1
|
Metya A, Sen S, Bhattacharyya A, Maji MS. En Route to Anthanthrenes through Bottom-up APEX Strategy by peri-C-H Activation. Org Lett 2025; 27:4202-4207. [PMID: 40209069 DOI: 10.1021/acs.orglett.5c00854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/12/2025]
Abstract
Accessing PAHs having all zigzag edges remains elusive, and this work demonstrates a general synthetic strategy for the construction of one such scaffold, namely, anthanthrene, through Ru(II)-catalyzed APEX reaction at the masked-bay region. The protocol efficiently delivers a range of uniquely substituted anthanthrenes with excellent regioselectivity, which is supported by DFT studies. The synthesis of anthanthrone derivatives, a core structure of vat orange dyes, is another highlight of this study.
Collapse
Affiliation(s)
- Abhisek Metya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Supreeta Sen
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Arya Bhattacharyya
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Modhu Sudan Maji
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
2
|
Roy CP, Karmakar S, Dash J. Synthesis of Phenanthrenes and 1-Hydroxyphenanthrenes via Aromatization-Assisted Ring-Closing Metathesis: toward Polynuclear Aromatic Hydrocarbons. J Org Chem 2024; 89:10511-10523. [PMID: 39007427 DOI: 10.1021/acs.joc.4c00723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
This study presents an efficient synthetic strategy for phenanthrenes and 1-hydroxyphenanthrenes through aromatization-assisted ring-closing metathesis (RCM). It involves vinylation of 1-bromo-2-naphthaldehyde derivatives, Barbier allylation, and subsequent one-pot RCM/dehydration of the diene precursors to yield phenanthrene derivatives. Further, the corresponding keto analogues of diene precursors produce 1-hydroxyphenanthrenes through RCM and aromatization-driven keto-enol tautomerism. This pathway enables rapid access to a diverse array of functionalized phenanthrenes and 1-hydroxyphenanthrenes, including synthetically challenging derivatives containing both -OH and -OMe groups via the sequential construction of the terminal phenanthrene ring.
Collapse
Affiliation(s)
- Charles Patriot Roy
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Shilpi Karmakar
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Jyotirmayee Dash
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
3
|
Reddy MR, Rajakumara E, Satyanarayana G. Transition metal-free and temperature dependent one-pot access to phenanthrene-fused heterocycles via a 1,3-dipolar cycloaddition pathway. Chem Commun (Camb) 2023; 59:13755-13758. [PMID: 37916409 DOI: 10.1039/d3cc04473d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2023]
Abstract
A versatile, operationally simple, temperature-dependent, and transition metal-free one-pot protocol has been devised for the preparation of novel phenanthrene-fused pyrazoles. Notably, the overall process involved an intermolecular condensation, an intramolecular 1,3-dipolar cycloaddition, and an aromatization sequence starting from biaryl-2,2'-aldehydes bearing enoate esters with various hydrazine hydrochlorides. Notably, the sequential one-pot three-component operation has also been achieved. Importantly, it was also shown that this protocol was amenable to hydroxylamine hydrochloride as the nitrogen source and furnished phenanthrene-fused isoxazoles. Notably, the temperature dependent nature of this protocol was also demonstrated, which led to the formation of dealkoxylcarbonylated phenanthrene-fused pyrazoles at slightly higher temperatures and longer reaction times. Remarkably, this metal-free protocol effectively constructed two C-N bonds and one C-C bond and exhibited a broad substrate scope.
Collapse
Affiliation(s)
- Mokilla Ramachandra Reddy
- Department of Chemistry, Indian Institute of Technology, Hyderabad (IITH) Kandi - 502 284, Sangareddy, Telangana, India.
| | - Eerappa Rajakumara
- Macromolecular Structural Biology Lab, Department of Biotechnology, Indian Institute of Technology, Hyderabad (IITH) Kandi - 502 284, Sangareddy, Telangana, India.
| | - Gedu Satyanarayana
- Department of Chemistry, Indian Institute of Technology, Hyderabad (IITH) Kandi - 502 284, Sangareddy, Telangana, India.
