1
|
Yamazaki H, Sugawara R, Takayama Y. Development of label-free light-controlled gene expression technologies using mid-IR and terahertz light. Front Bioeng Biotechnol 2024; 12:1324757. [PMID: 39465004 PMCID: PMC11502365 DOI: 10.3389/fbioe.2024.1324757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Gene expression is a fundamental process that regulates diverse biological activities across all life stages. Given its vital role, there is an urgent need to develop innovative methodologies to effectively control gene expression. Light-controlled gene expression is considered a favorable approach because of its ability to provide precise spatiotemporal control. However, current light-controlled technologies rely on photosensitive molecular tags, making their practical use challenging. In this study, we review current technologies for light-controlled gene expression and propose the development of label-free light-controlled technologies using mid-infrared (mid-IR) and terahertz light.
Collapse
Affiliation(s)
- Hirohito Yamazaki
- Top Runner Incubation Center for Academia-Industry Fusion, Nagaoka University of Technology, Nagaoka, Japan
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Ryusei Sugawara
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Yurito Takayama
- Department of Mechanical Engineering, Nagaoka University of Technology, Nagaoka, Japan
| |
Collapse
|
2
|
Clotworthy MR, Dawson JJM, Johnstone MD, Fleming CL. Coumarin-Derived Caging Groups in the Spotlight: Tailoring Physiochemical and Photophysical Properties. Chempluschem 2024; 89:e202400377. [PMID: 38960871 DOI: 10.1002/cplu.202400377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/02/2024] [Accepted: 07/03/2024] [Indexed: 07/05/2024]
Abstract
The development of light-responsive molecular tools enables spatiotemporal control of biochemical processes with superior precision. Amongst these molecular tools, photolabile caging groups are employed to prevent critical binding interactions between a bioactive molecule and its corresponding target. Only upon irradiation with light, the bioactive is released in its 'active' form and is now readily available to bind to its target. Coumarin-derived caging groups constitute one of the most popular classes of photolabile protecting groups, due to their facile synthetic accessibility, ease of tuning photophysical properties via structural modification and rapid photolysis reactions. Herein, we highlight the recent progress made on the development of coumarin-derived caging groups, in which the red-shifting of absorption spectra, improving aqueous solubility and tailoring sub-cellular localisation has been of particular interest.
Collapse
Affiliation(s)
- Megan R Clotworthy
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Joseph J M Dawson
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Mark D Johnstone
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| | - Cassandra L Fleming
- School of Chemistry, The University of Sydney, Sydney, NSW, 2006, Australia
- Centre of Biomedical and Chemical Sciences, School of Science, Auckland University of Technology, Private Bag 92006, Auckland, 1142, New Zealand
| |
Collapse
|
3
|
Zhang S, Zhu HT, Xi JJ, Wang SB, Chang X, Shen CP, Feng Y, Zhang ZY, Zhao MT, Zhang LK, Li M, Jin X, Zhou AX, Zhou NN. Brønsted Acid-Catalyzed Intramolecular Tandem Double Cyclization of γ-Hydroxy Acetylenic Ketones with Alkynes into Naphtho[1,2- b]furan-3-ones. J Org Chem 2024; 89:1633-1647. [PMID: 38235569 DOI: 10.1021/acs.joc.3c02300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
A metal-free and atom-economic route for the synthesis of naphtho[1,2-b]furan-3-ones has been realized via p-TsOH·H2O-catalyzed intramolecular tandem double cyclization of γ-hydroxy acetylenic ketones with alkynes in formic acid. The benzene-linked furanonyl-ynes are the key intermediates obtained by the scission/recombination of C-O double bonds. Further, the structural modifications of the representative product were implemented by reduction, demethylation, substitution, and [5 + 2]-cycloaddition.
