1
|
Luo CM, Yang MQ, Yang DQ, Wu ZQ, Zhou Y, Tian WC, Zhang J, Li Q, Deng C, Wei WT. [3 + 2] Annulation of Vinyl Azides with Aldehydes for the Synthesis of 3-Oxazolines via the [CO + CCN] Strategy. Org Lett 2024; 26:6859-6865. [PMID: 39092611 DOI: 10.1021/acs.orglett.4c02394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Despite the widespread utilizable value of 3-oxazolines, mild and efficient access to such a class of unique structures still remains, to date, a challenge. Herein, we present a [3 + 2] annulation strategy, guided by the retrosynthetic principle of [CO + CCN], that utilizes vinyl azides as the CCN module and aldehydes as the CO module. This approach enables the efficient construction of the 3-oxazoline framework with remarkable features, including operational simplicity, environmental friendliness, and high efficiency. Notably, it solely requires the addition of inexpensive and readily available N-hydroxyphthalimide (NHPI) and air oxygen to obtain the desired product. It also provides a new way to generate the hydroxyl radical, which is produced by the homolysis of peroxycarboxylic acid. In addition, control experiments, X-ray crystallographic analysis, high-resolution mass spectrometry (HRMS), and density functional theory (DFT) calculations afford evidence for the key intermediates (hydroxyl radical, carboxyl radical, imine radical, hydroxyl substituted amide derivatives), further confirming the path for realization of 3-oxazolines.
Collapse
Affiliation(s)
- Chun-Mei Luo
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Ming-Qi Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Dong-Qing Yang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Zhong-Qi Wu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Yu Zhou
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Wen-Chan Tian
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Jianfeng Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| | - Qiang Li
- Shandong Provincial Key Laboratory of Chemical Energy Storage and Novel Cell Technology, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, P. R. China
| | - Chao Deng
- Jiangsu Key Laboratory of Pesticide Science and Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing 210095, China
| | - Wen-Ting Wei
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, P. R. China
| |
Collapse
|
2
|
Koo Y, Hong S. Nickel/photoredox-catalyzed three-component silylacylation of acrylates via chlorine photoelimination. Chem Sci 2024; 15:7707-7713. [PMID: 38784747 PMCID: PMC11110154 DOI: 10.1039/d4sc02164a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 04/19/2024] [Indexed: 05/25/2024] Open
Abstract
The extensive utility of organosilicon compounds across a wide range of disciplines has sparked significant interest in their efficient synthesis. Although catalytic 1,2-silyldifunctionalization of alkenes provides a promising method for the assembly of intricate organosilicon frameworks with atom and step economy, its advancement is hindered by the requirement of an external hydrogen atom transfer (HAT) agent in photoredox catalysis. Herein, we disclose an efficient three-component silylacylation of α,β-unsaturated carbonyl compounds, leveraging a synergistic nickel/photoredox catalysis with various hydrosilanes and aroyl chlorides. This method enables the direct conversion of acrylates into valuable building blocks that contain both carbonyl and silicon functionalities through a single, redox-neutral process. Key to this reaction is the precise activation of the Si-H bond, achieved through chlorine radical-induced HAT, enabled by the photoelimination of a Ni-Cl bond. Acyl chlorides serve a dual role, functioning as both acylating agents and chloride donors. Our methodology is distinguished by its mild conditions and extensive substrate adaptability, significantly enhancing the late-stage functionalization of pharmaceuticals.
Collapse
Affiliation(s)
- Yejin Koo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| | - Sungwoo Hong
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) Daejeon 34141 Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science (IBS) Daejeon 34141 Korea
| |
Collapse
|
3
|
Zhou Y, Jiang Q, Cheng Y, Hu M, Duan XH, Liu L. Photoredox-Catalyzed Acylchlorination of α-CF 3 Alkenes with Acyl Chloride and Application as Masked Access to β-CF 3-enones. Org Lett 2024; 26:2656-2661. [PMID: 38526445 DOI: 10.1021/acs.orglett.4c00830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
We disclose a photocatalytic strategy that simultaneously addresses the construction of trifluoromethylated quaternary carbon centers and the preparation of β-CF3-enones through radical difunctionalization of α-CF3 alkenes with acyl chlorides. This method is characterized by its broad functional group compatibility, high efficiency, and atom economy. The versatility of this transformation is poised to broaden the applications of α-CF3 alkenes, providing new pathways for the rapid assembly of structurally diverse fluorinated compounds.
