1
|
Garrido-González JJ, Medrano-Uribe K, Rosso C, Humbrías-Martín J, Dell'Amico L. Photocatalytic Synthesis and Functionalization of Sulfones, Sulfonamides and Sulfoximines. Chemistry 2024; 30:e202401307. [PMID: 39037368 DOI: 10.1002/chem.202401307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Indexed: 07/23/2024]
Abstract
Sulfur(VI)-based functional groups are popular scaffolds in a wide variety of research fields including synthetic and medicinal chemistry, as well as chemical biology. The growing interest in sulfur(VI)-containing molecules has motivated the scientific community to explore new methods to synthesize and modify them. Here, photocatalysis plays a key role granting access to new types of reactivity under mild reaction conditions. In this Perspective, we present a selection of works reported in the last six years focused on the photocatalytic assembly and reactivity of sulfones, sulfonamides, and sulfoximines. We addressed the key synthetic intermediates for each transformation, while discussing limitations and strength points of the protocols. Future directions of the field are finally presented.
Collapse
Affiliation(s)
- José J Garrido-González
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Katy Medrano-Uribe
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Cristian Rosso
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Jorge Humbrías-Martín
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| | - Luca Dell'Amico
- Department of Chemical Sciences, University of Padova, Via Francesco Marzolo 1, 35131, Padova, Italy
| |
Collapse
|
2
|
Yu SW, Chen ZJ, Li HQ, Li WX, Li Y, Li Z, Wang ZY. Oxysulfonylation of Alkynes with Sodium Sulfinates to Access β-Keto Sulfones Catalyzed by BF 3·OEt 2. Molecules 2024; 29:3559. [PMID: 39124964 PMCID: PMC11314596 DOI: 10.3390/molecules29153559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/26/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
An efficient and operationally simple method for the synthesis of β-keto sulfones through the BF3·OEt2-promoted reaction of alkynes and sodium sulfinates is developed. With its facile and selective access to the targets, it features good functional group compatibility, mild conditions, easily available starting materials, and good yields. Notably, the reaction does not require metal catalysts or chemical reagents with pungent odors.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Zhao-Yang Wang
- School of Chemistry, South China Normal University, Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, Guangzhou 510006, China; (S.-W.Y.); (Z.-J.C.); (H.-Q.L.); (W.-X.L.); (Y.L.); (Z.L.)
| |
Collapse
|
3
|
Liu C, Ma Y, Lian R, Chen J, Yang M, Cheng J. Regulation of Photogenerated Redox Species through High Crystallinity Carbon Nitride for Improved C-S Coupling Reactions. CHEMSUSCHEM 2024; 17:e202301882. [PMID: 38242851 DOI: 10.1002/cssc.202301882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/14/2024] [Accepted: 01/19/2024] [Indexed: 01/21/2024]
Abstract
A novel and efficient approach for the synthesis of α, β-unsaturated sulfones through heterogeneous photocatalyzed C-S coupling reactions have been developed. The use of molten-salt method derived carbon nitride (MCN), a transition metal-free polymeric photocatalyst, combined with enhanced crystallinity and potassium iodide as an additive, effectively modulates photogenerated reactive redox species, markedly increasing the overall reaction selectivity. This method achieves the shortest reaction time (2 h) with high yield (up to 95 %) among the reported heterogeneous catalytic C-S bond formation reactions, matching the efficiency of the homogeneous photocatalysts. Furthermore, the application to challenging alkyne substrates has been demonstrated, underscoring the potential for a broad range of applications in pharmaceutical research and synthetic chemistry.
Collapse
Affiliation(s)
- Chen Liu
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Yukun Ma
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Ronghong Lian
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiayin Chen
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Mingcheng Yang
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| | - Jiajia Cheng
- State Key Laboratory of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou University, Fuzhou, 350116, China
| |
Collapse
|
4
|
Zhang G, Feng B, Wang Y, Chen J, Ma X, Song Q. 1,1-Oxycarbonation of Terminal Alkynes via Sequential Borylation, 1,2-Migration, and Oxidation with Oxone. Org Lett 2024; 26:3109-3113. [PMID: 38552168 DOI: 10.1021/acs.orglett.4c00738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2024]
Abstract
Alkynes are readily available and multifunctional synthetic intermediates, but their 1,1-oxofunctionalization remains challenging. Herein, we report a 1,1-oxycarbonation of terminal alkynes to construct ketones through sequential borylation, 1,2-carbon migration, and oxidation with Oxone as the proton source and oxidant. The synthetic potential of this transformation is showcased by the broad functional groups, scale-up synthesis, and diverse product transformations.
Collapse
Affiliation(s)
- Guan Zhang
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Bofan Feng
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Yutong Wang
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Jinglong Chen
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, Fujian 350108, China
| | - Xingxing Ma
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
| | - Qiuling Song
- Key Laboratory of Molecule Synthesis and Function Discovery, Fujian Province University, College of Chemistry at Fuzhou University, Fuzhou, Fujian 350108, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China
| |
Collapse
|
5
|
Di Terlizzi L, Nicchio L, Callegari C, Scaringi S, Neuville L, Fagnoni M, Protti S, Masson G. Visible-Light-Mediated Divergent and Regioselective Vicinal Difunctionalization of Styrenes with Arylazo Sulfones. Org Lett 2023; 25:9047-9052. [PMID: 38085821 DOI: 10.1021/acs.orglett.3c03786] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Activated by visible light, arylazo sulfones can serve as multifaceted reactants and are employed in diazenylation, sulfonylation, and arylation reactions under (photo)catalyst-free conditions. Such versatile reactivity enabled us to develop an operationally simple, regioselective, and tunable difunctionalization of styrenes with arylazo sulfones to produce α-sulfonyl arylhydrazones and 1,2-alkoxyarylated products in moderate to excellent yields. Furthermore, such difunctionalized products have been exploited as key building blocks for the synthesis of various heterocycles.