| |
Collapse
|
4
|
Abdollahi MF, Zhao Y. Donor-Acceptor Fluorophores and Macrocycles Built Upon Wedge-Shaped π-Extended Phenanthroimidazoles. J Org Chem 2023; 88:3451-3465. [PMID: 36862080 DOI: 10.1021/acs.joc.2c02511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
A class of wedge-shaped organic π-fluorophores featuring a 6,9-diphenyl-substituted phenanthroimidazole (PI) core was designed, synthesized, and characterized. Among them, a π-extended PI derivative containing two electron-withdrawing aldehyde groups was found to exhibit versatile solid-state packing properties as well as strong solvatofluorochromism in different organic solvents. Another PI derivative that was functionalized with two electron-donating 1,4-dithiafulvenyl (DTF) end groups showed versatile redox reactivities and quenched fluorescence. Treatment of this wedge-shaped bis(DTF)-PI compound with iodine resulted in oxidative coupling reactions, leading to the formation of intriguing macrocyclic products that carry redox-active tetrathiafulvalene vinylogue (TTFV) moieties in their structures. Mixing the bis(DTF)-PI derivative with fullerene (C60 or C70) in an organic solvent resulted in substantial fluorescence enhancement (turn-on). In this process, fullerene acted as a photosensitizer to generate singlet oxygen, which in turn induced oxidative C = C bond cleavages and converted nonfluorescent bis(DTF)-PI into highly fluorescent dialdehyde-substituted PI. Treatment of TTFV-PI macrocycles with a small amount of fullerene also led to a moderate degree of fluorescence enhancement, but this is not because of photosensitized oxidative cleavage reactions. Instead, competitive photoinduced electron transfer from TTFV to fullerene can be attributed to their fluorescence turn-on behavior.
Collapse
Affiliation(s)
- Maryam F Abdollahi
- Department of Chemistry, Memorial University, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| | - Yuming Zhao
- Department of Chemistry, Memorial University, Core Science Facility, 45 Arctic Avenue, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
5
|
Hajji I, Hamrouni K, Hajri AK, Barhoumi H, Aloui F. Expeditious and practical synthesis, photophysical and electrochemical properties of functionalized phenanthrene derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
6
|
Electroanalytical sensors for antiretroviral drugs determination in pharmaceutical and biological samples: A review. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Wahab A, Pfuderer L, Paenurk E, Gershoni-Poranne R. The COMPAS Project: A Computational Database of Polycyclic Aromatic Systems. Phase 1: cata-Condensed Polybenzenoid Hydrocarbons. J Chem Inf Model 2022; 62:3704-3713. [PMID: 35881922 DOI: 10.1021/acs.jcim.2c00503] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemical databases are an essential tool for data-driven investigation of structure-property relationships and for the design of novel functional compounds. We introduce the first phase of the COMPAS Project─a COMputational database of Polycyclic Aromatic Systems. In this phase, we developed two data sets containing the optimized ground-state structures and a selection of molecular properties of ∼34k and ∼9k cata-condensed polybenzenoid hydrocarbons (at the GFN2-xTB and B3LYP-D3BJ/def2-SVP levels, respectively) and placed them in the public domain. Herein, we describe the process of the data set generation, detail the information available within the data sets, and show the fundamental features of the generated data. We analyze the correlation between the two types of computations as well as the structure-property relationships of the calculated species. The data and insights gained from them can inform rational design of novel functional aromatic molecules for use in, e.g., organic electronics, and can provide a basis for additional data-driven machine- and deep-learning studies in chemistry.
Collapse
Affiliation(s)
- Alexandra Wahab
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Lara Pfuderer
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Eno Paenurk
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland
| | - Renana Gershoni-Poranne
- Laboratory for Organic Chemistry, Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich, Switzerland.,Schulich Faculty of Chemistry, Technion-Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
8
|
Liu L, Doucet H. One Pot Access to 2'‐Aryl‐2,3'‐Bithiophenes via Twofold Palladium‐Catalyzed C‐X/C‐H Coupling Associated to a Pd‐1,4‐Migration. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
9
|
Liu L, Durai M, Doucet H. Transition Metal‐Catalyzed Regiodivergent C−H Arylations of Aryl‐Substituted Azoles. European J Org Chem 2022. [DOI: 10.1002/ejoc.202200007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Linhao Liu
- CNRS ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| | | | - Henri Doucet
- CNRS ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| |
Collapse
|
10
|
Ahmadian M, Rad-Moghadam K, Dehghanian A, Jafari M. A novel domino protocol for three-component synthesis of new dibenzo[ e,g]indoles: flexible intramolecular charge transfers. NEW J CHEM 2022. [DOI: 10.1039/d1nj05341h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
New and electronically interesting 2-aryl-3-nitrodibenzo[e,g]indoles were synthesized effectively via a hitherto unreported three-component domino reaction under catalysis of a superparamagnetic nano-composite.