Collapse
Affiliation(s)
- Youkang Zhou
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Qi Jiang
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Yangyang Cheng
- Key Laboratory for Tumor Precision Medicine of Shaanxi Province and Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 West Yanta Road, Xi'an 710061, China
| | - Mingyou Hu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xin-Hua Duan
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| | - Le Liu
- School of Chemistry, Engineering Research Center of Energy Storage Materials and Devices, Ministry of Education, Xi'an Key Laboratory of Sustainable Energy Material Chemistry, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
4
|
Guo Y, Liao H, Pan M, Zhao C, Qian Y, Liu X, Rong L. Visible-Light-Initiated Catalyst-Free Radical Annulation Reactions of 1,6-Enynes and Aryl Sulfonyl Bromide to Assemble Sulfonation/Bromination Succinimide Derivatives. J Org Chem 2024; 89:3857-3867. [PMID: 38386475 DOI: 10.1021/acs.joc.3c02693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2024]
Abstract
In the present study, the environment-friendly visible-light-promoted strategy is used to perform an efficient, simple, and straightforward photocatalytic succinimide derivative synthesis from the reaction of 1,6-enynes and aryl sulfonyl bromide at room temperature under air ambient conditions. This method features mild conditions, broad substrate scope, high yields, and excellent configurational selectivity. In addition, all the atoms of the substrates involved in the reaction converge in the product structures, showing a high atomic economy. Moreover, the most important characteristic of this study is that no photocatalyst and additives are used, while the key factor that triggers the reaction is visible light, indicating that this study has an important practical value.
Collapse
Affiliation(s)
- Yu Guo
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Hailin Liao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Mei Pan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Congcong Zhao
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Yuliang Qian
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Xiaoqin Liu
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| | - Liangce Rong
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou, Jiangsu 221116, P. R. China
| |
Collapse
|
5
|
Cen FT, Sun Y, Qu JP, Kang YB. Photocatalytic Redox-Neutral Alkoxyacylation of Alkenes. Org Lett 2023; 25:8997-9001. [PMID: 38060991 DOI: 10.1021/acs.orglett.3c03583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
β-Alkoxyketones are important building blocks in organic synthesis. By utilizing CBZ6, with an oxidative potential of -2.16 V (vs the saturated calomel electrode), as a redox-neutral photocatalyst, alkoxyacylation of olefins was accomplished under the irradiation of visible light via a cationic intermediate. It involves the addition of an acyl radical to olefin to form a radical intermediate and the following oxidation of the radical intermediate to the benzyl cationic intermediate that is captured by alkoxy anions. This process provides concise and practical access to the β-functionalized ketones.
Collapse
Affiliation(s)
- Fu-Tong Cen
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yu Sun
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Jian-Ping Qu
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yan-Biao Kang
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
6
|
Kang TM, Wu YW, Zheng WS, Zhang XH, Zhang XG. The halogensulfonylative cyclizations of 1,6-enynes with sodium sulfinate/TBAX for the regioselective synthesis of tetrahydropyridines. Tetrahedron 2023. [DOI: 10.1016/j.tet.2023.133339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2023]
|
7
|
Bao L, Wang ZX, Chen XY. Photoinduced N-Heterocyclic Nitrenium-Catalyzed Single Electron Reduction of Acyl Fluorides for Phenanthridine Synthesis. Org Lett 2023; 25:565-568. [PMID: 36637257 DOI: 10.1021/acs.orglett.3c00049] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Acyl fluorides are versatile reagents in organic synthesis. However, there is no precedent to employ acyl fluorides as acyl radical precursors. We herein report an N-heterocyclic nitrenium iodide salt-catalyzed photoreduction of acyl fluorides to produce acyl radicals, which could react with 2-isocyanobiaryls to afford various carbonyl phenanthridines.
