1
|
Pipaón Fernández N, Cruise O, Easton SEF, Kaplan JM, Woodard JL, Hruszkewycz DP, Leitch DC. Direct Heterocycle C-H Alkenylation via Dual Catalysis Using a Palladacycle Precatalyst: Multifactor Optimization and Scope Exploration Enabled by High-Throughput Experimentation. J Org Chem 2024; 89:16145-16160. [PMID: 38206166 DOI: 10.1021/acs.joc.3c02311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
One of the major challenges in developing catalytic methods for C-C bond formation is the identification of generally applicable reaction conditions, particularly if multiple substrate structural classes are involved. Pd-catalyzed direct arylation reactions are powerful transformations that enable direct functionalization of C-H bonds; however, the corresponding direct alkenylation reactions, using vinyl (pseudo) halide electrophiles, are less well developed. Inspired by process development efforts toward GSK3368715, an investigational active pharmaceutical ingredient, we report that a Pd(II) palladacycle derived from tri-tert-butylphosphine and Pd(OAc)2 is an effective single-component precatalyst for a variety of direct alkenylation reactions. High-throughput experimentation identified optimal solvent/base combinations for a variety of HetAr-H substrate classes undergoing C-H activation without the need for cocatalysts or stoichiometric silver bases (e.g., Ag2CO3). We propose this reaction proceeds via a dual cooperative catalytic mechanism, where in situ-generated Pd(0) supports a canonical Pd(0)/(II) cross-coupling cycle and the palladacycle effects C-H activation via CMD in a redox-neutral cycle. In all, 192 substrate combinations were tested with a hit rate of approximately 40% and 24 isolated examples. Importantly, this method was applied to prepare a key intermediate in the synthesis of GSK3368715 on multigram scale.
Collapse
Affiliation(s)
- Nahiane Pipaón Fernández
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| | - Odhran Cruise
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| | - Sarah E F Easton
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| | - Justin M Kaplan
- Chemical Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - John L Woodard
- Chemical Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - Damian P Hruszkewycz
- Chemical Development, GlaxoSmithKline, 1250 South Collegeville Road, Collegeville, Pennsylvania 19426, United States
| | - David C Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Road., Victoria, Briish Columbia V8P 5C2, Canada
| |
Collapse
|
2
|
Li JS, Liu J, Wang YT, Dai JY, Li ZW, Luo WW, Zhang YF, Liu HW, Liu WD. Diazotization-Enabled Deaminative Late-Stage Functionalization of Primary Sulfonamides. Org Lett 2023; 25:8263-8268. [PMID: 37947421 DOI: 10.1021/acs.orglett.3c03308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
We, for the first time, disclosed a simple and efficient strategy for the late-stage functionalization of primary sulfonamides by diazotization, leading to sulfonyl chlorides, sulfonates, and complex sulfonamides. This protocol obviates the requirement for the prefunctionalization of sulfonamides. Its applicability is exemplified by the late-stage functionalization of sulfonamide-type drugs.
Collapse
Affiliation(s)
- Jiang-Sheng Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yao-Tian Wang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Jia-Ying Dai
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhi-Wei Li
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Wei Luo
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yue-Fei Zhang
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Han-Wen Liu
- Hunan Provincial Key Laboratory of CytoChemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Wei-Dong Liu
- National Engineering Research Center for Agrochemicals, Hunan Research Institute of Chemical Industry, Changsha 410007, China
| |
Collapse
|
3
|
Li Q, Xu L, Ma D. Cu‐Catalyzed Coupling Reactions of Sulfonamides with (Hetero)Aryl Chlorides/Bromides. Angew Chem Int Ed Engl 2022; 61:e202210483. [DOI: 10.1002/anie.202210483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Qiaoli Li
- Department of Chemistry University of Science and Technology of China 96 Jinzhai Lu Hefei 230026 China
| | - Lanting Xu
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| | - Dawei Ma
- State Key Laboratory of Bioorganic & Natural Products Chemistry Center for Excellence in Molecular Synthesis Shanghai Institute of Organic Chemistry University of Chinese Academy of Sciences Chinese Academy of Sciences 345 Lingling Lu Shanghai 200032 China
| |
Collapse
|
4
|
You T, Li J. Ni(cod)(duroquinone)-Catalyzed C-N Cross-Coupling for the Synthesis of N, N-Diarylsulfonamides. Org Lett 2022; 24:6642-6646. [PMID: 36067509 DOI: 10.1021/acs.orglett.2c02670] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report a C-N cross-coupling reaction of weakly nucleophilic N-arylsulfonamides and aryl bromides to access N,N-diarylsulfonamides using Ni(cod)(DQ) as a catalyst without additional ligands. The process is compatible with electron-deficient and electron-rich aryl and heteroaryl bromides (34 examples, 21-98%) and can be applied to the derivatization of an N-arylsulfonamide pharmaceutical compound.