Collapse
Affiliation(s)
- Mahsa Ahmadian
- Chemistry Department, Faculty of Sciences, University of Guilan, Namjoo Street, Rasht 41335-1914, Iran
| | - Kurosh Rad-Moghadam
- Chemistry Department, Faculty of Sciences, University of Guilan, Namjoo Street, Rasht 41335-1914, Iran
| | - Arash Dehghanian
- Chemistry Department, Faculty of Sciences, University of Guilan, Namjoo Street, Rasht 41335-1914, Iran
| | - Majedeh Jafari
- Chemistry Department, Faculty of Sciences, University of Guilan, Namjoo Street, Rasht 41335-1914, Iran
| |
Collapse
|
11
|
Wu S, Geng F, Dong J, Liu L, Su L, Zhou Y. General and practical synthesis of naphtho[2,1-d]oxazoles from naphthols and amines. Org Chem Front 2022. [DOI: 10.1039/d2qo00557c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A general and practical synthesis of naphtho[2,1-d]oxazoles from readily available naphthols and amines is developed using TEMPO as the oxygen source with outstanding functional group tolerance, especially for the construction...
Collapse
|
12
|
Maddala S, Panua A, Venkatakrishnan P. Steering Scholl Oxidative Heterocoupling by Tuning Topology and Electronics for Building Thiananographenes and Their Functional N-/C-Congeners. Chemistry 2021; 27:16013-16020. [PMID: 34459037 DOI: 10.1002/chem.202102920] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Indexed: 12/14/2022]
Abstract
While intramolecular Scholl oxidative coupling between two arenes is common, successful C-C heterocoupling between thiophene and arene is scarce. The latter is due to the notorious reactivity of thiophene towards polymerization under oxidative conditions. This report systematically demonstrates how topological variation of electronics and reactivity in thiophene substrates can lead to efficient oxidative heterocoupling. Bis(biaryl)thiophenes having reactive α- and β-positions open are the choice of substrates. The cyclizing arene partners are so electronically tuned for thiophene's reactivity (at α- and β-) as to establish C-C bond oxidatively generating symmetrical as well as unsymmetrical diphenanthrothiophenes which are basic thiananographenes. Depending on the cyclizing-couple's electronics, either arene- or thiophene-centered oxidation initiates C-C heterocoupling. The potential utility of these simple thiananographenes is further unfurled by converting them to functional N-/C-graphene segments that are aza-corannulene precursor and tetrabenzospirobifluorene. Their bright emission and extended electrochemical stability are remarkable that may be potentially important and applicable.
Collapse
Affiliation(s)
- Sudhakar Maddala
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | - Anirban Panua
- Department of Chemistry, Indian Institute of Technology Madras, Chennai, 600 036, Tamil Nadu, India
| | | |
Collapse
|
13
|
Zhao YH, Wang JL, Zhou YB, Liu MC, Wu HY. Palladium-catalyzed coupling reaction of 2-iodobiphenyls with alkenyl bromides for the construction of 9-(diorganomethylidene)fluorenes. Org Biomol Chem 2021; 19:8250-8253. [PMID: 34518849 DOI: 10.1039/d1ob01547h] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
An atom economical protocol for the construction of 9-(diorganomethylidene)fluorenes through palladium-catalyzed coupling reactions of 2-iodobiphenyls with alkenyl bromides has been reported. The reaction proceeds through the C-H activation/oxidative addition/reduction elimination/intramolecular Heck coupling reaction to afford a series of 9-(diorganomethylidene)fluorenes with good yields. Control experiments demonstrate that a five-membered palladacycle acts as a key intermediate and β-H elimination serves as the rate-limiting step.
Collapse
Affiliation(s)
- Ya-Heng Zhao
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Jian-Long Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Yun-Bing Zhou
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Miao-Chang Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| | - Hua-Yue Wu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou, 325035, P. R. of China.