Collapse
Affiliation(s)
- Sen Zhang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Hai-Tao Zhu
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Jia-Jun Xi
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - San-Bao Wang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Xin Chang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Cheng-Ping Shen
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Yue Feng
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Zhao-Yang Zhang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Meng-Ting Zhao
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Li-Kun Zhang
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| | - Mi Li
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - Xiaojie Jin
- Gansu University Key Laboratory for Molecular Medicine & Chinese Medicine Prevention and Treatment of Major Diseases, Gansu University of Chinese Medicine, Lanzhou 730000, China
| | - An-Xi Zhou
- key Laboratory of Applied Organic Chemistry, Higher Institutions of Jiangxi Province, Shangrao Normal University, Shangrao 334000, China
| | - Ni-Ni Zhou
- College of Chemistry and Chemical Engineering, Shannxi Key Laboratory of Phytochemistry, Baoji University of Arts and Sciences, Baoji 721013, China
| |
Collapse
|
4
|
Cannon J, Tang S, Choi SK. Caged Oxime Reactivators Designed for the Light Control of Acetylcholinesterase Reactivation †. Photochem Photobiol 2021; 98:334-346. [PMID: 34558680 DOI: 10.1111/php.13530] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/22/2021] [Indexed: 01/13/2023]
Abstract
Despite its promising role in the active control of biological functions by light, photocaging remains untested in acetylcholinesterase (AChE), a key enzyme in the cholinergic family. Here, we describe synthesis, photochemical properties and biochemical activities of two caged oxime compounds applied in the photocontrolled reactivation of the AChE inactivated by reactive organophosphate. Each of these consists of a photocleavable coumarin cage tethered to a known oxime reactivator for AChE that belongs in an either 2-(hydroxyimino)acetamide or pyridiniumaldoxime class. Of these, the first caged compound was able to successfully go through oxime uncaging upon irradiation at long-wavelength ultraviolet light (365 nm) or visible light (420 nm). It was further evaluated in AChE assays in vitro under variable light conditions to define its activity in the photocontrolled reactivation of paraoxon-inactivated AChE. This assay result showed its lack of activity in the dark but its induction of activity under light conditions only. In summary, this article reports a first class of light-activatable modulators for AChE and it offers assay methods and novel insights that help to achieve an effective design of caged compounds in the enzyme control.
Collapse
Affiliation(s)
- Jayme Cannon
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Shengzhuang Tang
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Seok Ki Choi
- Michigan Nanotechnology Institute for Medicine and Biological Sciences, University of Michigan Medical School, Ann Arbor, Michigan, USA.,Department of Internal Medicine, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Huang C, Xu X, Jiang D, Jiang W. Binding mediated MNAzyme signal amplification strategy for enzyme-free and label-free detection of DNA-binding proteins. Anal Chim Acta 2021; 1166:338560. [PMID: 34022996 DOI: 10.1016/j.aca.2021.338560] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 04/13/2021] [Accepted: 04/20/2021] [Indexed: 10/21/2022]
Abstract
A novel MNAzyme signal amplification strategy was developed for enzyme-free and label-free detection of DNA-binding proteins. This strategy relied on the binding-mediated MNAzyme cleavage and G-quadruplex-based light-up fluorescence switch. Three DNA sequences were designed to construct the MNAzyme in which DNA1 (including half binding site of the target protein and a toehold sequence) and DNA2 (including another half binding site of the target protein and one MNAzyme partzyme) firstly hybridized. The target protein recognized the binding sites on DNA1-DNA2 hybrid to form a stable protein-DNA1-DNA2 conjugates. Then, the MNAzyme was assembled with the presence of DNA3 which contained another MNAzyme partzyme and the complementary sequence of DNA1. The active MNAzyme cleaved DNA4 to release the G-quadruplex that was locked in the stem of DNA4. Finally, N-methyl mesoporphyrin IX (NMM) was inserted into the released G-quadruplex structure and the fluorescence signal was turned on. Taking nuclear factor-κB p50 (NF-κB p50) as the model, the limit of detection was low to 0.14 nM. Furthermore, the sequence-specific recognition of NF-κB p50 with DNA displayed excellent selectivity and specificity. The results in present work showed that this strategy will be a promising tool for DNA-binding proteins analysis in biomedical exploration and clinical diagnosis.