Collapse
Affiliation(s)
- Tian You
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| | - Junqi Li
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, United States
| |
Collapse
|
5
|
Li Q, Xu L, Ma D. Cu‐Catalyzed Coupling Reactions of Sulfonamides with (Hetero)Aryl Chlorides/Bromides. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202210483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Qiaoli Li
- University of Science and Technology of China Department of Chemistry CHINA
| | - Lanting Xu
- Shanghai Institute Of Organic Chemistry State Key Laboratory of Bioorganic Chemistry State Key Laboratory of Bioorganic & Natural Products Chemistry CHINA
| | - Dawei Ma
- Shanghai Institute of Organic Chemistry State Key Lab. of Bio. Nat. Prod. Chem. 345 Lingling LuShanghai 200032 Shanghai CHINA
| |
Collapse
|
6
|
Nagao K, Ohmiya H. Carbocation Generation by Organophotoredox Catalysis. J SYN ORG CHEM JPN 2021. [DOI: 10.5059/yukigoseikyokaishi.79.1005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Kazunori Nagao
- Division of Pharmaceutical Sciences, Graduate School of Medical Sciences, Kanazawa University
| | | |
Collapse
|
7
|
Nakagawa M, Nagao K, Ikeda Z, Reynolds M, Ibáñez I, Wang J, Tokunaga N, Sasaki Y, Ohmiya H. Organophotoredox‐Catalyzed Decarboxylative N‐Alkylation of Sulfonamides. ChemCatChem 2021. [DOI: 10.1002/cctc.202100803] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Masanari Nakagawa
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi, Kanazawa 920-1192 Japan
| | - Kazunori Nagao
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi, Kanazawa 920-1192 Japan
| | - Zenichi Ikeda
- Research Takeda Pharmaceutical Company Limited Fujisawa, Kanagawa 251-8555 Japan
| | - Matthew Reynolds
- Research Takeda Pharmaceutical Company Limited Fujisawa, Kanagawa 251-8555 Japan
| | - Ignacio Ibáñez
- Research Takeda Pharmaceutical Company Limited Fujisawa, Kanagawa 251-8555 Japan
| | - Junsi Wang
- Research Takeda Pharmaceutical Company Limited Fujisawa, Kanagawa 251-8555 Japan
| | - Norihito Tokunaga
- Research Takeda Pharmaceutical Company Limited Fujisawa, Kanagawa 251-8555 Japan
| | - Yusuke Sasaki
- Research Takeda Pharmaceutical Company Limited Fujisawa, Kanagawa 251-8555 Japan
| | - Hirohisa Ohmiya
- Division of Pharmaceutical Sciences Graduate School of Medical Sciences Kanazawa University Kakuma-machi, Kanazawa 920-1192 Japan
- JST PRESTO Kawaguchi, Saitama 332-0012 Japan
| |
Collapse
|
8
|
Huang J, Isaac M, Watt R, Becica J, Dennis E, Saidaminov MI, Sabbers WA, Leitch DC. DMPDAB–Pd–MAH: A Versatile Pd(0) Source for Precatalyst Formation, Reaction Screening, and Preparative-Scale Synthesis. ACS Catal 2021. [DOI: 10.1021/acscatal.1c00288] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Jingjun Huang
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Matthew Isaac
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Ryan Watt
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Joseph Becica
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Emma Dennis
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - Makhsud I. Saidaminov
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| | - William A. Sabbers
- Department of Chemistry, Temple University, 1901 N. Broad Street, Philadelphia, Pennsylvania 19122, United States
| | - David C. Leitch
- Department of Chemistry, University of Victoria, 3800 Finnerty Road, Victoria, BC V8P 5C2, Canada
| |
Collapse
|
9
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad‐Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates**. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202013976] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Xiaohui Cao