Collapse
Affiliation(s)
- Lorenzo Di Terlizzi
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Luca Nicchio
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Camilla Callegari
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Simone Scaringi
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Luc Neuville
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| | - Maurizio Fagnoni
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Stefano Protti
- PhotoGreen Lab, Department of Chemistry, University of Pavia, Pavia 27100, Italy
| | - Geraldine Masson
- Institut de Chimie des Substances Naturelles (ICSN), CNRS UPR 2301, Université Paris-Saclay, 1 avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
- HitCat, Seqens-CNRS joint laboratory, Seqens'Lab, 8 Rue de Rouen, 78440 Porcheville, France
| |
Collapse
|
6
|
Renzi P, Azzi E, Ascensio S, Parisotto S, Sordello F, Pellegrino F, Ghigo G, Deagostino A. Inexpensive and bench stable diarylmethylium tetrafluoroborates as organocatalysts in the light mediated hydrosulfonylation of unactivated alkenes. Chem Sci 2023; 14:2721-2734. [PMID: 36908942 PMCID: PMC9993860 DOI: 10.1039/d3sc00182b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023] Open
Abstract
In this paper, we present the synthetic potential of diarylmethylium tetrafluoroborates as catalysts for the visible light promoted hydrosulfonylation of unactivated alkenes. For the first time, these salts, which are bench stable and easily preparable on a multi-gram scale, were employed as organocatalysts. Interestingly, a catalyst loading of only 1 mol% allowed sulfone products to be efficiently obtained from good-to-excellent yields with high functional-group tolerance and scalability up to 15 mmol of alkene. The mechanistic study, both experimental and computational, presented here, revealed an alternative mechanism for the formation of the key sulfonyl radical. Indeed, the photoactive species was proved not to be the diarylcarbenium salt itself, but two intermediates, a stable S-C adduct and an ion couple, that were formed after its interaction with sodium benzenesulfinate. Upon absorbing light, the ion couple could reach an excited state with a charge-transfer character which gave the fundamental sulfonyl radical. A PCET (proton-coupled electron transfer) closes the catalytic cycle reforming the diarylcarbenium salt.
Collapse
Affiliation(s)
- Polyssena Renzi
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Emanuele Azzi
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Sylvain Ascensio
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Stefano Parisotto
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Fabrizio Sordello
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Francesco Pellegrino
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Giovanni Ghigo
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| | - Annamaria Deagostino
- Department of Chemistry, University of Torino Via Pietro Giuria, 7 10125 Torino Italy
| |
Collapse
|
7
|
Lighting Up the Organochalcogen Synthesis: A Concise Update of Recent Photocatalyzed Approaches. Catalysts 2023. [DOI: 10.3390/catal13030520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
This review describes the recent advances in photocatalyzed reactions to form new carbon–sulfur and carbon–selenium bonds. With a total of 136 references, of which 81 articles are presented, the authors introduce in five sections an updated picture of the state of the art in the light-promoted synthesis of organochalcogen compounds (from 2019 to present). The light-promoted synthesis of sulfides by direct sulfenylation of C–C π-bonds; synthesis of sulfones; the activation of Csp2–N bond in the formation of Csp2–S bonds; synthesis of thiol ester, thioether and thioacetal; and the synthesis of organoselenium compounds are discussed, with detailed reaction conditions and selected examples for each protocol.
Collapse
|
8
|
Ye H, Zhou L, Chen Y, Tong H. Visible light driven multicomponent synthesis of difluoroamidosulfonyl quinoline derivatives. Org Biomol Chem 2023; 21:846-850. [PMID: 36602158 DOI: 10.1039/d2ob02069f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A visible-light-induced photocatalyst-free three-component radical tandem cyclization of N-propargylamine and N-allylbromodifluoroacetamides with the insertion of sulfur dioxide has been developed. Diverse difluoroamidosulfonylated quinolines are obtained in moderate to good yields. This protocol features broad functional group tolerance and high regioselectivity. Moreover, mechanistic studies reveal the involvement of the radical pathway and the formation of an electron donor-acceptor (EDA) complex in this reaction.
Collapse
Affiliation(s)
- Haiwei Ye
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Liping Zhou
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Yunhua Chen
- Chemical Pharmaceutical Research Institute, Taizhou Vocational & Technical College, Taizhou, 318000, P.R. China.
