1
|
Zhang L, Liu YY, Zong Y, Lei Z, Yu SB, Zhou W, Wang H, Zhang DW, Li ZT. Supramolecular Organic Framework that Enables Multifunctional Doxorubicin Delivery, Photofrin Post-treatment Phototoxicity Inhibition, and Heparin Neutralization. ACS APPLIED BIO MATERIALS 2025; 8:792-802. [PMID: 39654336 DOI: 10.1021/acsabm.4c01640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
Abstract
Although porous frameworks are structurally ideal for the development of biomaterials through drug adsorption, sequestration, and delivery, integration of multiple biofunctions into a biocompatible porous framework would greatly improve its potential for preclinical investigations by increasing both therapeutic value and research and development efficiency. Herein, we report the preparation of a highly biocompatible supramolecular organic framework from an imidazolium-derived tetrahedral monomer and cucurbit[8]uril. The supramolecular organic framework has been revealed to have regular intrinsic porosity and adsorb doxorubicin, photofrin, and heparins driven by hydrophobicity and/or ion-pairing electrostatic interactions. In vivo or in vitro assays illustrate that this adsorption leads to efficient intracellular delivery of doxorubicin, which enhances its antitumor efficacy, elimination of photofrin, which inhibits its post-treatment phototoxicity without reducing its photodynamic therapeutic activity, and sequestration of (low-molecular-weight) heparins, which neutralizes their anticoagulation activity more efficiently than clinically used protamine.
Collapse
Affiliation(s)
- Lingyu Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yue-Yang Liu
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Yang Zong
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Zhuo Lei
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Shang-Bo Yu
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| | - Wei Zhou
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Hui Wang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Dan-Wei Zhang
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
| | - Zhan-Ting Li
- Department of Chemistry, Fudan University, 2205 Songhu Road, Shanghai 200438, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, University of Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China
| |
Collapse
|
2
|
Zhou WL, Lin W, Chen Y, Dai XY, Liu Y. Tunable Multicolor Lanthanide Supramolecular Assemblies with White Light Emission Confined by Cucurbituril[7]. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2304009. [PMID: 37442787 DOI: 10.1002/smll.202304009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/21/2023] [Indexed: 07/15/2023]
Abstract
Macrocyclic confinement-induced supramolecular luminescence materials have important application value in the fields of bio-sensing, cell imaging, and information anti-counterfeiting. Herein, a tunable multicolor lanthanide supramolecular assembly with white light emission is reported, which is constructed by co-assembly of cucurbit[7]uril (CB[7]) encapsulating naphthylimidazolium dicarboxylic acid (G1 )/Ln (Eu3+ /Tb3+ ) complex and carbon quantum dots (CD). Benefiting from the macrocyclic confinement effect of CB[7], the supramolecular assembly not only extends the fluorescence intensity of the lanthanide complex G1 /Tb3+ by 36 times, but also increases the quantum yield by 28 times and the fluorescence lifetime by 12 times. Furthermore, the CB[7]/G1 /Ln assembly can further co-assemble with CD and diarylethene derivatives (DAE) to realize the intelligently-regulated full-color spectrum including white light, which results from the competitive encapsulation of adamantylamine and CB[7], the change of pH, and photochromic DAE. The multi-level logic gate based on lanthanide supramolecular assembly is successfully applied in anti-counterfeiting system and information storage, providing an effective method for the research of new luminescent intelligent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University, Tongliao, 028000, P. R. China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
3
|
Zhou WL, Dai XY, Lin W, Chen Y, Liu Y. A pillar[5]arene noncovalent assembly boosts a full-color lanthanide supramolecular light switch. Chem Sci 2023; 14:6457-6466. [PMID: 37325139 PMCID: PMC10266474 DOI: 10.1039/d3sc01425h] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2023] [Accepted: 05/14/2023] [Indexed: 06/17/2023] Open
Abstract