- School of Pharmacy Guangdong Pharmaceutical University Guangzhou 510006 P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab School of Chemistry Sun Yat-sen University Guangzhou 510275 P. R. China
| |
Collapse
|
10
|
Wei M, Liang D, Cao X, Luo W, Ma G, Liu Z, Li L. A Broad-Spectrum Catalytic Amidation of Sulfonyl Fluorides and Fluorosulfates*. Angew Chem Int Ed Engl 2021; 60:7397-7404. [PMID: 33337566 DOI: 10.1002/anie.202013976] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/30/2020] [Indexed: 12/18/2022]
Abstract
A broad-spectrum, catalytic method has been developed for the synthesis of sulfonamides and sulfamates. With the activation by the combination of a catalytic amount of 1-hydroxybenzotriazole (HOBt) and silicon additives, amidations of sulfonyl fluorides and fluorosulfates proceeded smoothly and excellent yields were generally obtained (87-99 %). Noticeably, this protocol is particularly efficient for sterically hindered substrates. Catalyst loading is generally low and only 0.02 mol % of catalyst is required for the multidecagram-scale synthesis of an amantadine derivative. In addition, the potential of this method in medicinal chemistry has been demonstrated by the synthesis of the marketed drug Fedratinib via a key intermediate sulfonyl fluoride 13. Since a large number of amines are commercially available, this route provides a facile entry to access Fedratinib analogues for biological screening.
Collapse
Affiliation(s)
- Mingjie Wei
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Dacheng Liang
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Xiaohui Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, P. R. China
| | - Wenjun Luo
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Guojian Ma
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Zeyuan Liu
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| | - Le Li
- PCFM Lab and GDHPRC Lab, School of Chemistry, Sun Yat-sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
11
|
Eyke NS, Koscher BA, Jensen KF. Toward Machine Learning-Enhanced High-Throughput Experimentation. TRENDS IN CHEMISTRY 2021. [DOI: 10.1016/j.trechm.2020.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
12
|
McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Nickel‐Catalyzed Cross‐Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angew Chem Int Ed Engl 2020. [DOI: 10.1002/ange.202002392] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Ryan T. McGuire
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Connor M. Simon
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie Montreal Quebec H4S 2E1 Canada
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|
13
|
McGuire RT, Simon CM, Yadav AA, Ferguson MJ, Stradiotto M. Nickel‐Catalyzed Cross‐Coupling of Sulfonamides With (Hetero)aryl Chlorides. Angew Chem Int Ed Engl 2020; 59:8952-8956. [DOI: 10.1002/anie.202002392] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 03/10/2020] [Indexed: 12/12/2022]
Affiliation(s)
- Ryan T. McGuire
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Connor M. Simon
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| | - Arun A. Yadav
- Paraza Pharma, Inc. 2525 Avenue Marie-Curie Montreal Quebec H4S 2E1 Canada
| | - Michael J. Ferguson
- X-Ray Crystallography Laboratory Department of Chemistry University of Alberta Edmonton Alberta T6G 2G2 Canada
| | - Mark Stradiotto
- Department of Chemistry Dalhousie University Halifax Nova Scotia B3H 4R2 Canada
| |
Collapse
|