1
|
Sakai D, Kojima T, Kawasaki-Takasuka T, Mori K. Stereoselective synthesis of 6/7/6-fused heterocycles with multiple stereocenters via an internal redox reaction/inverse electron-demand hetero-Diels-Alder reaction sequence. Chem Commun (Camb) 2024; 60:6797-6800. [PMID: 38869043 DOI: 10.1039/d4cc02351j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
A highly stereoselective synthesis of fused heterocycles with multiple stereocenters via an internal redox reaction/inverse electron-demand hetero-Diels-Alder (IEDHDA) reaction sequence is described. The present reaction sequence has three interesting features: (1) complete control of two potentially competitive processes, i.e., hetero-Diels-Alder reaction and [1,5]-hydride shift; (2) one-shot construction of the complicated 6/7/6-fused heterocyclic structure having multiple stereocenters; and (3) high control of its stereoselectivity. When alkenylidene barbiturates with an allyl benzyl ether moiety were treated with a catalytic amount of Sc(OTf)3 and 2,2'-bipyridine, the internal redox reaction/IEDHDA reaction proceeded successively to afford 6/7/6-fused heterocycles in good chemical yields with good to excellent diastereoselectivities.
Collapse
Affiliation(s)
- Dan Sakai
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology (KCCT), 8-3 Gakuen-Higashimachi, Nishi-ku, Kobe, Hyogo 651-2194, Japan
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
2
|
Sun Z, He F, Xu Y, Lu M, Xiong H, Jiang Z, Wu C. Intramolecular Palladium(II)-Catalyzed Regioselective 6- endo or 6- exo C-H Benzannulation: An Approach for the Diversity-Oriented Synthesis of Quinolinone Derivatives from Pyridones. J Org Chem 2024; 89:7058-7064. [PMID: 38682741 DOI: 10.1021/acs.joc.4c00449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
Herein, a new intramolecular palladium(II)-catalyzed regioselective 6-endo-trig or 6-exo-trig annulation through direct C-H activation is presented as a method for the diversity-oriented synthesis of highly substituted quinolinones from pyridones. The reaction occurs under mild conditions and exhibits excellent regioselectivity, good functional group tolerance, and broad applications. This innovative approach has been successfully utilized in the synthesis of Glycopentanolone A and an intermediate of (R)-(+)-Tipifarnib.
Collapse
Affiliation(s)
- Ziyi Sun
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Fengya He
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Yiwei Xu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Mingxiang Lu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Hujie Xiong
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Zibin Jiang
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
| | - Chenggui Wu
- Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P. R. China
- Anhui Province Key Laboratory of Environmental Hormone and Reproduction, School of Biological and Food Engineering, Fuyang Normal University, Fuyang, Anhui 236037, P. R. China
| |
Collapse
|
3
|
Koyama R, Anada M, Sueki S, Makino K, Kojima T, Kawasaki-Takasuka T, Mori K. Divergent synthesis of multi-substituted phenanthrenes via an internal redox reaction/ring expansion sequence. Chem Commun (Camb) 2024; 60:3822-3825. [PMID: 38497170 DOI: 10.1039/d4cc00797b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
We report an effective synthetic route to multi-substituted phenanthrenes via an internal redox reaction/ring expansion sequence. The interesting feature of the present system is that it allows for the divergent synthesis of the target skeleton depending on the selected Lewis acid catalyst. When benzylidene malonates with a cyclic structure at the ortho-position were treated with BF3·OEt2, three sequential processes (internal redox reaction/elimination of the alkoxy group/ring expansion) proceeded to give phenanthrene derivatives in which the alkoxycarbonyl (CO2R) group and the alkyl (R) group were in close proximity to each other, in good chemical yields. In sharp contrast, treatment with Bi(OTf)3 exclusively led to the formation of another type of phenanthrene, whose R group was positioned distal to the CO2R group.