A photo-responsive full-color lanthanide supramolecular switch was constructed from a synthetic 2,6-pyridine dicarboxylic acid (DPA)-modified pillar[5]arene (H) complexing with lanthanide ion (Ln3+ = Tb3+ and Eu3+) and dicationic diarylethene derivative (G1) through a noncovalent supramolecular assembly. Benefiting from the strong complexation between DPA and Ln3+ with a 3 : 1 stoichiometric ratio, the supramolecular complex H/Ln3+ presented an emerging lanthanide emission in the aqueous and organic phase. Subsequently, a network supramolecular polymer was formed by H/Ln3+ further encapsulating dicationic G1via the hydrophobic cavity of pillar[5]arene, which greatly contributed to the increased emission intensity and lifetime, and also resulted in the formation of a lanthanide supramolecular light switch. Moreover, full-color luminescence, especially white light emission, was achieved in aqueous (CIE: 0.31, 0.32) and dichloromethane (CIE: 0.31, 0.33) solutions by the adjustment of different ratios of Tb3+ and Eu3+. Notably, the photo-reversible luminescence properties of the assembly were tuned via alternant UV/vis light irradiation due to the conformation-dependent photochromic energy transfer between the lanthanide and the open/closed-ring of diarylethene. Ultimately, the prepared lanthanide supramolecular switch was successfully applied to anti-counterfeiting through the use of intelligent multicolored writing inks, and presents new opportunities for the design of advanced stimuli-responsive on-demand color tuning with lanthanide luminescent materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- College of Chemistry and Material Science, Innovation Team of Optical Functional Molecular Devices, Inner Mongolia Minzu University Tongliao 028000 P. R. China
| | - Xian-Yin Dai
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
- School of Chemistry and Pharmaceutical Engineering, Shandong First Medical University, Shandong Academy of Medical Sciences Taian 271016 China
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University China
| |
Collapse
|
4
|
Luo Y, Zhang W, Yang XN, Yang MX, Min W, Tao Z, Xiao X. Cucurbit[10]uril-Based Orthogonal Supramolecular Polymers with Host-Guest and Coordination Interactions and Its Applications in Anion Classification. Inorg Chem 2022; 61:16678-16684. [PMID: 36206319 DOI: 10.1021/acs.inorgchem.2c02333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel orthogonal supramolecular polymer (Q[10]-TPDPB-Lu3+) in a host-guest ratio of 2:1 was successfully constructed utilizing the specificity and excellent cavity matching of Q[10] with the tripyridine derivatives (TPDPB). Significantly, non-covalent interactions between Q[10]'s hydrophobic cavities and Lu3+ were used to induce charge transfer of TPDPB to TPDPB and TPDPB to Lu3+, resulting in the construction of structurally interesting orthogonal assemblies with excellent fluorescence properties. Finally, the Q[10]-TPDPB-Lu3+ assemblies were shown to have good recognition and classification of strong and weak acid anions as well as iodide anions, and the classification was accompanied by a clear fluorescence emission change allowing visual observation.
Collapse
Affiliation(s)
- Yang Luo
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Wei Zhang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xi Nan Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Mao Xia Yang
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Wen Min
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Zhu Tao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| | - Xin Xiao
- Key Laboratory of Macrocyclic and Supramolecular Chemistry of Guizhou Province, Applied Chemistry, Guizhou University, Guiyang 550025, China
| |
Collapse
|
5
|
Zhou WL, Chen Y, Lin W, Liu Y. Luminescent lanthanide-macrocycle supramolecular assembly. Chem Commun (Camb) 2021; 57:11443-11456. [PMID: 34647938 DOI: 10.1039/d1cc04672a] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A series of macrocyclic compounds, including crown ether, cyclodextrin, cucurbituril and pillararene, bound to various specific organic/inorganic/biological guest molecules and ions through various non-covalent interactions, can not only make a single system multifunctional but also endow the system with intelligence, especially for luminescent materials. Due to their excellent luminescence properties, such as long-lived excited states, sharp linear emission bands and large Stokes shift, lanthanides have shown great advantages in luminescence, and have been more and more applied in the design of advanced functional luminescent materials. Based on reported research, we summarize the progress of lanthanide luminescent materials based on different macrocyclic compounds from ion or molecule recognition to functional nano-supramolecular assembly of the lanthanide-macrocycle supramolecular system including photo-reaction mediated switch of lanthanide luminescent molecules, multicolor luminescence, ion detection and cell imaging of rare-earth up-conversion of macrocyclic supramolecular assembly. Finally, we put forward the prospects of future development of lanthanide luminescent macrocyclic supramolecular materials.