| | - Huaguang Tong
- Taizhou Daozhi Tech Co., Ltd, Taizhou, 318000, P.R. China
| |
Collapse
|
9
|
Rongalite-promoted synthesis of β-keto sulfones via radical cascade reaction. MENDELEEV COMMUNICATIONS 2022. [DOI: 10.1016/j.mencom.2022.09.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
10
|
Zhang X, Wang L, Zhu Q. Magnetically recyclable Cu-BTC@Fe 3O 4-catalyzed chlorosulfonylation of vinylarenes. PHOSPHORUS SULFUR 2022. [DOI: 10.1080/10426507.2022.2112582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Xin Zhang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, P. R. China
| | - Liang Wang
- National-Local Joint Engineering Research Center of Biomass Refining and High-Quality Utilization, Changzhou University, Changzhou, P. R. China
- School of Chemical and Pharmaceutical Engineering, Changzhou Vocational Institute of Engineering, Changzhou, P. R. China
| | - Qiaoyong Zhu
- Changzhou Precision Testing Technology Co., LTD, Changzhou, P. R. China
| |
Collapse
|
11
|
Peng S, Liu J, Yang LH, Xie LY. Sunlight Induced and Recyclable g-C 3N 4 Catalyzed C-H Sulfenylation of Quinoxalin-2(1 H)-Ones. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27155044. [PMID: 35956990 PMCID: PMC9370749 DOI: 10.3390/molecules27155044] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/03/2022] [Accepted: 08/05/2022] [Indexed: 11/16/2022]
Abstract
A sunlight-promoted sulfenylation of quinoxalin-2(1H)-ones using recyclable graphitic carbon nitride (g-C3N4) as a heterogeneous photocatalyst was developed. Using the method, various 3-sulfenylated quinoxalin-2(1H)-ones were obtained in good to excellent yields under an ambient air atmosphere. Moreover, the heterogeneous catalyst can be recycled at least six times without significant loss of activity.
Collapse
|
12
|
Singh PP, Srivastava V. Recent advances in visible-light graphitic carbon nitride (g-C 3N 4) photocatalysts for chemical transformations. RSC Adv 2022; 12:18245-18265. [PMID: 35800311 PMCID: PMC9210974 DOI: 10.1039/d2ra01797k] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 06/04/2022] [Indexed: 01/02/2023] Open
Abstract
Graphitic carbon nitride (g-C3N4) has emerged as a new research hotspot, attracting broad interdisciplinary attention in the form of metal-free and visible-light-responsive photocatalysts in the field of solar energy conversion and environmental remediation. These photocatalysts have evolved as attractive candidates due to their non-toxicity, chemical stability, efficient light absorption capacity in the visible and near-infrared regions, and adaptability as a platform for the fabrication of hybrid materials. This review mainly describes the latest advances in g-C3N4 photocatalysts for chemical transformations. In addition, the typical applications of g-C3N4-based photocatalysts involving organic transformation reactions are discussed (synthesis of heterocycles, hydrosulfonylation, hydration, oxygenation, arylation, coupling reactions, etc.).
Collapse
Affiliation(s)
- Praveen P Singh
- Department of Chemistry, United College of Engineering & Research Naini Prayagraj 211010 India
| | - Vishal Srivastava
- Department of Chemistry, CMP Degree College, University of Allahabad Prayagraj 211002 India
| |
Collapse
|
13
|
Liu Y, Guo W. Visible‐Light Driven C‐P Bond Formation with Recyclable Carbon Nitride Photocatalyst. ChemCatChem 2022. [DOI: 10.1002/cctc.202200449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Yang Liu
- Xi'an Jiaotong University Frontier Institute of Science and Technology Frontier Institute of Science and Technology CHINA
| | - Wusheng Guo
- Xi'an Jiaotong University Frontier Institute of Science and Technology FIST Yanxiang Road 99 710045 Xi'an CHINA
| |
Collapse
|
14
|
Coppola GA, Pillitteri S, Van der Eycken EV, You SL, Sharma UK. Multicomponent reactions and photo/electrochemistry join forces: atom economy meets energy efficiency. Chem Soc Rev 2022; 51:2313-2382. [PMID: 35244107 DOI: 10.1039/d1cs00510c] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Visible-light photoredox catalysis has been regarded as an extremely powerful tool in organic chemistry, bringing the spotlight back to radical processes. The versatility of photocatalyzed reactions has already been demonstrated to be effective in providing alternative routes for cross-coupling as well as multicomponent reactions. The photocatalyst allows the generation of high-energy intermediates through light irradiation rather than using highly reactive reagents or harsh reaction conditions. In a similar vein, organic electrochemistry has experienced a fruitful renaissance as a tool for generating reactive intermediates without the need for any catalyst. Such milder approaches pose the basis toward higher selectivity and broader applicability. In photocatalyzed and electrochemical multicomponent reactions, the generation of the radical species acts as a starter of the cascade of events. This allows for diverse reactivity and the use of reagents is usually not covered by classical methods. Owing to the availability of cheaper and more standardized photo- and electrochemical reactors, as well as easily scalable flow-setups, it is not surprising that these two fields have become areas of increased research interest. Keeping these in view, this review is aimed at providing an overview of the synthetic approaches in the design of MCRs involving photoredox catalysis and/or electrochemical activation as a crucial step with particular focus on the choice of the difunctionalized reagent.