Collapse
Affiliation(s)
- Ryosei Koyama
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Masahiro Anada
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Shunsuke Sueki
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Kosho Makino
- Faculty of Pharmacy, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
- Research Institute of Pharmaceutical Sciences, Musashino University, Nishitokyo, Tokyo 202-8585, Japan
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology (KCCT), 8-3 Gakuen-Higashimachi, Nishi-ku, Kobe, 651-2194, Japan
| | - Tomoko Kawasaki-Takasuka
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
4
|
Kostopoulou I, Tzani A, Chronaki K, Prousis KC, Pontiki E, Hadjiplavlou-Litina D, Detsi A. Novel Multi-Target Agents Based on the Privileged Structure of 4-Hydroxy-2-quinolinone. Molecules 2023; 29:190. [PMID: 38202773 PMCID: PMC10780633 DOI: 10.3390/molecules29010190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 12/05/2023] [Accepted: 12/14/2023] [Indexed: 01/12/2024] Open
Abstract
In this work, the privileged scaffold of 4-hydroxy-2quinolinone is investigated through the synthesis of carboxamides and hybrid derivatives, as well as through their bioactivity evaluation, focusing on the ability of the molecules to inhibit the soybean LOX, as an indication of their anti-inflammatory activity. Twenty-one quinolinone carboxamides, seven novel hybrid compounds consisting of the quinolinone moiety and selected cinnamic or benzoic acid derivatives, as well as three reverse amides are synthesized and classified as multi-target agents according to their LOX inhibitory and antioxidant activity. Among all the synthesized analogues, quinolinone-carboxamide compounds 3h and 3s, which are introduced for the first time in the literature, exhibited the best LOX inhibitory activity (IC50 = 10 μM). Furthermore, carboxamide 3g and quinolinone hybrid with acetylated ferulic acid 11e emerged as multi-target agents, revealing combined antioxidant and LOX inhibitory activity (3g: IC50 = 27.5 μM for LOX inhibition, 100% inhibition of lipid peroxidation, 67.7% ability to scavenge hydroxyl radicals and 72.4% in the ABTS radical cation decolorization assay; 11e: IC50 = 52 μM for LOX inhibition and 97% inhibition of lipid peroxidation). The in silico docking results revealed that the synthetic carboxamide analogues 3h and 3s and NDGA (the reference compound) bind at the same alternative binding site in a similar binding mode.
Collapse
Affiliation(s)
- Ioanna Kostopoulou
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Andromachi Tzani
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Konstantina Chronaki
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| | - Kyriakos C. Prousis
- Institute of Chemical Biology, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece;
| | - Eleni Pontiki
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (D.H.-L.)
| | - Dimitra Hadjiplavlou-Litina
- Laboratory of Pharmaceutical Chemistry, Faculty of Health Sciences, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (E.P.); (D.H.-L.)
| | - Anastasia Detsi
- Laboratory of Organic Chemistry, Department of Chemical Sciences, School of Chemical Engineering, National Technical University of Athens, Heroon Polytechniou 9, Zografou Campus, 15780 Athens, Greece; (I.K.); (A.T.); (K.C.)
| |
Collapse
|
5
|
Shibata S, Amano K, Kojima T, Mori K. Lewis acid-catalyzed formal 1,3-aminomethyl migration. Chem Commun (Camb) 2023; 59:9976-9979. [PMID: 37503720 DOI: 10.1039/d3cc03059h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/29/2023]
Abstract
Here we report a Lewis acid-catalyzed 1,3-aminomethyl migration rection. When δ-amino acid derivatives were treated with a catalytic amount of Sc(OTf)3, 1,3-migration of the aminomethyl group proceeded smoothly to afford β-amino acid derivatives in moderate to good chemical yields. Detailed investigation suggested that this migration reaction proceeded through the fragmentation/recombination pathway.
Collapse
Affiliation(s)
- Suzuka Shibata
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology. 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Koutarou Amano
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology. 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | - Tatsuhiro Kojima
- Department of Applied Chemistry, Kobe City College of Technology (KCCT) 8-3, Gakuen-Higashimachi, Nishi-ku, Kobe, 651-2194, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology. 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| |
Collapse
|
6
|
Trending strategies for the synthesis of quinolinones and isoquinolinones. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.133093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
7
|
Mori K, Okawa H. Hydride shift mediated C(sp3)–H bond functionalization starting from non-aniline/phenol type substrates: Evolution into a sequential system. Tetrahedron Lett 2022. [DOI: 10.1016/j.tetlet.2022.154178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
8
|
[1,5]-Hydride Shift Triggered N-Dealkylative Cyclization into 2-Oxo-1,2,3,4-tetrahydroquinoline-3-carboxylates via Boronate Complexes. Molecules 2022; 27:molecules27165270. [PMID: 36014513 PMCID: PMC9414529 DOI: 10.3390/molecules27165270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/23/2022] Open
Abstract
A new simple one-pot two-step protocol for the synthesis of 2-oxo-1,2,3,4-tetrahydroquinoline-3-carboxylate from 2-(2-(benzylamino)benzylidene)malonate under the action of BF3·Et2O was developed. It was shown that the reaction proceeds through the formation of a stable iminium intermediate containing a difluoroboryl bridge in the dicarbonyl fragment of the molecule.