Collapse
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences Beijing 100049, China.,Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Binzhou, Shandong Province 256606, China
| |
Collapse
|
8
|
Bao L, Wang ZX, Chen XY. Metal-Free Generation of Acyl Radical via Photoinduced Single-Electron Transfer from Lewis Base to Acyl Chloride. Org Lett 2022; 24:8223-8227. [DOI: 10.1021/acs.orglett.2c03339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Lei Bao
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhi-Xiang Wang
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiang-Yu Chen
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Luo Y, Wei Q, Yang L, Zhou Y, Cao W, Su Z, Liu X, Feng X. Enantioselective Radical Hydroacylation of α,β-Unsaturated Carbonyl Compounds with Aldehydes by Triplet Excited Anthraquinone. ACS Catal 2022; 12:12984-12992. [DOI: 10.1021/acscatal.2c04047] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yao Luo
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Qi Wei
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Liangkun Yang
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuqiao Zhou
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Weidi Cao
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhishan Su
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaohua Liu
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xiaoming Feng
- Key Laboratory of Green Chemistry & Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Stereoretentive cross-coupling of chiral amino acid chlorides and hydrocarbons through mechanistically controlled Ni/Ir photoredox catalysis. Nat Commun 2022; 13:5200. [PMID: 36057676 PMCID: PMC9440902 DOI: 10.1038/s41467-022-32851-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 08/18/2022] [Indexed: 11/30/2022] Open
Abstract
The direct modification of naturally occurring chiral amino acids to their amino ketone analogs is a significant synthetic challenge. Here, an efficient and robust cross-coupling reaction between chiral amino acid chlorides and unactivated C(sp3)–H hydrocarbons is achieved by a mechanistically designed Ni/Ir photoredox catalysis. This reaction, which proceeds under mild conditions, enables modular access to a wide variety of chiral amino ketones that retain the stereochemistry of the starting amino acids. In-depth mechanistic analysis reveals that the strategic generation of an N-acyllutidinium intermediate is critical for the success of this reaction. The barrierless reduction of the N-acyllutidinium intermediate facilitates the delivery of chiral amino ketones with retention of stereochemistry. This pathway avoids the formation of a detrimental nickel intermediate, which could be responsible for undesirable decarbonylation and transmetalation reactions that limit the utility of previously reported methods. Chiral α-amino ketones are privileged motifs in bioorganic and medicinal chemistry. Here, the authors develop an efficient method to synthesize these structures via stereoretentive direct cross-coupling of amino acid chlorides with simple aliphatic substrates.
Collapse
|
11
|
Sen PP, Roy VJ, Raha Roy S. Electrochemical Activation of the C-X Bond on Demand: Access to the Atom Economic Group Transfer Reaction Triggered by Noncovalent Interaction. J Org Chem 2022; 87:9551-9564. [PMID: 35816013 DOI: 10.1021/acs.joc.2c00529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
An atom economic method demonstrates the involvement of noncovalent interaction via hydrogen or halogen bonding interaction in triggering paired electrolysis for the group transfer reactions. Specifically, this method demonstrated the bromination of several aromatic and heteroaromatic compounds through the activation of the C(sp3)-Br bond of organic-bromo derivatives on demand. This electrochemical protocol is mild, and mostly no additional electrolyte is needed, which makes the workup process straightforward. Unlike the existing regioselective monobromination methods, this work utilizes a relatively small amount (1.2 equiv) of bromine surrogates that releases bromine on demand under the electrochemical condition and after completion of the reaction generates acetophenone as a useful byproduct. Green metrics indicate this protocol has a very good atom efficiency with an E-factor of 26.86 kg of waste/1 kg of product. In addition to the scale-up process, this strategy could be extended to the transfer of chlorine and thioaryl units. An extensive mechanistic study is accomplished to validate the hypothesis of noncovalent interaction using computational, spectroscopic, and cyclic voltammetry studies. Finally, the applicability of this newly developed nonbonding interaction to trigger paired electrolysis was extended to the chemoselective debromination of several dihalo organic compounds.
Collapse
Affiliation(s)
- Partha Pratim Sen
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Vishal Jyoti Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - Sudipta Raha Roy
- Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| |
Collapse
|
12
|
Kang QQ, Liu Y, Wu SP, Ge GP, Zheng H, Zhang JQ, Wei WT. Selective divergent radical cyclization of 1,6-dienes with alkyl nitriles. Org Biomol Chem 2021; 19:9501-9505. [PMID: 34709283 DOI: 10.1039/d1ob01620b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
An efficient, selective, and step economical radical cyclization of 1,6-dienes with alkyl nitriles initiated by α-C(sp3)-H functionalization under the Sc(OTf)3 and Ag2CO3 system is described here. The selective divergent cyclization relies on the substitution effect at the α-position of the acrylamide moiety and nitriles, which is terminated by hydrogen abstraction, direct cyclization with the aryl ring, or further cyclization with the CN bond and hydrolysis, respectively.