Collapse
Affiliation(s)
- Guglielmo A Coppola
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Serena Pillitteri
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| | - Erik V Van der Eycken
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium. .,Peoples' Friendship University of Russia (RUDN University), 6 Miklukho-Maklaya Street, Moscow 117198, Russia
| | - Shu-Li You
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Lu, Shanghai 200032, China.
| | - Upendra K Sharma
- Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Department of Chemistry, University of Leuven (KU Leuven), Celestijnenlaan 200F, B-3001, Leuven, Belgium.
| |
Collapse
|
15
|
Chen X, Lu S, Yan Y, Wang J, Yang L, Sun P. Hydrogen Bond‐enabled Catalyst and Additive‐free Oxy‐sulfonylation of Alkynes for the Synthesis of β‐Keto sulfones. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202101444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Xingyu Chen
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China CHINA
| | - Sixian Lu
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Yuyan Yan
- Shenzhen People's Hospital ( Second Clinical Medical School of Jinan University; First Affiliated Hospital of Southern University of Science and Technology) CHINA
| | - Jigang Wang
- Institute of Chinese Materia Medica and Artemisinin Research Center, China Academy of Chinese Medical Sciences, Beijing 100700, P. R. China SINGAPORE
| | - Lan Yang
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| | - Peng Sun
- China Academy of Chinese Medical Sciences Institute of Chinese Materia Medica CHINA
| |
Collapse
|
16
|
Shi P, Tu Y, Wang C, Ma D, Bolm C. Visible Light-Promoted Synthesis of β-Keto Sulfoximines from N-Tosyl-Protected Sulfoximidoyl Chlorides. J Org Chem 2022; 87:3817-3824. [PMID: 35041422 DOI: 10.1021/acs.joc.1c02971] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Under visible light, N-tosyl-protected sulfoximidoyl chlorides react with aryl alkynes to give β-keto sulfoximines. The reaction is characterized by a high functional group tolerance and good yields. It can be improved by the presence of a ruthenium photocatalyst. Air is the source of the ketonic oxygen in the products.
Collapse
Affiliation(s)
- Peng Shi
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Yongliang Tu
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Chenyang Wang
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Ding Ma
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| | - Carsten Bolm
- Institute of Organic Chemistry, RWTH Aachen University, Landoltweg 1, 52074 Aachen, Germany
| |
Collapse
|
17
|
Jin JK, Wu K, Liu XY, Huang GQ, Huang YL, Luo D, Xie M, Zhao Y, Lu W, Zhou XP, He J, Li D. Building a Pyrazole-Benzothiadiazole-Pyrazole Photosensitizer into Metal-Organic Frameworks for Photocatalytic Aerobic Oxidation. J Am Chem Soc 2021; 143:21340-21349. [PMID: 34878287 DOI: 10.1021/jacs.1c10008] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Charge separation plays a crucial role in regulating photochemical properties and therefore warrants consideration in designing photocatalysts. Metal-organic frameworks (MOFs) are emerging as promising candidates for heterogeneous photocatalysis due to their structural designability and tunability of photon absorption. Herein, we report the design of a pyrazole-benzothiadiazole-pyrazole organic molecule bearing a donor-acceptor-donor conjugated π-system for fast charge separation. Further attempts to integrate such a photosensitizer into MOFs afford a more effective heterogeneous photocatalyst (JNU-204). Under visible-light irradiation, three aerobic oxidation reactions involving different oxygenation pathways were achieved on JNU-204. Recycling experiments were conducted to demonstrate the stability and reusability of JNU-204 as a robust heterogeneous photocatalyst. Furthermore, we illustrate its applications in the facile synthesis of pyrrolo[2,1-a]isoquinoline-containing heterocycles, core skeletons of a family of marine natural products. JNU-204 is an exemplary MOF platform with good photon absorption, suitable band gap, fast charge separation, and extraordinary chemical stability for proceeding with aerobic oxidation reactions under visible-light irradiation.
Collapse
Affiliation(s)
- Ji-Kang Jin
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Kun Wu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xin-Yi Liu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Guo-Quan Huang
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yong-Liang Huang
- Department of Chemistry, Shantou University Medical College, Shantou, Guangdong 515041, P. R. China
| | - Dong Luo
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Mo Xie
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Yifang Zhao
- Guangdong Provincial Key Laboratory of Industrial Surfactant, Institute of Chemical Engineering, Guangdong Academy of Sciences, Guangzhou, Guangdong 510665, P. R. China
| | - Weigang Lu
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Xiao-Ping Zhou
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| | - Jian He
- Department of Chemistry and State Key Laboratory of Synthetic Chemistry, The University of Hong Kong, Pokfulam Road, Hong Kong, P. R. China
| | - Dan Li
- College of Chemistry and Materials Science, and Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, P. R. China
| |
Collapse
|
18
|
Sakkani N, Jakkampudi S, Sadiq N, Zhao JC. Synthesis of α‐Sulfonyl Ketones through a Salicylic Acid‐Catalyzed Multicomponent Reaction Involving Arylsulfonation and Oxidation. ChemistrySelect 2021. [DOI: 10.1002/slct.202104138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Nagaraju Sakkani
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio Texas 78249-0698 USA
| | - Satish Jakkampudi
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio Texas 78249-0698 USA
| | - Nouraan Sadiq
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio Texas 78249-0698 USA
| | - John C.‐G. Zhao
- Department of Chemistry University of Texas at San Antonio One UTSA Circle San Antonio Texas 78249-0698 USA
| |
Collapse
|
19
|
Wang Y, Zhao Y, Cai C, Wang L, Gong H. Dioxygen-Triggered Oxosulfonylation/Sulfonylation of Terminal Olefins toward β-Keto Sulfones/Sulfones. Org Lett 2021; 23:8296-8301. [PMID: 34664970 DOI: 10.1021/acs.orglett.1c03049] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
A dioxygen-triggered oxosulfonylation/sulfonylation of unactivated olefins to achieve β-keto sulfones/sulfones has been developed. Interestingly, pluralistic mechanisms were found when different types of compounds were applied as substrates, and different products were achieved. The reaction is carried out with a high atomic efficiency in the absence of a metal and a catalyst at room temperature under an air atmosphere. Importantly, as a proof-of-concept, a bioactive molecule was synthesized on a gram-scale level using this method.