Collapse
|
9
|
Mikshiev VY, Tolstoy PM, Puzyk AM, Kirichenko SO, Antonov AS. peri-Interactions in 1,8-bis(dimethylamino)naphthalene ortho-ketimine cations facilitate [1,5]-hydride shift: selective synthesis of 1,2,3,4-tetrahydrobenzo[ h]quinazolines. Org Biomol Chem 2022; 20:4559-4568. [PMID: 35593098 DOI: 10.1039/d2ob00674j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Selective heterocyclization leading to 1,2,3,4-tetrahydrobenzo[h]quinazolines from ortho-ketimines of 1,8-bis(dimethylamino)naphthalene (DmanIms) under acid catalysis has been revealed. In contrast to the rather unreactive N,N-dimethylaniline ortho-ketimine, DmanIms readily undergo this transformation without an additional catalyst. This distinction in the reactivity underscores the importance of the second peri-NMe2 group in DmanIms, which facilitates a [1,5]-hydride shift and the subsequent cyclization. The cascade of peri-interactions emerging between 1-NMe2 and 8-NMe2 groups has been identified as a reason for the catalytic effect: (1) the hydrogen bond in the DmanIm dication constrains 1-NMe2 in the desired position providing proximity of reaction centers, (2) the repulsion of the lone pairs of 8-NMe2 group and unrelaxed 1-NMe2 group arising right after deprotonation process reduces the Gibbs free energy of activation (ΔG‡) for the straight hydride shift, and (3) the electrostatic interaction between 8-NMe2 and the charged NCH2+ group in the intermediate increases the ΔG‡ for the reverse hydride shift.
Collapse
Affiliation(s)
- Vladimir Y Mikshiev
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Peter M Tolstoy
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Aleksandra M Puzyk
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Sergey O Kirichenko
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| | - Alexander S Antonov
- Institute of Chemistry, St Petersburg State University, Universitetskij pr. 26, 198504 St Petersburg, Russian Federation.
| |
Collapse
|
10
|
Ivanov DS, Zaitseva ER, Smirnov AY, Rustamova DA, Mikhaylov AA, Sycheva MA, Gluschenko DA, Baleeva NS, Baranov MS. Chemodivergent Spirocyclization of 2‐Sec‐Aminobenzilidene Imidazolones: Lewis Versus Brønsted Acids Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200109] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Dmitrii S. Ivanov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Elvira R. Zaitseva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Alexander Yu. Smirnov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University Ostrovitianov 1 117997 Moscow Russia
| | - Dina A. Rustamova
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Andrey A. Mikhaylov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Maria A. Sycheva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Darya A. Gluschenko
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
| | - Nadezhda S. Baleeva
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University Ostrovitianov 1 117997 Moscow Russia
| | - Mikhail S. Baranov
- Institute of Bioorganic Chemistry Russian Academy of Sciences Miklukho-Maklaya 16/10 117997 Moscow Russia
- Pirogov Russian National Research Medical University Ostrovitianov 1 117997 Moscow Russia
| |
Collapse
|
11
|
Silva VLM, Pinto DCGA, Santos CMM, Rocha DHA. 15.4.5 Quinolinones and Related Systems (Update 2022). KNOWLEDGE UPDATES 2022/3 2022. [DOI: 10.1055/sos-sd-115-01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractQuinolinones, of which the quinolin-4(1H)-one ring system can be highlighted, represent an exciting class of nitrogen heterocycles. The quinolinone motif can be found in many natural compounds and approved drugs for several diseases. This chapter is a comprehensive survey of the methods for the synthesis of quinolin-2(1H)-ones, quinolin-4(1H)-ones, and their thio- and amino derivatives, and is an update to the previous Science of Synthesis chapter (Section 15.4), covering the period between 2003 and 2020.
Collapse
|
12
|
Cao L, Hu F, Sun H, Zhang X, Li SS. Redox-triggered dearomative [5 + 1] annulation of indoles with O-alkyl ortho-oxybenzaldehydes for the synthesis of spirochromanes. Org Chem Front 2022. [DOI: 10.1039/d1qo01755a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The dearomative [5 + 1] annulation of 2-methylindoles with new five-membered synthon was developed through cascade [1,5]-hydride transfer/dearomative cyclization in HFIP for the synthesis of spirochromanes bearing the 2-methylindolenine skeleton.