| |
Collapse
|
14
|
Shi X, Zhang J, Roisnel T, Soulé J, Doucet H. Palladium‐Catalyzed Direct Diarylation of 2‐Benzyl‐1,2,3‐triazole: a Simple Access to 4‐Aryl‐ or 4,5‐Diaryl‐2‐benzyl‐1,2,3‐triazoles and Phenanthro[9,10‐
d
][1,2,3]triazoles. European J Org Chem 2021. [DOI: 10.1002/ejoc.202100324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xinzhe Shi
- ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| | - Jian Zhang
- ISCR-UMR 6226 Univ Rennes 35000 Rennes France
| | | | | | | |
Collapse
|
15
|
Yang X, Chen X, Xu Y, Zhang M, Deng G, Yang Y, Liang Y. Palladium-Catalyzed [4 + 3] or [2 + 2 + 3] Annulation via C–H Activation and Subsequent Decarboxylation: Access to Heptagon-Embedded Polycyclic Aromatic Hydrocarbons. Org Lett 2021; 23:2610-2615. [DOI: 10.1021/acs.orglett.1c00520] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Affiliation(s)
- Xiumei Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Xiahong Chen
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yankun Xu
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Minghao Zhang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Guobo Deng
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yuan Yang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| | - Yun Liang
- National & Local Joint Engineering Laboratory for New Petro-chemical Materials and Fine Utilization of Resources, Key Laboratory of Chemical Biology and Traditional Chinese Medicine Research, Ministry of Education, Key Laboratory of the Assembly and Application of Organic Functional Molecules of Hunan Province, Hunan Normal University, Changsha, Hunan 410081, China
| |
Collapse
|
16
|
Zhao B, Zhang Z, Ge Y, Li P, Miao T, Wang L. Photochemical synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones from α-keto acids and alkynes. Org Chem Front 2021. [DOI: 10.1039/d0qo01487g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
A novel and efficient method for the synthesis of 3-hydroxyphenanthro[9,10-c]furan-1(3H)-ones has been achieved from α-keto acids and alkynes through photo-initiated transformation, providing a range of products in good to excellent yields.
Collapse
Affiliation(s)
- Beibei Zhao
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Zhen Zhang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Yu Ge
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Pinhua Li
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Tao Miao
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| | - Lei Wang
- Department of Chemistry; Key Laboratory of Green and Precise Synthetic Chemistry
- Ministry of Education
- Huaibei Normal University
- Huaibei
- P. R. China
| |
Collapse
|
17
|
Jeong S, Kim E, Kim M, Hwang YJ, Padhi B, Choi J, Lee Y, Joo JM. Divergent Strategies for the π-Extension of Heteroaryl Halides Using Norbornadiene as an Acetylene Synthon. Org Lett 2020; 22:9670-9676. [DOI: 10.1021/acs.orglett.0c03732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Affiliation(s)
- Siyeon Jeong
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Eunmin Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Minkyu Kim
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Ye Ji Hwang
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Birakishore Padhi
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| | - Jonghoon Choi
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yunho Lee
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
18
|
Kaehler T, John A, Jin T, Bolte M, Lerner H, Wagner M. Selective Vicinal Diiodination of Polycyclic Aromatic Hydrocarbons. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000954] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Tanja Kaehler
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Alexandra John
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Tao Jin
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Michael Bolte
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Hans‐Wolfram Lerner
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| | - Matthias Wagner
- Institut für Anorganische Chemie Goethe‐Universität Frankfurt Max‐von‐Laue‐Strasse 7 60438 Frankfurt (Main) Germany
| |
Collapse
|
19
|
Matsuzawa T, Hosoya T, Yoshida S. One-step synthesis of benzo[ b]thiophenes by aryne reaction with alkynyl sulfides. Chem Sci 2020; 11:9691-9696. [PMID: 34094234 PMCID: PMC8162113 DOI: 10.1039/d0sc04450d] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
An aryne reaction with alkynyl sulfides affording benzo[b]thiophenes is disclosed. A wide range of 3-substituted benzothiophenes were synthesized from easily available o-silylaryl triflates and alkynyl sulfides in a one-step intermolecular manner. The synthesis of diverse multisubstituted benzothiophene derivatives involving a pentacyclic compound was achieved by virtue of the good functional group tolerance and versatile C2 functionalizations.
Collapse
Affiliation(s)
- Tsubasa Matsuzawa
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda-ku Tokyo 101-0062 Japan
| | - Takamitsu Hosoya
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda-ku Tokyo 101-0062 Japan
| | - Suguru Yoshida
- Laboratory of Chemical Bioscience, Institute of Biomaterials and Bioengineering, Tokyo Medical and Dental University (TMDU) 2-3-10 Kanda-Surugadai Chiyoda-ku Tokyo 101-0062 Japan
| |
Collapse
|
20
|
Kang E, Kim HT, Joo JM. Transition-metal-catalyzed C–H functionalization of pyrazoles. Org Biomol Chem 2020; 18:6192-6210. [DOI: 10.1039/d0ob01265c] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This review describes recent advances in transition-metal-catalyzed C–H functionalization reactions of pyrazoles to form new C–C and C–heteroatom bonds on the pyrazole ring.
Collapse
Affiliation(s)
- Eunsu Kang
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Hyun Tae Kim
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| | - Jung Min Joo
- Department of Chemistry and Chemistry Institute for Functional Materials
- Pusan National University
- Busan 46241
- Republic of Korea
| |
Collapse
|