Collapse
Affiliation(s)
- Yanjie Wang
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Yuhan Zhao
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Changqun Cai
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| | - Lingyun Wang
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China.,School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, China
| | - Hang Gong
- The Key Laboratory for Green Organic Synthesis and Application of Hunan Province, Key Laboratory of Environmentally Friendly Chemistry and Application of Ministry of Education, College of Chemistry, Xiangtan University, Xiangtan 411105, China
| |
Collapse
|
20
|
Chalotra N, Kumar J, Naqvi T, Shah BA. Photocatalytic functionalizations of alkynes. Chem Commun (Camb) 2021; 57:11285-11300. [PMID: 34617556 DOI: 10.1039/d1cc04014f] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Visible light mediated functionalizations have significantly expanded the scope of alkynes by unraveling new mechanistic pathways and enabling their transformation to diverse structural entities. The photoredox reactions on alkynes rely on their innate capability to generate myriad carbon-centred radicals via single electron transfer (SET), thereby, allowing the introduction of new radical precursors. Moreover, an array of methods have been developed facilitating transformations such as vicinal or gem-difunctionalization, annulation, cycloaddition and oxidative reactions to construct numerous key building blocks of natural and pharmaceutically important molecules. In addition, the introduction of photoredox chemistry has successfully been used to deal with the challenges associated with alkyne functionalization such as stereoselective and regioselective control. This article accounts for several visible light mediated functionalization reactions of alkynes, wherein they have been transformed into α-oxo compounds, β-keto sulfoxides, substituted olefins, N-heterocycles, internal alkynes and sulfur containing compounds. The article has been primarily categorized into various sections based on the reaction type with particular attention being paid to mechanistic details, advancement and future applications.
Collapse
Affiliation(s)
- Neha Chalotra
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Jaswant Kumar
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| | - Tahira Naqvi
- Govt. College for Women, MA Road, Srinagar 190001, India
| | - Bhahwal Ali Shah
- Academy of Scientific and Industrial Research (AcSIR), Ghaziabad 201002, India.,Natural Product & Medicinal Chemistry, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India.
| |
Collapse
|
21
|
Bai J, Yan S, Zhang Z, Guo Z, Zhou CY. Visible-Light Carbon Nitride-Catalyzed Aerobic Cyclization of Thiobenzanilides under Ambient Air Conditions. Org Lett 2021; 23:4843-4848. [PMID: 34076439 DOI: 10.1021/acs.orglett.1c01571] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
A metal-free heterogeneous photocatalysis has been developed for the synthesis of benzothiazoles via intramolecular C-H functionalization/C-S bond formation of thiobenzanilides by inexpensive graphitic carbon nitride (g-C3N4) under visible-light irradiation. This reaction provides access to a broad range of 2-substituted benzothiazoles in high yields under an air atmosphere at room temperature without addition of a strong base or organic oxidizing reagents. In addition, the catalyst was found to be stable and reusable after five reaction cycles.
Collapse
Affiliation(s)
- Jin Bai
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Sijia Yan
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| | - Zhuxia Zhang
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Zhen Guo
- College of Materials Science & Engineering, Key Laboratory of Interface Science and Engineering in Advanced Materials, Ministry of Education, Taiyuan University of Technology, Shanxi 030024, People's Republic of China
| | - Cong-Ying Zhou
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Functional Supramolecular Coordination Materials and Applications, Jinan University, Guangzhou 510632, People's Republic of China
| |
Collapse
|
22
|
Renzi P, Azzi E, Lanfranco A, Moro R, Deagostino A. Visible Light as the Key for the Formation of Carbon–Sulfur Bonds in Sulfones, Thioethers, and Sulfonamides: An Update. SYNTHESIS-STUTTGART 2021. [DOI: 10.1055/a-1509-5541] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
AbstractThis review summarizes the most relevant advancements made in the photocatalyzed synthesis of sulfones, thioethers, and sulfonamides from 2017 to the beginning of 2021. Synthetic strategies towards the construction of sulfur–carbon bonds are discussed together with the proposed reaction mechanisms. Interestingly, sulfur-based functional groups, which are of fundamental importance for the pharmaceutical field, can be assembled by photocatalysis in an easy and straightforward way under milder reaction conditions employing less toxic and expensive sulfur sources in comparison with common strategies.1 Introduction2 Sulfones2.1 Sodium Sulfinates and Sulfinic Acids2.2 Sulfonyl Halides2.3 Sulfonyl Hydrazones2.4 Sulfur Dioxide Surrogates2.5 Miscellaneous3 Thioethers4 Sulfonamides5 Conclusions
Collapse
|
23
|
Jannapu Reddy R, Haritha Kumari A, Kumar JJ. Recent advances in the synthesis and applications of β-keto sulfones: new prospects for the synthesis of β-keto thiosulfones. Org Biomol Chem 2021; 19:3087-3118. [PMID: 33885563 DOI: 10.1039/d1ob00111f] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
This review mainly focuses on recent developments in the preparation of β-keto sulfones and their extensive synthetic applications. New prospects for the synthesis of β-keto thiosulfones have also been highlighted. Over the last decade, there has been exponential growth in the direct construction of β-keto sulfones using a wide variety of keto and sulfonyl precursors. Of note, the most promising photoredox transformations and electrochemical synthesis methods of β-keto sulfones are also presented. Moreover, β-keto sulfones are versatile building blocks in organic synthesis due to their three essential functional groups: sulfonyl, carbonyl, and active methylene moieties. The convenient preparation of β-keto sulfones allows the synthesis of many valuable carbocyclic and heterocyclic compounds, and the effortless removal of the sulfonyl moiety via transformations is supported. The chemistry of β-keto sulfones (2013 to present) can be divided into several sections based on the sulfonyl surrogates, and ubiquitous synthetic strategies were systematically outlined.