Collapse
Affiliation(s)
- Chao Huang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China
| | - Xiaowen Xu
- School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China
| | - Dafeng Jiang
- Department of Physical and Chemical Testing, Shandong Center for Food Safety Risk Assessment, Shandong Center for Disease Control and Prevention, 250014, Jinan, PR China.
| | - Wei Jiang
- Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmacy, Cheeloo College of Medicine, Shandong University, Jinan, 250012, PR China; School of Chemistry and Chemical Engineering, Shandong University, 250100, Jinan, PR China.
| |
Collapse
|
6
|
The Issue of Tissue: Approaches and Challenges to the Light Control of Drug Activity. CHEMPHOTOCHEM 2021; 5:611-618. [DOI: 10.1002/cptc.202100001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
7
|
Imoto T, Minoshima M, Yokoyama T, Emery BP, Bull SD, Bito H, Kikuchi K. A Photodeactivatable Antagonist for Controlling CREB-Dependent Gene Expression. ACS CENTRAL SCIENCE 2020; 6:1813-1818. [PMID: 33145417 PMCID: PMC7596873 DOI: 10.1021/acscentsci.0c00736] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Indexed: 06/11/2023]
Abstract
A novel photodeactivation strategy for controlling gene expression has been developed based on light-induced activation of cAMP response element binding protein (CREB). Light-induced cleavage of the photoresponsive protecting group of an antagonist of CREB binding protein (CBP) results in photocleaved products with weak binding affinity for CBP. This photodissociation reaction enables protein-protein interactions between CBP and CREB that trigger the formation of a multiprotein transcription complex to turn gene expression "on". This enables irradiation of antagonist-treated HEK293T cells to be used to trigger temporal recovery of CREB-dependent transcriptional activity and endogenous gene expression under photolytic control.
Collapse
Affiliation(s)
- Takuma Imoto
- Division
of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Masafumi Minoshima
- Division
of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Tatsushi Yokoyama
- Department
of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Ben P. Emery
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Steven D. Bull
- Department
of Chemistry, University of Bath, Bath BA2 7AY, United Kingdom
| | - Haruhiko Bito
- Department
of Neurochemistry, Graduate School of Medicine, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Kazuya Kikuchi
- Division
of Advanced Science and Biotechnology, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Immunology
Frontier Research Center, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Quantum
Information and Quantum Biology Division, Institute for Open and Transdisciplinary
Research Initiatives, Osaka University, 2-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
8
|
Mechanistic insights into the activation of ester prodrugs of 666-15. Bioorg Med Chem Lett 2020; 30:127455. [PMID: 32730943 DOI: 10.1016/j.bmcl.2020.127455] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 02/06/2023]
Abstract
cAMP-response element binding protein (CREB) is an oncogenic transcription factor implicated in many different types of cancer. We previously reported the discovery of 666-15 as a potent inhibitor of CREB-mediated gene transcription. In an effort to improve the aqueous solubility of 666-15, amino ester prodrugs 1 and 4 were designed and synthesized. Detailed chemical and biological studies of 1 and 4 revealed that a small portion of the prodrugs were converted into 666-15 through intermediate 3 instead of a long-range O,N-acyl transfer reaction that was initially proposed. These results provide unique insights into the activation of these ester prodrugs.
Collapse
|
9
|
Hartmann D, Smith JM, Mazzotti G, Chowdhry R, Booth MJ. Controlling gene expression with light: a multidisciplinary endeavour. Biochem Soc Trans 2020; 48:1645-1659. [PMID: 32657338 PMCID: PMC7458398 DOI: 10.1042/bst20200014] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 06/19/2020] [Accepted: 06/22/2020] [Indexed: 12/21/2022]
Abstract
The expression of a gene to a protein is one of the most vital biological processes. The use of light to control biology offers unparalleled spatiotemporal resolution from an external, orthogonal signal. A variety of methods have been developed that use light to control the steps of transcription and translation of specific genes into proteins, for cell-free to in vivo biotechnology applications. These methods employ techniques ranging from the modification of small molecules, nucleic acids and proteins with photocages, to the engineering of proteins involved in gene expression using naturally light-sensitive proteins. Although the majority of currently available technologies employ ultraviolet light, there has been a recent increase in the use of functionalities that work at longer wavelengths of light, to minimise cellular damage and increase tissue penetration. Here, we discuss the different chemical and biological methods employed to control gene expression, while also highlighting the central themes and the most exciting applications within this diverse field.
Collapse
Affiliation(s)
- Denis Hartmann
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Jefferson M. Smith
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Giacomo Mazzotti
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Razia Chowdhry
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| | - Michael J. Booth
- Chemistry Research Laboratory, University of Oxford, Oxford OX1 3TA, U.K
| |
Collapse
|