Collapse
Affiliation(s)
- Wei-Lei Zhou
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China. .,Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, People's Republic of China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Wenjing Lin
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China.
| |
Collapse
|
6
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021; 60:19997-20002. [PMID: 34189820 DOI: 10.1002/anie.202107903] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Indexed: 01/07/2023]
Abstract
Chemoresponsive supramolecular systems with infinite switching capability are important for applications in recycled materials and intelligent devices. To attain this objective, here a chemoresponsive polypseudorotaxane is reported on the basis of a bis(p-phenylene)-34-crown-10 macrocycle (H) and a cyano-substituted viologen guest (G). H and G form a [2]pseudorotaxane (H⊃G) both in solution and in the solid state. Upon addition of AgSF6 , a polypseudorotaxane (denoted as [H⋅G⋅Ag]n ) forms as synergistically driven by host-guest complexation and metal-coordination interactions. [H⋅G⋅Ag]n depolymerizes into a [3]pseudorotaxane (denoted as H2 ⋅G⋅Ag2 ⋅acetone2 ) upon addition of H and AgSF6 , while it reforms with successive addition of G. The transformations between [H⋅G⋅Ag]n and H2 ⋅G⋅Ag2 ⋅acetone2 can be switched for infinite cycles, superior to the conventional chemoresponsive supramolecular polymeric systems with limited switching capability.
Collapse
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, 230026, P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering, Key Laboratory of Excited-State Materials of Zhejiang Province, Stoddart Institute of Molecular Science, Department of Chemistry, Zhejiang University, Hangzhou, 310027, P. R. China.,ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, P. R. China.,Green Catalysis Center and College of Chemistry, Zhengzhou University, Zhengzhou, 450001, P. R. China
| |
Collapse
|
7
|
Wu Y, Shangguan L, Li Q, Cao J, Liu Y, Wang Z, Zhu H, Wang F, Huang F. Chemoresponsive Supramolecular Polypseudorotaxanes with Infinite Switching Capability. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Yitao Wu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Liqing Shangguan
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Qi Li
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Jiajun Cao
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Yang Liu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Zeju Wang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Huangtianzhi Zhu
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
| | - Feng Wang
- CAS Key Laboratory of Soft Matter Chemistry Department of Polymer Science and Engineering University of Science and Technology of China Hefei 230026 P. R. China
| | - Feihe Huang
- State Key Laboratory of Chemical Engineering Key Laboratory of Excited-State Materials of Zhejiang Province Stoddart Institute of Molecular Science Department of Chemistry Zhejiang University Hangzhou 310027 P. R. China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center Hangzhou 311215 P. R. China
- Green Catalysis Center and College of Chemistry Zhengzhou University Zhengzhou 450001 P. R. China
| |
Collapse
|
8
|
Kong L, Liang J, Yang L, An S, Gao C, Liao X, Zhao Y, Yang B. Reversing cytotoxicity of uric acid by supramolecular encapsulation with acyclic cucurbit[n]uril. Biomed Mater 2020; 16. [PMID: 33254150 DOI: 10.1088/1748-605x/abcf04] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 11/30/2020] [Indexed: 12/27/2022]
Abstract
Supramolecular encapsulation removes harmful substances from organisms has evolved into a new strategy. In this article, we prepared three supramolecular complexes of acyclic cucurbit[n]urils (ACBs) with uric acid (UA), and studied the inclusion behaviors of ACBs and UA by fluorescence spectroscopy, UV-vis spectroscopy and nuclear magnetic resonance. Furthermore, we characterized the effect of the complexes of UA with ACBs on the expression of inflammatory biomarkers in human hepatoma HepG2 cell lines through C-reactive protein (CRP) western blot. The results showed UA molecules can be recognized by three ACBs with different binding constants, and ACBs successfully blocked the inflammatory stimulation of uric acid on HepG2 cell lines and inhibited the expression of the major inflammatory factor CRP by formations of complexes between UA and ACBs. This article proves that ACBs can efficiently reversing cytotoxicity of UA, which provides a new method to treating hyperuricemia disease.