Collapse
Affiliation(s)
- Qing-Qing Kang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Yi Liu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Shi-Ping Wu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Guo-Ping Ge
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, Shandong, 252059, China
| | - Jun-Qi Zhang
- Advanced Research Institute and Department of Chemistry, Taizhou University, 1139 Shifu Avenue, Taizhou, 318000, China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|
13
|
Jiang LL, Hu SJ, Xu Q, Zheng H, Wei WT. Radical Cyclization of 1,n-Enynes and 1,n-Dienes for the Synthesis of 2-Pyrrolidone. Chem Asian J 2021; 16:3068-3081. [PMID: 34423568 DOI: 10.1002/asia.202100829] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/14/2021] [Indexed: 12/17/2022]
Abstract
2-Pyrrolidones have aroused enormous interest as a useful structural moiety in drug discovery; however, not only does their syntheses suffer from low selectivity and yield, but also it requires high catalyst loadings. The radical cyclization of 1,n-enynes and 1,n-dienes has demonstrated to be an attractive method for the synthesis of 2-pyrrolidones due to its mild reaction conditions, fewer steps, higher atom economy, excellent functional group compatibility, and high regioselectivity. Furthermore, radical receptors with unsaturated bonds (i. e. 1,n-enynes and 1,n-dienes) play a crucial role in realizing radical cyclization because of the ability to selectively introduce one or more radical sources. In this review, we discuss representative examples of methods involving the radical cyclization of 1,n-enynes and 1,n-dienes published in the last five years and discuss each prominent reaction design and mechanism, providing favorable tools for the synthesis of valuable 2-pyrrolidone for a variety of applications.
Collapse
Affiliation(s)
- Li-Lin Jiang
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Sen-Jie Hu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Qing Xu
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| | - Hongxing Zheng
- Institution of Functional Organic Molecules and Materials, School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng, 252059, P. R. China
| | - Wen-Ting Wei
- Key Laboratory of Advanced Mass Spectrometry and Molecular Analysis of Zhejiang Province, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, Zhejiang, 315211, P. R. China
| |
Collapse
|
14
|
Rodríguez JF, Zhang A, Bajohr J, Whyte A, Mirabi B, Lautens M. Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- José F. Rodríguez
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Anji Zhang
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Jonathan Bajohr
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Andrew Whyte
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Bijan Mirabi
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| | - Mark Lautens
- Davenport Research Laboratories Department of Chemistry University of Toronto 80 St. George Street Toronto Ontario M5S 3H6 Canada
| |
Collapse
|
15
|
Rodríguez JF, Zhang A, Bajohr J, Whyte A, Mirabi B, Lautens M. Cycloisomerization of Carbamoyl Chlorides in Hexafluoroisopropanol: Stereoselective Synthesis of Chlorinated Methylene Oxindoles and Quinolinones. Angew Chem Int Ed Engl 2021; 60:18478-18483. [PMID: 34157191 DOI: 10.1002/anie.202103323] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 05/24/2021] [Indexed: 12/20/2022]
Abstract
Hexafluoroisopropanol (HFIP) was employed as an additive for the generation of 3-(chloromethylene)oxindoles via the chloroacylation of alkyne-tethered carbamoyl chlorides. This reaction avoids the use of a metal catalyst and accesses products in high yields and stereoselectivities. Additionally, this reaction is scalable and proved amenable to a series of product derivatizations, including the synthesis of nintedanib. The reactivity of alkene-tethered carbamoyl chlorides with hexafluoroisopropanol (HFIP) was harnessed towards the synthesis of 2-quinolinones.
Collapse
Affiliation(s)
- José F Rodríguez
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Anji Zhang
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Jonathan Bajohr
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Andrew Whyte
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Bijan Mirabi
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| | - Mark Lautens
- Davenport Research Laboratories, Department of Chemistry, University of Toronto, 80 St. George Street, Toronto, Ontario, M5S 3H6, Canada
| |
Collapse
|
16
|
Qu C, Song G, Ou J, Tang D, Xu Z, Chen Z. Visible
Light‐Mediated
Construction of Sulfonated Dibenzazepines. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100194] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Chuan‐Hua Qu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Gui‐Ting Song
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Jian‐Hua Ou
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Dian‐Yong Tang
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhi‐Gang Xu
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| | - Zhong‐Zhu Chen
- College of Pharmacy, National & Local Joint Engineering Research Center of Targeted and Innovative Therapeutics, Chongqing Key Laboratory of Kinase Modulators as Innovative Medicine Chongqing University of Arts and Sciences Chongqing 402160 China
| |
Collapse
|
17
|
Zhang JL, Liu JY, Xu GQ, Luo YC, Lu H, Tan CY, Hu XQ, Xu PF. One-Pot Enantioselective Construction of Polycyclic Tetrahydroquinoline Scaffolds through Asymmetric Organo/Photoredox Catalysis via Triple-Reaction Sequence. Org Lett 2021; 23:3287-3293. [DOI: 10.1021/acs.orglett.1c00712] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Jia-Lu Zhang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Jin-Yu Liu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Guo-Qiang Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Yong-Chun Luo
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Hong Lu
- Key Laboratory of Synthetic and Natural Functional Molecular Chemistry of the Ministry of Education, National Demonstration Center for Experimental Chemistry Education (Northwest University), College of Chemistry & Materials Science, Northwest University, Xi’an 710127, China
| | - Chang-Yin Tan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xiu-Qin Hu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Fei Xu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| |
Collapse
|
18
|
Ji M, Xu L, Luo X, Jiang M, Wang S, Chen JQ, Wu J. Alkoxycarbonyl radicals from alkyloxalyl chlorides: photoinduced synthesis of isoquinolinediones under visible light irradiation. Org Chem Front 2021. [DOI: 10.1039/d1qo01368h] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Alkyloxalyl chlorides, generated from alcohols and oxalyl chlorides, are used as alkoxycarbonyl radicals in the reaction of N-acryloyl benzamides under photocatalysis at room temperature.
