1
|
Chaudhary AS, Modak C, Gayakvad B, Biswas I, Jain A. Design and Characterization of pH-Responsive DGEA-Derived Peptide Scaffolds: A Comprehensive Molecular Dynamics Simulation Study. ACS APPLIED BIO MATERIALS 2025; 8:2459-2468. [PMID: 39960229 DOI: 10.1021/acsabm.4c01926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Peptide-based, functionally active, stimuli-responsive biomaterials hold immense potential for diverse biomedical applications. Functionally active motifs of extracellular matrix (ECM) proteins, when conjugated with self-assembling peptides (SAP) or polymers, demonstrate significant promise in the development of such bioactive scaffolds. However, synthesis complexity, high associated costs, limited functionality, and potential immune responses present significant challenges. This study explores collagen-I-derived DGEA motif-based SAPs, incorporating modifications such as salt bridge pairing, charged and polar residues, hydrophobic residues, amyloidogenic sequences, and non-ECM motifs, to develop stimuli-responsive, functionally active scaffolds. Extensive molecular dynamics (MD) simulations, totaling 16.7 μs, were conducted on 20 systematically designed peptide systems. These simulations also characterized the stimuli-responsive properties of the peptides, focusing on pH and temperature responsiveness. Among the 20 designs, three peptide systems─DGEA-SBD, DGEA-SBE (salt-bridge modifications), and DGEA-F4 (with hydrophobic residue addition at the C-terminus)─successfully formed large, stable, and bioactive scaffolds. These systems exhibited enhanced aggregation (greater than 90%) and improved interpeptide hydrogen bonding (more than 30 bonds) while maintaining the accessibility of functional motifs (60-70% availability) compared to the unmodified DGEA motif. Notably, the DGEA-SBD and DGEA-SBE peptides showed a transition from small, unstable, uneven gel-like structures to large, stable, uniform, and functionally active scaffolds as the pH shifted from 3.0 to physiological pH. Comprehensive MD simulation studies demonstrated that these designed peptides exhibit increased aggregation and enhanced interpeptide hydrogen bonding while retaining their functional activity under various physiological conditions, highlighting their promising potential for biomedical applications.
Collapse
Affiliation(s)
- Aditya Swaroop Chaudhary
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi-835215, Jharkhand, India
| | - Chandrima Modak
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi-835215, Jharkhand, India
| | | | - Indrani Biswas
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi-835215, Jharkhand, India
| | - Alok Jain
- Department of Bioengineering and Biotechnology, Birla Institute of Technology Mesra, Ranchi-835215, Jharkhand, India
| |
Collapse
|
2
|
Vishwanath R, Biswas A, Modi U, Gupta S, Bhatia D, Solanki R. Programmable short peptides for modulating stem cell fate in tissue engineering and regenerative medicine. J Mater Chem B 2025; 13:2573-2591. [PMID: 39871657 DOI: 10.1039/d4tb02102a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2025]
Abstract
Recent advancements in tissue engineering and regenerative medicine have introduced promising strategies to address tissue and organ deficiencies. This review highlights the critical role of short peptides, particularly their ability to self-assemble into matrices that mimic the extracellular matrix (ECM). These low molecular weight peptides exhibit target-specific activities, modulate gene expression, and influence cell differentiation pathways. They are stable, programmable, non-cytotoxic, biocompatible, biodegradable, capable of crossing the cell membrane and easy to synthesize. This review underscores the importance of peptide structure and concentration in directing stem cell differentiation and explores their diverse biomedical applications. Peptides such as Aβ1-40, Aβ1-42, RADA16, A13 and KEDW are discussed for their roles in modulating stem cell differentiation into neuronal, glial, myocardial, osteogenic, hepatocyte and pancreatic lineages. Furthermore, this review delves into the underlying signaling mechanisms, the chemistry and design of short peptides and their potential for engineering biocompatible materials that mimic stem cell microenvironments. Short peptide-based biomaterials and scaffolds represent a promising avenue in stem cell therapy, tissue engineering, and regenerative medicine.