Collapse
Affiliation(s)
- Raju Jannapu Reddy
- Department of Chemistry, University College of Science, Osmania University, Hyderabad 500 007, India.
| | | | | |
Collapse
|
24
|
Xu H, Ye R, Li Z, Han M, Meng L. Multicomponent Assembly of α,α‐Bis‐Sulfonyl Arylketones and Multiple Substituted Conjugated Dienes Induced by Visible‐Light Irradiation without Additives and Photocatalysts. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100106] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Hailong Xu
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ruyi Ye
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ziyang Li
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Man‐Yi Han
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| | - Ling‐Guo Meng
- Key Laboratory of Green and Precise Synthetic Chemistry and Applications Ministry of Education School of Chemistry and Materials Science Huaibei Normal University Huaibei, Anhui 235000 People's Republic of China
| |
Collapse
|
25
|
Xu J, Shen C, Qin X, Wu J, Zhang P, Liu X. Oxidative Sulfonylation of Hydrazones Enabled by Synergistic Copper/Silver Catalysis. J Org Chem 2021; 86:3706-3720. [PMID: 33480254 DOI: 10.1021/acs.joc.0c02249] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A copper/silver-cocatalyzed protocol for oxidative sulfonylation of hydrazones is demonstrated. A wide range of β-ketosulfones and N-acylsulfonamides are directly synthesized in moderate to good yields. Our work provides a viable method for scalable preparation of β-ketosulfone derivatives that have found wide applications in the pharmaceutical industry.
Collapse
Affiliation(s)
- Jun Xu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Chao Shen
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xian Qin
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore
| | - Jie Wu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| | - Pengfei Zhang
- College of Material Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiaogang Liu
- Department of Chemistry and the N.1 Institute for Health, National University of Singapore, Singapore 117543, Singapore.,Center for Functional Materials, National University of Singapore Suzhou Research Institute, Suzhou 215123, China
| |
Collapse
|
26
|
|
27
|
Bao P, Yu F, He FS, Tang Z, Deng WP, Wu J. Visible-light-induced remote C(sp3)–H sulfonylvinylation: assembly of cyanoalkylated vinyl sulfones. Org Chem Front 2021. [DOI: 10.1039/d1qo00732g] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A photoinduced three-component sulfonylvinylation reaction of propargyl alcohols, potassium metabisulfite and cycloketone oxime esters is developed, affording cyanoalkylated vinyl sulfones in moderate to good yields.
Collapse
Affiliation(s)
- Ping Bao
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Feiyan Yu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Wei-Ping Deng
- School of Pharmacy and Shanghai Key Laboratory of New Drug Design, East China University of Science and Technology, Shanghai 200237, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, China
| |
Collapse
|
28
|
Yao Y, Yin Z, He FS, Qin X, Xie W, Wu J. Photoinduced intramolecular carbosulfonylation of alkynes: access to sulfone-containing dibenzazepines from sulfur dioxide. Chem Commun (Camb) 2021; 57:2883-2886. [DOI: 10.1039/d0cc07927h] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
A visible-light-driven three-component carbosulfonylation of terminal alkynes, DABCO (SO2)2 and aryldiazonium tetrafluoroborates is developed, leading to sulfone-containing dibenzazepines in moderate to good yields under mild conditions.
Collapse
Affiliation(s)
- Yanfang Yao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Ziqing Yin
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Xuwei Qin
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering
- Hunan University of Science and Technology
- Xiangtan 411201
- China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- 1139 Shifu Avenue
- Taizhou 318000
- China
| |
Collapse
|
29
|
Sun Y, Song J, Qin Q, Zhang E, Han Q, Yang S, Wang Z, Yue S, Dong D. Recent Progress in Radical Arylation Reaction with Diaryliodonium Salts under Photocatalysis. CHINESE J ORG CHEM 2021. [DOI: 10.6023/cjoc202106006] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
30
|
Lv Y, Luo J, Lin M, Yue H, Dai B, He L. A visible-light photoredox-catalyzed four-component reaction for the construction of sulfone-containing quinoxalin-2(1 H)-ones. Org Chem Front 2021. [DOI: 10.1039/d1qo00816a] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
A visible-light photoredox-catalyzed four component reaction of quinoxalin-2(1H)-ones, alkenes, aryldiazonium, and sodium metabisulfite leading to sulfone-containing quinoxalin-2(1H)-ones has been developed.