Collapse
Affiliation(s)
- Mingjuan Ji
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Liang Xu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Xiangxiang Luo
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Minghui Jiang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Siyu Wang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jian-Qiang Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
19
|
|
20
|
|
21
|
Abstract
Visible light photocatalytic radical carbonylation has been established as a robust tool for the efficient synthesis of carbonyl-containing compounds. Acyl radicals serve as the key intermediates in these useful transformations and can be generated from the addition of alkyl or aryl radicals to carbon monoxide (CO) or various acyl radical precursors such as aldehydes, carboxylic acids, anhydrides, acyl chlorides or α-keto acids. In this review, we aim to summarize the impact of visible light-induced acyl radical carbonylation reactions on the synthesis of oxygen and nitrogen heterocycles. The discussion is mainly categorized based on different types of acyl radical precursors.
Collapse
|
22
|
Zheng L, Xia PJ, Zhao QL, Qian YE, Jiang WN, Xiang HY, Yang H. Photocatalytic Hydroacylation of Alkenes by Directly Using Acyl Oximes. J Org Chem 2020; 85:11989-11996. [DOI: 10.1021/acs.joc.0c01818] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Lan Zheng
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Peng-Ju Xia
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Qing-Lan Zhao
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Yu-En Qian
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | | | - Hao-Yue Xiang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
| | - Hua Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
- Key Laboratory of Hunan Province for Water Environment and Agriculture Product Safety, Central South University, Changsha 410083, P. R. China
| |
Collapse
|
23
|
Patil DV, Kim HY, Oh K. Visible Light-Promoted Friedel–Crafts-Type Chloroacylation of Alkenes to β-Chloroketones. Org Lett 2020; 22:3018-3022. [DOI: 10.1021/acs.orglett.0c00788] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- Dilip V. Patil
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Hun Young Kim
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| | - Kyungsoo Oh
- Center for Metareceptome Research, Graduate School of Pharmaceutical Sciences, Chung-Ang University, 84 Heukseok-ro, Dongjak, Seoul 06974, Republic of Korea
| |
Collapse
|
24
|
Xu Z, Tang Y, Shen C, Zhang H, Gan Y, Ji X, Tian X, Dong K. Nickel-catalyzed regio- and diastereoselective hydroarylative and hydroalkenylative cyclization of 1,6-dienes. Chem Commun (Camb) 2020; 56:7741-7744. [DOI: 10.1039/c9cc09450d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
By using methanol as the hydrogen source and commercially available nickel complex as the catalyst, the hydroarylative and hydroalkenylative cyclization of unsymmetrically substituted 1,6-dienes with organoboronic acid was developed to afford products with high regio- and diastereoselectivities.
Collapse
Affiliation(s)
- Zhengshuai Xu
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yitian Tang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Chaoren Shen
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Hongru Zhang
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Yuxin Gan
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xiaolei Ji
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| | - Xinxin Tian
- Institute of Molecular Science
- Key Laboratory of Materials for Energy Conversion and Storage of Shanxi Province
- Shanxi University
- Taiyuan 030006
- China
| | - Kaiwu Dong
- Chang-Kung Chuang Institute
- Shanghai Key Laboratory of Green Chemistry and Chemical Process
- School of Chemistry and Molecular Engineering
- East China Normal University
- Shanghai 200241
| |
Collapse
|