Collapse
Affiliation(s)
- Rohan Vishwanath
- School of Life Science, Central University of Gujarat, Gandhinagar-382030, India
| | - Abhijit Biswas
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Unnati Modi
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Sharad Gupta
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Dhiraj Bhatia
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| | - Raghu Solanki
- Department of Biological Sciences and Engineering, Indian Institute of Technology Gandhinagar, Palaj, Gujarat 382355, India.
| |
Collapse
|
3
|
Wang CH, Jhang YY, Yu SS. Catalytic peptide/hemin complex from ester-amide exchange reaction mediated by deep eutectic solvents. RSC Adv 2025; 15:119-123. [PMID: 39758916 PMCID: PMC11694504 DOI: 10.1039/d4ra08607d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2024] [Accepted: 12/20/2024] [Indexed: 01/07/2025] Open
Abstract
The functions of peptides often emerge upon their self-assembly or binding with other co-factors. However, the synthetic complexity makes these functional peptides intractable. Here, we utilize the ester-amide exchange reaction in deep eutectic solvents to generate peptide libraries from unactivated amino acids. This strategy leads to peptide mixtures that exhibit hemin-binding capability and peroxidase-like activity.
Collapse
Affiliation(s)
- Cheng-Hsi Wang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Yao-Yu Jhang
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
| | - Sheng-Sheng Yu
- Department of Chemical Engineering, National Cheng Kung University Tainan 70101 Taiwan
- Core Facility Center, National Cheng Kung University Tainan 70101 Taiwan
- Program on Smart and Sustainable Manufacturing, Academy of Innovative Semiconductor and Sustainable Manufacturing, National Cheng Kung University Tainan 70101 Taiwan
| |
Collapse
|
4
|
Lombardi L, Li J, Williams DR. Peptide-Based Biomaterials for Combatting Infections and Improving Drug Delivery. Pharmaceutics 2024; 16:1468. [PMID: 39598591 PMCID: PMC11597775 DOI: 10.3390/pharmaceutics16111468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
This review explores the potential of peptide-based biomaterials to enhance biomedical applications through self-assembly, biological responsiveness, and selective targeting. Peptides are presented as versatile agents for antimicrobial activity and drug delivery, with recent approaches incorporating antimicrobial peptides into self-assembling systems to improve effectiveness and reduce resistance. The review also covers peptide-based nanocarriers for cancer drug delivery, highlighting their improved stability, targeted delivery, and reduced side effects. The focus of this work is on the bioactive properties of peptides, particularly in infection control and drug delivery, rather than on their structural design or material characteristics. Additionally, it examines the role of peptidomimetics in broadening biomaterial applications and enhancing resistance to enzymatic degradation. Finally, the review discusses the commercial prospects and challenges of translating peptide biomaterials into clinical applications.
Collapse
Affiliation(s)
- Lucia Lombardi
- Department of Chemical Engineering, South Kensington Campus, Imperial College London, London SW7 2AZ, UK
| | | | | |
Collapse
|
5
|
Song X, He S, Zheng J, Yang S, Li Q, Zhang Y. One-Step Construction of Tryptophan-Derived Small Molecule Hydrogels for Antibacterial Materials. Molecules 2023; 28:molecules28083334. [PMID: 37110568 PMCID: PMC10141015 DOI: 10.3390/molecules28083334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 03/27/2023] [Accepted: 04/08/2023] [Indexed: 04/29/2023] Open
Abstract
Amino acid-based hydrogels have received widespread attention because of their wide range of sources, biodegradability, and biocompatibility. Despite considerable progress, the development of such hydrogels has been limited by critical problems such as bacterial infection and complex preparation. Herein, by using the non-toxic gluconolactone (GDL) to adjust the pH of the solution to induce the rapid self-assembly of N-[(benzyloxy)carbonyl]-L-tryptophan (ZW) to form a three-dimensional (3D) gel network, we developed a stable and effective self-assembled small-molecule hydrogel. Characterization assays and molecular dynamics studies indicate that π-π stacking and hydrogen bonding are the main drivers of self-assembly between ZW molecules. In vitro experiments further confirmed this material's sustained release properties, low cytotoxicity, and excellent antibacterial activity, particularly against Gram-negative Escherichia coli and Gram-positive Staphylococcus aureus. This study provides a different and innovative perspective for the further development of antibacterial materials based on amino acid derivatives.