Collapse
Affiliation(s)
- Yufen Lv
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Jinyun Luo
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Muze Lin
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Huilan Yue
- Qinghai Provincial Key Laboratory of Tibetan Medicine Research and CAS Key Laboratory of Tibetan Medicine Research, Northwest Institute of Plateau Biology, Qinghai 810008, People's Republic of China
| | - Bin Dai
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| | - Lin He
- Key Laboratory for Green Processing of Chemical Engineering of Xinjiang Bingtuan/School of Chemistry and Chemical Engineering, Shihezi University, Xinjiang Uygur Autonomous Region, 832000, People's Republic of China
| |
Collapse
|
31
|
Peng Z, Hong YY, Peng S, Xu XQ, Tang SS, Yang LH, Xie LY. Photosensitizer-free synthesis of β-keto sulfones via visible-light-induced oxysulfonylation of alkenes with sulfonic acids. Org Biomol Chem 2021; 19:4537-4541. [PMID: 33949605 DOI: 10.1039/d1ob00552a] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
A practical and environment-friendly methodology for the construction of β-keto sulfones through visible-light induced direct oxysulfonylation of alkenes with sulfonic acids at ambient temperature under open-air conditions was developed. Most importantly, the reaction proceeded smoothly without the addition of any photocatalyst or strong oxidant, ultimately minimizing the production of chemical waste.
Collapse
Affiliation(s)
- Zhen Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Yun-Yun Hong
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Sha Peng
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Xiang-Qun Xu
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Shan-Shan Tang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Li-Hua Yang
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| | - Long-Yong Xie
- College of Chemistry and Bioengineering, Hunan University of Science and Engineering, Yongzhou 425100, China.
| |
Collapse
|
32
|
He FS, Yao Y, Tang Z, Xie W, Wu J. Copper-catalyzed regio- and chemoselective selenosulfonylation of 1,6-enynes from sulfur dioxide. Org Chem Front 2021. [DOI: 10.1039/d1qo01258d] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
An efficient copper-catalyzed multicomponent reaction of 1,6-enynes, diselenides, DABCO·(SO2)2, and cycloketone oxime esters was achieved, providing cyanoalkylsulfonated pyrrolidines in moderate to good yields.
Collapse
Affiliation(s)
- Fu-Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Yanfang Yao
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Zhimei Tang
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering, Hunan University of Science and Technology, Xiangtan 411201, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453007, China
| |
Collapse
|
33
|
Difunctionalization of Alkenes and Alkynes via Intermolecular Radical and Nucleophilic Additions. MOLECULES (BASEL, SWITZERLAND) 2020; 26:molecules26010105. [PMID: 33379397 PMCID: PMC7795514 DOI: 10.3390/molecules26010105] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022]
Abstract
Popular and readily available alkenes and alkynes are good substrates for the preparation of functionalized molecules through radical and/or ionic addition reactions. Difunctionalization is a topic of current interest due to its high efficiency, substrate versatility, and operational simplicity. Presented in this article are radical addition followed by oxidation and nucleophilic addition reactions for difunctionalization of alkenes or alkynes. The difunctionalization could be accomplished through 1,2-addition (vicinal) and 1,n-addition (distal or remote) if H-atom or group-transfer is involved in the reaction process. A wide range of moieties, such as alkyl (R), perfluoroalkyl (Rf), aryl (Ar), hydroxy (OH), alkoxy (OR), acetatic (O2CR), halogenic (X), amino (NR2), azido (N3), cyano (CN), as well as sulfur- and phosphorous-containing groups can be incorporated through the difunctionalization reactions. Radicals generated from peroxides or single electron transfer (SET) agents, under photoredox or electrochemical reactions are employed for the reactions.
Collapse
|
34
|
Yao Y, Yin Z, Chen W, Xie W, He F, Wu J. A Concise Route to 2‐Sulfonylacetonitriles from Sodium Metabisulfite. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202001243] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Yanfang Yao
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Ziqing Yin
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Weiyun Chen
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Fu‐Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
35
|
Liu S, Huang Y, Xu XH, Qing FL. Fluorosulfonylation of arenediazonium tetrafluoroborates with Na2S2O5 and N-fluorobenzenesulfonimide. J Fluor Chem 2020. [DOI: 10.1016/j.jfluchem.2020.109653] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
36
|
Mazzanti S, Savateev A. Emerging Concepts in Carbon Nitride Organic Photocatalysis. Chempluschem 2020; 85:2499-2517. [PMID: 33215877 DOI: 10.1002/cplu.202000606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 11/04/2020] [Indexed: 01/01/2023]
Abstract
Carbon nitrides encompass a class of transition-metal-free materials possessing numerous advantages such as low cost (few Euros per gram), high chemical stability, broad tunability of redox potentials and optical bandgap, recyclability, and a high absorption coefficient (>105 cm-1 ), which make them highly attractive for application in photoredox catalysis. In this Review, we classify carbon nitrides based on their unique properties, structure, and redox potentials. We summarize recently emerging concepts in heterogeneous carbon nitride photocatalysis, with an emphasis on the synthesis of organic compounds: 1) Illumination-Driven Electron Accumulation in Semiconductors and Exploitation (IDEASE); 2) singlet-triplet intersystem crossing in carbon nitride excited states and related energy transfer; 3) architectures of flow photoreactors; and 4) dual metal/carbon nitride photocatalysis. The objective of this Review is to provide a detailed overview regarding innovative research in carbon nitride photocatalysis focusing on these topics.