Collapse
Affiliation(s)
- Lingguang Kong
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Kunming, Yunnan, 650500, CHINA
| | - Jing Liang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Kunming, Yunnan, 650500, CHINA
| | - Lei Yang
- Yunnan Perrrin Technology Co. Ltd.,, Yunnan Perrrin Technology Co. Ltd., Kunming, Kunming, Yunnan province , 650201, CHINA
| | - Shu An
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Kunming, Yunnan, 650500, CHINA
| | - Chuanzhu Gao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Kunming, Yunnan, 650500, CHINA
| | - Xiali Liao
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming, Kunming, Yunnan, 650500, CHINA
| | - Yulin Zhao
- Faculty of Chemical Engineering, Kunming University of Science and Technology, Faculty of Chemical Engineering, Kunming University of Science and Technology, Kunming, Yunnan, 650500, CHINA
| | - Bo Yang
- Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming University of Science and Technology, Kunming 650500, PR China., Kunming, Yunnan, 650500, CHINA
| |
Collapse
|
9
|
Cheng N, Chen Y, Zhang Y, Liu Y. Cucurbit[7]uril-Mediated 2D Single-Layer Hybrid Frameworks Assembled by Tetraphenylethene and Polyoxometalate toward Modulation of the α-Chymotrypsin Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:15615-15621. [PMID: 32134235 DOI: 10.1021/acsami.0c02976] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Construction of large-scale single-layer two-dimensional (2D) frameworks in water is significant due to their utilities in various fields. Utilizing macrocycle-mediated supramolecular self-assembly represents a promising approach; however, challenges still remain in their practical preparation. Here, we exploited a two-step supramolecular strategy to build 2D organic-inorganic hybrid frameworks at a micrometer scale in water. Taking advantage of the high binding affinity to cucurbit[7]uril (CB[7]), mono-quaternary ammonium tetraphenylethene (MQATPE) derivatives were first included with CB[7] to form a 1:1 complex (MQATPE@CB[7]). Then, just mixing the complex with anionic polyoxometalate Na9[EuW10O36]·32H2O (denoted as Eu-POM) in a 3:1 molar ratio leads to the formation of single-layer 2D films with tens of micrometers via electrostatic and π-π stacking interactions. The most unique feature of this strategy is that the steric effect imposed by CB[7] would not only lead the modules to adopt a periodic hexagonal assembly but also forbid stacking between layers through comparison with the merely multilayered 2D nanosheets self-assembled by MQATPE/Eu-POM. Interestingly, the charge interactions between MQATPE and Eu-POM would lead to the aggregation-induced emission (AIE) fluorescence of MQATPE, and white light emission could be obtained through the simple regulation of the contents of Eu-POM and MQATPE. Furthermore, due to the high surface areas and more accessible active sites, the single-layer films can act as an effective enzyme inhibitor to modulate the activity of α-chymotrypsin (ChT). These findings suggest a simple but universal approach for single-layer hybrid materials, which may hold promise for practical applications in photophysical and biomedical fields.
Collapse
Affiliation(s)
- Ni Cheng
- College of Pharmacy, Weifang Medical University, Weifang, Shandong 261053, P. R. China
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yong Chen
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yi Zhang
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
| | - Yu Liu
- College of Chemistry, State Key Laboratory of Elemento-Organic Chemistry, Nankai University, Tianjin 300071, P. R. China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300071, P. R. China
| |
Collapse
|