Collapse
Affiliation(s)
- Xianwen Song
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shunmei He
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Jun Zheng
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Shutong Yang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Qiang Li
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| | - Yi Zhang
- Hunan Provincial Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
| |
Collapse
|
6
|
Krishna Sunkari Y, Kumar Siripuram V, Flajolet M. Diversity-Oriented Synthesis (DOS) of On-DNA Peptidomimetics from Acid-Derived Phosphonium Ylides. Chemistry 2023; 29:e202203037. [PMID: 36653313 DOI: 10.1002/chem.202203037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Indexed: 01/20/2023]
Abstract
The DNA-encoded library (DEL) technology represents a revolutionary drug-discovery tool with unprecedented screening power originating from the association of combinatorial chemistry and DNA barcoding. The chemical diversity of DELs and its chemical space will be further expanded as new DNA-compatible reactions are introduced. This work introduces the use of DOS in the context of on-DNA peptidomimetics. Wittig olefination of aspartic acid-derived on-DNA Wittig ylide, combined with a broad substrate scope of aldehydes, led to formation of on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated ketones. The synthesis of on-DNA multi-peptidyl-ylides was performed by incorporating sequential amino acids onto a monomeric ylide. Di-, tri- and tetrameric peptidyl-ylides were validated for Wittig olefination and led to on-DNA α ${\alpha }$ , β ${\beta }$ -unsaturated-based peptidomimetics, an important class of intermediates. One on-DNA aryl Wittig ylide was also developed and applied to Wittig olefination for synthesis of on-DNA chalcone-based molecules. Furthermore, DOS was used successfully with electron-deficient peptidomimetics and led to the development of different heterocyclic cores containing on-DNA peptidomimetics.
Collapse
Affiliation(s)
- Yashoda Krishna Sunkari
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Vijay Kumar Siripuram
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| | - Marc Flajolet
- Laboratory of Molecular and Cellular Neuroscience, The Rockefeller University, 1230 York Avenue, New York, NY 10065, USA
| |
Collapse
|
7
|
Unnikrishnan AC, Sushana Thennarasu A, Saveri P, Pandurangan S, Deshpande AP, Ayyadurai N, Shanmugam G. π-System Functionalization Transforms Amyloidogenic Peptide Fragment of Human Islet Amyloid Polypeptide into a Super Hydrogelator. Chem Asian J 2023; 18:e202201235. [PMID: 36567257 DOI: 10.1002/asia.202201235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 12/22/2022] [Accepted: 12/22/2022] [Indexed: 12/27/2022]
Abstract
While a considerable number of ultra-short/short amyloid peptides have been reported to form 3D supramolecular hydrogels, they all possess high minimum gelation concentration (MGC) (≥1 wt%), which preclude their applications. In this context, we demonstrate that functionalisation of a well-known amyloidogenic ultra-short peptide fragment NFGAIL (IAPf) of human Islet amyloid polypeptide with a π-system (Fluorenyl, Fm) at the N-terminus of the peptide (Fm-IAPf) yield not only highly thermostable hydrogel at physiological pH but also exhibited super gelator nature as the MGC (0.08 wt%) falls below 0.1 wt%. Various experimental results confirmed that aromatic π-π interactions from fluorenyl moieties and hydrogen bonding interactions between the IAPf drive the self-assembly/fibril formation. Fm-IAPf is the first super hydrogelator derived from amyloid-based ultra-short peptides, to the best of our knowledge. We strongly believe that this report, i. e., functionalization of an amyloid peptide with π-system, provides a lead to develop super hydrogelators from other amyloid-forming peptide fragments for their potential applications.
Collapse
Affiliation(s)
- Anagha C Unnikrishnan
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Abinaya Sushana Thennarasu
- Biological Materials Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Puchalapalli Saveri
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Suryalakshmi Pandurangan
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Abhijit P Deshpande
- Department of Chemical Engineering, Indian Institute of Technology Madras, Adyar, 600036, Chennai, India
| | - Niraikulam Ayyadurai
- Biochemistry & Biotechnology Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India
| | - Ganesh Shanmugam
- Organic & Bioorganic Chemistry Laboratory, Council of Scientific and Industrial Research (CSIR) -, Central Leather Research Institute (CLRI), Adyar, 600020, Chennai, India.,Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| |
Collapse
|
8
|
Kulkarni N, Rao P, Jadhav GS, Kulkarni B, Kanakavalli N, Kirad S, Salunke S, Tanpure V, Sahu B. Emerging Role of Injectable Dipeptide Hydrogels in Biomedical Applications. ACS OMEGA 2023; 8:3551-3570. [PMID: 36743055 PMCID: PMC9893456 DOI: 10.1021/acsomega.2c05601] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 12/30/2022] [Indexed: 06/18/2023]
Abstract
Owing to their properties such as biocompatibility, tunable mechanical properties, permeability toward oxygen, nutrients, and the ability to hold a significant amount of water, hydrogels have wide applications in biomedical research. They have been engaged in drug delivery systems, 3D cell culture, imaging, and extracellular matrix (ECM) mimetics. Injectable hydrogels represent a major subset of hydrogels possessing advantages of site-specific conformation with minimal invasive techniques. It preserves the inherent properties of drug/biomolecules and is devoid of any side effects associated with surgery. Various polymeric materials utilized in developing injectable hydrogels are associated with the limitations of toxicity, immunogenicity, tedious manufacturing processes, and lack of easy synthetic tunability. Peptides are an important class of biomaterials that have interesting properties such as biocompatibility, stimuli responsiveness, shear thinning, self-healing, and biosignaling. They lack immunogenicity and toxicity. Therefore, numerous peptide-based injectable hydrogels have been explored in the past, and a few of them have reached the market. In recent years, minimalistic dipeptides have shown their ability to form stable hydrogels through cooperative noncovalent interactions. In addition to inherent properties of lengthy peptide-based injectable hydrogels, dipeptides have the unique advantages of low production cost, high synthetic accessibility, and higher stability. Given the instances of expanding significance of injectable peptide hydrogels in biomedical research and an emerging recent trend of dipeptide-based injectable hydrogels, a timely review on dipeptide-based injectable hydrogels shall highlight various aspects of this interesting class of biomaterials. This concise review that focuses on the dipeptide injectable hydrogel may stimulate the current trends of research on this class of biomaterial to translate its significance as interesting products for biomedical applications.