Collapse
Affiliation(s)
- Stefano Mazzanti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces Research Campus Golm, Am Mühlenberg 1, 14476, Potsdam, Germany
| |
Collapse
|
37
|
Zhang Y, Luo M, Li Y, Shen R, Qi C, Wang H, Cheng K. One-pot synthesis of β-ketosulfones from sulfonyl chloride, hydrazine hydrate and vinyl azide in water. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131635] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
38
|
He F, Yao Y, Xie W, Wu J. Metal‐Free Synthesis of (
E
)‐Vinyl Sulfones
via
An Insertion of Sulfur Dioxide/1,5‐Hydrogen Atom Transfer Sequence. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000778] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Fu‐Sheng He
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
| | - Yanfang Yao
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Wenlin Xie
- School of Chemistry and Chemical Engineering Hunan University of Science and Technology Xiangtan 411201 People's Republic of China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies Taizhou University 1139 Shifu Avenue Taizhou 318000 People's Republic of China
- State Key Laboratory of Organometallic Chemistry Shanghai Institute of Organic Chemistry Chinese Academy of Sciences 345 Lingling Road Shanghai 200032 People's Republic of China
| |
Collapse
|
39
|
Ghosh S, Samanta S, Ghosh AK, Neogi S, Hajra A. Advances in Oxosulfonylation Reaction. Adv Synth Catal 2020. [DOI: 10.1002/adsc.202000647] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Sumit Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Sadhanendu Samanta
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Asim Kumar Ghosh
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Sukanya Neogi
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| | - Alakananda Hajra
- Department of Chemistry Visva-Bharati (A Central University) Santiniketan 731235 India
| |
Collapse
|
40
|
Firth JD, Fairlamb IJS. A Need for Caution in the Preparation and Application of Synthetically Versatile Aryl Diazonium Tetrafluoroborate Salts. Org Lett 2020; 22:7057-7059. [DOI: 10.1021/acs.orglett.0c02685] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- James D. Firth
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| | - Ian J. S. Fairlamb
- Department of Chemistry, University of York, Heslington, York YO10 5DD, U.K
| |
Collapse
|
41
|
Ye S, Yang M, Wu J. Recent advances in sulfonylation reactions using potassium/sodium metabisulfite. Chem Commun (Camb) 2020; 56:4145-4155. [PMID: 32242574 DOI: 10.1039/d0cc01775b] [Citation(s) in RCA: 126] [Impact Index Per Article: 25.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Recently, sulfonylation reactions using potassium/sodium metabisulfite as the sulfur dioxide surrogate have been developed rapidly. In most cases, the transformations go through radical processes with the insertion of sulfur dioxide under mild conditions. Additionally, transition metal catalysis is applied in the reactions for the synthesis of sulfonyl-containing compounds. Among the approaches, photoinduced conversions under visible light or ultraviolet irradiation are also involved. In this updated report, the insertion of sulfur dioxide from potassium metabisulfite or sodium metabisulfite is summarized.
Collapse
Affiliation(s)
- Shengqing Ye
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China.
| | - Min Yang
- School of Basic Medicine, Gannan Medical University, 1 Yixueyuan Road, Ganzhou 341000, China
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies, Taizhou University, 1139 Shifu Avenue, Taizhou 318000, China. and State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 345 Lingling Road, Shanghai 200032, China
| |
Collapse
|
42
|
Khamrai J, Ghosh I, Savateev A, Antonietti M, König B. Photo-Ni-Dual-Catalytic C(sp2)–C(sp3) Cross-Coupling Reactions with Mesoporous Graphitic Carbon Nitride as a Heterogeneous Organic Semiconductor Photocatalyst. ACS Catal 2020. [DOI: 10.1021/acscatal.9b05598] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Jagadish Khamrai
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | - Indrajit Ghosh
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| | - Aleksandr Savateev
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Markus Antonietti
- Department of Colloid Chemistry, Max Planck Institute of Colloids and Interfaces, Research Campus Golm, 14424 Potsdam, Germany
| | - Burkhard König
- Fakultät für Chemie und Pharmazie, Universität Regensburg, 93040 Regensburg, Germany
| |
Collapse
|
43
|
Wang J, Ni B, Niu T, Ji F. C 3N 4-Photocatalyzed aerobic oxidative cleavage of CC bonds in alkynes with diazonium salts leading to two different aldehydes or esters in one pot. Catal Sci Technol 2020. [DOI: 10.1039/d0cy01773f] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
C3N4-Photocatalyzed oxidative cleavage of CC bonds in alkynes with diazonium salts to obtain two different aldehydes or esters.
Collapse
Affiliation(s)
- Jingjing Wang
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Bangqing Ni
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Tengfei Niu
- School of Chemical and Material Engineering
- Jiangnan University
- Wuxi
- P. R. China
| | - Fei Ji
- Department of Pharmaceutical Engineering
- China Pharmaceutical University
- Nanjing
- P. R. China
| |
Collapse
|
44
|
Zhu T, Rojsitthisak P, Wu J. Generation of (Z)-β-alkenyl alkylsulfones via a copper-catalyzed decarboxylative alkylsulfonylation. Org Chem Front 2020. [DOI: 10.1039/d0qo01094d] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A copper-catalyzed three-component reaction of acrylamides, sulfur dioxide and phenyliodine(iii) dicarboxylates is developed. The conversion using phenyliodine dicarboxylates as alkyl radical precursors provides diverse (Z)-β-alkenyl alkylsulfones.
Collapse
Affiliation(s)
- Tonghao Zhu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
| | - Pornchai Rojsitthisak
- Department of Food and Pharmaceutical Chemistry
- Faculty of Pharmaceutical Sciences
- Chulalongkorn University
- Patumwan
- Thailand
| | - Jie Wu
- School of Pharmaceutical and Materials Engineering & Institute for Advanced Studies
- Taizhou University
- Taizhou 318000
- China
- State Key Laboratory of Organometallic Chemistry
| |
Collapse
|