Collapse
Affiliation(s)
- Lianyi Cao
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Fangzhi Hu
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Hongmei Sun
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xiaomei Zhang
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
| | - Shuai-Shuai Li
- Asymmetric Synthesis and Chiraltechnology Key Laboratory of Sichuan Province, Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu, China
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
13
|
Ge C, Wang L, Hu F, Ding Z, Li X, Xiao D, Wang J, Li SS. HFIP-mediated three-component imidization of electron-rich arenes with in situ formed spiroindolenines for facile construction of 2-arylspiroindolenines. Org Chem Front 2022. [DOI: 10.1039/d1qo01862k] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
The three-component reaction of o-aminobenzaldehydes with 5-hydroxyindole and electron-rich arenes has been achieved through HFIP-mediated cascade hydride transfer/dearomative cyclization/CDC-type imidization at room temperature under air.
Collapse
Affiliation(s)
- Chunyan Ge
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Liang Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Fangzhi Hu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Zhanshuai Ding
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Xinyao Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Deshuai Xiao
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Jiayi Wang
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, China
| |
Collapse
|
14
|
Zhang BB, Peng S, Wang F, Lu C, Nie J, Chen Z, Yang G, Ma C. Borane-catalyzed cascade Friedel–Crafts alkylation/[1,5]-hydride transfer/Mannich cyclization to afford tetrahydroquinolines. Chem Sci 2022; 13:775-780. [PMID: 35173942 PMCID: PMC8768868 DOI: 10.1039/d1sc05629h] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 12/20/2021] [Indexed: 12/15/2022] Open
Abstract
We report a redox-neutral annulation reaction of tertiary amines with electron-deficient alkynes under metal-free and oxidant-free conditions.
Collapse
Affiliation(s)
- Bei-Bei Zhang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Shuo Peng
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Feiyi Wang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Cuifen Lu
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Junqi Nie
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Zuxing Chen
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Guichun Yang
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| | - Chao Ma
- Hubei Collaborative Innovation Centre for Advanced Organic Chemical Materials, College of Chemistry and Chemical Engineering, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, Hubei University, Wuhan, 430062, P. R. China
| |
Collapse
|
15
|
Stereoselective synthesis of highly congested tetralin-fused spirooxindoles with hydroxy group: Pseudo oxygen atom induced hydride shift/cyclization process. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153408] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
Zhou R, Paradies J. Borane Catalyzed Redox Isomerization of 2‐Amino Chalcones: Hydride Abstraction or Hydride Migration? European J Org Chem 2021. [DOI: 10.1002/ejoc.202100883] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Rundong Zhou
- Chemistry Department Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| | - Jan Paradies
- Chemistry Department Paderborn University Warburger Strasse 100 33098 Paderborn Germany
| |
Collapse
|
17
|
Wicker G, Schoch R, Paradies J. Diastereoselective Synthesis of Dihydro-quinolin-4-ones by a Borane-Catalyzed Redox-Neutral endo-1,7-Hydride Shift. Org Lett 2021; 23:3626-3630. [PMID: 33843243 DOI: 10.1021/acs.orglett.1c01018] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The borane-catalyzed synthesis of dihydroquinoline-4-ones is developed. The amino-substituted chalcones undergo a 1,7-hydride shift upon Lewis acid activation to form a zwitterionic iminium enolate, which collapses to the dihydroquinoline-4-one scaffold. The reaction proceeds in high yields (75-99%) with an excellent diastereoselectivity of up to >99:1 (cis:trans). The reaction mechanism is investigated by kinetic, isotope labeling, and computational experiments.
Collapse
Affiliation(s)
- Garrit Wicker
- Paderborn University, Chemistry Department, Warburger-Strasse 100, D-33098 Paderborn, Germany
| | - Roland Schoch
- Paderborn University, Chemistry Department, Warburger-Strasse 100, D-33098 Paderborn, Germany
| | - Jan Paradies
- Paderborn University, Chemistry Department, Warburger-Strasse 100, D-33098 Paderborn, Germany
| |
Collapse
|
18
|
Yuan WC, Zuo J, Yuan SP, Zhao JQ, Wang ZH, You Y. Ring expansion and ring opening of 3-halooxindoles with N-alkoxycarbonyl- O-tosylhydroxylamines for divergent access to 4-aminoquinolin-2-ones and N-Cbz- N’-arylureas. Org Chem Front 2021. [DOI: 10.1039/d0qo01335h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The reaction of N-alkoxycarbonyl-O-tosylhydroxylamines with indol-2-ones in situ generated from 3-halooxindoles has been developed for divergently accessing 4-aminoquinolin-2-ones and N-Cbz-N’-arylureas in good to excellent yields.
