86:12034-12045. [PMID: 34346217 DOI: 10.1021/acs.joc.1c01397] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The first asymmetric hydrogenation of β,β-diaryl unsaturated phosphonates has been realized for synthesis of β,β-diaryl chiral phosphonates with excellent enantioselectivities (up to 99.9% ee) catalyzed by the Rh-(R,R)-f-spiroPhos complex. Furthermore, this catalyst also exhibits comparably excellent performance for β-aryl-β-alkyl unsaturated phosphonates providing the corresponding chiral phosphonates with up to 99.9% ee values. This methodology provides a straightforward access to asymmetric synthesis of chiral phosphonates.
Collapse
Affiliation(s)
- Chaoqiong Wang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Fang Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Qianling Guo
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Chaochao Xie
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofu Zi
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| | | | | | - Guohua Hou
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China.,Shanghai Key Laboratory for Molecular Engineering of Chiral Drugs, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China.,HwaGen Pharma, Shenzhen 518122, China
| | - Zhanbin Zhang
- Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
11
|
Iridium‐catalyzed asymmetric hydrogenation of β‐ketophosphonates with chiral ferrocenyl P,N,N‐ligands. Appl Organomet Chem 2021. [DOI: 10.1002/aoc.6283] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
12
|
Dong C, Liu DS, Zhang L, Hu XP. Rh-catalyzed asymmetric hydrogenation of α-aryl-β-alkylvinyl esters with chiral ferrocenylphosphine-phosphoramidite ligand. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2020.152763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
13
|
|
14
|
Phansavath P, Ratovelomanana-Vidal V, Ponra S, Boudet B. Recent Developments in Transition-Metal-Catalyzed Asymmetric Hydrogenation of Enamides. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1705939] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
AbstractThe catalytic asymmetric hydrogenation of prochiral olefins is one of the most widely studied and utilized transformations in asymmetric synthesis. This straightforward, atom economical, inherently direct and sustainable strategy induces chirality in a broad range of substrates and is widely relevant for both industrial applications and academic research. In addition, the asymmetric hydrogenation of enamides has been widely used for the synthesis of chiral amines and their derivatives. In this review, we summarize the recent work in this field, focusing on the development of new catalytic systems and on the extension of these asymmetric reductions to new classes of enamides.1 Introduction2 Asymmetric Hydrogenation of Trisubstituted Enamides2.1 Ruthenium Catalysts2.2 Rhodium Catalysts2.3 Iridium Catalysts2.4 Nickel Catalysts2.5 Cobalt Catalysts3 Asymmetric Hydrogenation of Tetrasubstituted Enamides3.1 Ruthenium Catalysts3.2 Rhodium Catalysts3.3 Nickel Catalysts4 Asymmetric Hydrogenation of Terminal Enamides4.1 Rhodium Catalysts4.2 Cobalt Catalysts5 Rhodium-Catalyzed Asymmetric Hydrogenation of Miscellaneous Enamides6 Conclusions
Collapse
Affiliation(s)
- Phannarath Phansavath
- PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team
| | | | - Sudipta Ponra
- PSL University, Chimie ParisTech-CNRS, Institute of Chemistry for Life & Health Sciences, CSB2D Team
| | | |
Collapse
|
15
|
Lei T, Liang G, Cheng YY, Chen B, Tung CH, Wu LZ. Cobaloxime Catalysis for Enamine Phosphorylation with Hydrogen Evolution. Org Lett 2020; 22:5385-5389. [PMID: 32585106 DOI: 10.1021/acs.orglett.0c01709] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Direct phosphorylation of enamine and enamide with hydrogen evolution was realized via cobaloxime catalysis under visible-light irradiation. Control experiments and spectroscopic studies demonstrated a reductive quenching pathway of cobaloxime catalyst to produce phosphinoyl radical, which underwent cross-coupling with various enamines (and enamides) to give diverse β-phosphinoyl products in good to excellent yields. More interestingly, Z/E mixture of acyclic enamines could convert into single Z-products with good reactivity.
Collapse
Affiliation(s)
- Tao Lei
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ge Liang
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yuan-Yuan Cheng
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Bin Chen
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Chen-Ho Tung
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Li-Zhu Wu
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, The Chinese Academy of Sciences, Beijing 100190, P.R. China.,School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|