Collapse
Affiliation(s)
- Neeraj Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Prajakta Rao
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Quality
Operations, Novartis Healthcare Pvt. Ltd., Knowledge City, Raidurg, Hyderabad 500081, Telangana, India
| | - Govinda Shivaji Jadhav
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bhakti Kulkarni
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Springer
Nature Technology and Publishing Solutions, Hadapsar, Pune 411013, Maharashtra, India
| | - Nagaraju Kanakavalli
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
- Aragen
Life Sciences Pvt, Ltd., Madhapur, Hyderabad 500076, Telangana, India
| | - Shivani Kirad
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Sujit Salunke
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Vrushali Tanpure
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| | - Bichismita Sahu
- Department
of Medicinal Chemistry, National Institute
of Pharmaceutical Education and Research (NIPER), Ahmedabad, Opposite Air Force Station, Palaj, Gandhinagar 382355, India
| |
Collapse
|
9
|
Abraham B, Agredo P, Mensah SG, Nilsson BL. Anion Effects on the Supramolecular Self-Assembly of Cationic Phenylalanine Derivatives. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15494-15505. [PMID: 36473193 PMCID: PMC9776537 DOI: 10.1021/acs.langmuir.2c01394] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Supramolecular hydrogels have emerged as a class of promising biomaterials for applications such as drug delivery and tissue engineering. Self-assembling peptides have been well studied for such applications, but low molecular weight (LMW) amino acid-derived gelators have attracted interest as low-cost alternatives with similar emergent properties. Fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) is one such privileged motif often chosen due to its inherent self-assembly potential. Previously, we developed cationic Fmoc-Phe-DAP gelators that assemble into hydrogel networks in aqueous NaCl solutions of sufficient ionic strength. The chloride anions in these solutions screen the cationic charge of the gelators to enable self-assembly to occur. Herein, we report the effects of varying the anions of sodium salts on the gelation potential, nanoscale morphology, and hydrogel viscoelastic properties of Fmoc-Phe-DAP and two of its fluorinated derivatives, Fmoc-3F-Phe-DAP and Fmoc-F5-Phe-DAP. It was observed that both the anion identity and gelator structure had a significant impact on the self-assembly and gelation properties of these derivatives. Changing the anion identity resulted in significant polymorphism of the nanoscale morphology of the assembled states that was dependent on the chemical structure of the gelator. The emergent viscoelastic character of the hydrogel networks was also found to be reliant on the anion identity and gelator structure. These results demonstrate the complex interplay between the gelator and environment that have a profound and often unpredictable impact on both self-assembly properties and emergent viscoelasticity in supramolecular hydrogels formed by LMW compounds. This work also illustrates the current lack of understanding that limits the rational design of potential biomaterials that will be in contact with complex biological fluids and provides motivation for additional research to correlate the chemical structure of LMW gelators with the structure and emergent properties of the resulting supramolecular assemblies as a function of environment.