Collapse
Affiliation(s)
- Wei-Cheng Yuan
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Jian Zuo
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Shu-Pei Yuan
- National Engineering Research Center of Chiral Drugs
- Chengdu Institute of Organic Chemistry
- Chinese Academy of Sciences
- Chengdu
- China
| | - Jian-Qiang Zhao
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Zhen-Hua Wang
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| | - Yong You
- Institute for Advanced Study
- Chengdu University
- Chengdu 610106
- China
| |
Collapse
|
19
|
Bhowmik A, Das S, Sarkar W, Saidalavi KM, Mishra A, Roy A, Deb I. Diastereoselective Spirocyclization via Intramolecular C(
sp
3
)−H Bond Functionalization Triggered by Sequential [1,5]‐Hydride Shift/Cyclization Process: Approach to Spiro‐tetrahydroquinolines. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001011] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Arup Bhowmik
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Sumit Das
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
- Academy of Scientific and Innovative Research (AcSIR). Kamla Nehru Nagar 201002 Ghaziabad India
| | - Writhabrata Sarkar
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - K. M. Saidalavi
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Aniket Mishra
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Anupama Roy
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| | - Indubhusan Deb
- Organic and Medicinal Chemistry Division Indian Institute of Chemical Biology 4-Raja S. C. Mullick Road, Jadavpur Kolkata 700032 India
| |
Collapse
|
20
|
Hoshino D, Mori K. Rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans by hybrid use of Lewis/Brønsted acid catalysts. Org Biomol Chem 2020; 18:6602-6606. [PMID: 32815970 DOI: 10.1039/d0ob01582b] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
We report herein a rapid access to 3-indolyl-1-trifluoromethyl-isobenzofurans via a [1,4]-hydride shift/cyclizatin/intermolecular nucleophilic addition reaction sequence. In this process, a Lewis acid promoted internal redox reaction ([1,4]-hydride shift/cyclization) followed by a Brønsted acid promoted intermolecular reaction (generation of cyclic oxonium cation/intermolecular Friedel-Crafts reaction) occurred to give various 3-indolyl-1-trifluoromethyl-isobenzofurans in good chemical yields.
Collapse
Affiliation(s)
- Daiki Hoshino
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan.
| | | |
Collapse
|
21
|
Yokoo K, Sakai D, Mori K. Highly Stereoselective Synthesis of Fused Tetrahydropyrans via Lewis-Acid-Promoted Double C(sp3)–H Bond Functionalization. Org Lett 2020; 22:5801-5805. [DOI: 10.1021/acs.orglett.0c01867] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Kazuma Yokoo
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Dan Sakai
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| | - Keiji Mori
- Department of Applied Chemistry, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei, Tokyo 184-8588, Japan
| |
Collapse
|
22
|
Duan K, An XD, Li LF, Sun LL, Qiu B, Li XJ, Xiao J. Hydride Transfer Initiated Redox-Neutral Cascade Cyclizations of Aurones: Facile Access to [6,5] Spirocycles. Org Lett 2020; 22:2537-2541. [PMID: 32186385 DOI: 10.1021/acs.orglett.0c00309] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Reported herein is the hydride transfer initiated redox-neutral cascade cyclizations of aurones, providing a variety of [6,5] spiro-heterocycles in satisfactory yields and good diastereoselectivities.
Collapse
Affiliation(s)
- Kang Duan
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xiao-De An
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Long-Fei Li
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Lian-Lian Sun
- The Affiliated Hospital of Huizhou Health Sciences Polytechnic, Huizhou, 516025, China
| | - Bin Qiu
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China
| | - Xian-Jiang Li
- Shandong Kangqiao Biotechnology Co. Ltd., Binzhou, 256500, China
| | - Jian Xiao
- School of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao, 266109, China.,School of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, 266109, China
| |
Collapse
|
23
|
Duan K, Shi H, Wang LX, Li SS, Xu L, Xiao J. Hydride transfer enabled switchable dearomatization of indoles in the carbocyclic ring and the pyrrole ring. Org Chem Front 2020. [DOI: 10.1039/d0qo00658k] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Hydride transfer enabled the first success of the regioselective dearomatization of indoles in the carbocyclic ring and the pyrrole ring, which was induced by ortho-quinone methides and vinylogous iminium intermediates, respectively.
Collapse
Affiliation(s)
- Kang Duan
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Hongjin Shi
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Lin-Xuan Wang
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Shuai-Shuai Li
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Lubin Xu
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
| | - Jian Xiao
- College of Chemistry and Pharmaceutical Sciences
- Qingdao Agricultural University
- Qingdao 266109
- China
- School of Marine Science and Engineering
| |
Collapse
|