Collapse
Affiliation(s)
- Brittany
L. Abraham
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Pamela Agredo
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Samantha G. Mensah
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
| | - Bradley L. Nilsson
- Department
of Chemistry, University of Rochester, Rochester, New York 14627-0216, United States
- Materials
Science Program, University of Rochester, Rochester, New York 14627-0166, United States
| |
Collapse
|
10
|
Cheng Q, Zeng P. Hydrophobic-hydrophilic Alternation: An effective Pattern to de novo Designed Antimicrobial Peptides. Curr Pharm Des 2022; 28:3527-3537. [PMID: 36056849 DOI: 10.2174/1381612828666220902124856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/28/2023]
Abstract
The antimicrobial peptide (AMP) is a class of molecules that are active against a variety of microorganisms, from bacterial and cancer cells to fungi. Most AMPs are natural products, as part of an organism's own defense system against harmful microbes. However, the growing prevalence of drug resistance has forced researchers to design more promising engineered antimicrobial agents. Inspired by the amphiphilic detergents, the hydrophobic-hydrophilic alternation pattern was considered to be a simple but effective way to de novo design AMPs. In this model, hydrophobic amino acids (leucine, isoleucine etc.) and hydrophilic amino acids (arginine, lysine etc.) were arranged in an alternating way in the peptide sequence. The majority of this type of peptides have a clear hydrophilic-hydrophobic interface, which allows the molecules to have good solubility in both water and organic solvents. When they come into contact with hydrophobic membranes, many peptides undergo a conformational transformation, facilitating themself to insert into the cellular envelope. Moreover, positive-charged peptide amphiphiles tended to have an affinity with negatively-charged membrane interfaces and further led to envelope damage and cell death. Herein, several typical design patterns have been reviewed. Though varying in amino acid sequence, they all basically follow the rule of alternating arrangement of hydrophilic and hydrophobic residues. Based on that, researchers synthesized some lead compounds with favorable antimicrobial activities and preliminarily investigated their possible mode of action. Besides membrane disruption, these AMPs are proven to kill microbes in multiple mechanisms. These results deepened our understanding of AMPs' design and provided a theoretical basis for constructing peptide candidates with better biocompatibility and therapeutic potential.
Collapse
Affiliation(s)
- Qipeng Cheng
- Anhui Provincial Key Laboratory of Molecular Enzymology and Mechanism of Major Diseases, and Key Laboratory of Biomedicine in Gene Diseases and Health of Anhui Higher Education Institutes, College of Life Sciences, Anhui Normal University, Wuhu, Anhui, China.,State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Ping Zeng
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| |
Collapse
|
11
|
Adhikary R, Das A. Atomistic Pictures of Self-Assembled Helical Peptide Nanofibers. J Phys Chem B 2022; 126:9476-9492. [PMID: 36350248 DOI: 10.1021/acs.jpcb.2c04484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Spontaneous self-assembly of peptides has been at the forefront of supramolecular chemistry and materials science research over the last two decades. Despite the wealth of information on the morphology of the assembled objects, atomic resolution details of molecular arrangements inside them are largely unknown. In this paper, we investigated non-covalent assemblies of zwitterionic l-phenylalanine tripeptides in water using all-atom explicit-solvent molecular dynamics computer simulations. Our studies produced atomistic pictures of spontaneously assembled nanofibers composed of hundreds of peptide molecules. The dimensions of the nanofibers varied from 10 to 18 nm, with irregular helical twists along the long axes. Previously published experimental data, acquired under similar conditions, provided direct validation of the fibrous morphology and indirect support for the non-trivial helicity observed in our simulations. Quantitative analyses of peptide-water and peptide-peptide interactions revealed heterogeneous local environments of molecules across the nanometer length scales. The combination of electrostatic, hydrogen bonding, van der Waals, and hydrophobic interactions, adopted by a single molecule, was dependent on its relative position inside the fiber. Despite the presence of three hydrophobic phenyl groups, very few molecules were found to be completely shielded from the surrounding water, indicating a subtle role of the hydrophobic effect. Limited conformational flexibility of the tripeptide, along with bare electrostatic interactions, appeared to play a crucial role in the emergence of fibrous morphology of the nanostructures. Our analyses led us to formulate plausible qualitative explanations of the assembly behavior in terms of thermodynamic driving forces and kinetic considerations. We established a clear relationship between details of chemical interactions operating within few molecules and characteristics of the self-assembled states at much longer length scales.
Collapse
Affiliation(s)
- Rumela Adhikary
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| | - Avisek Das
- School of Chemical Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India
| |
Collapse
|
12
|
La Manna S, Florio D, Panzetta V, Roviello V, Netti PA, Di Natale C, Marasco D. Hydrogelation tunability of bioinspired short peptides. SOFT MATTER 2022; 18:8418-8426. [PMID: 36300826 DOI: 10.1039/d2sm01385a] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Supramolecular assemblies of short peptides are experiencing a stimulating flowering. Herein, we report a novel class of bioinspired pentapeptides, not bearing Phe, that form hydrogels with fibrillar structures. The inherent sequence comes from the fragment 269-273 of nucleophosmin 1 protein, that is normally involved in liquid-liquid phase separation processes into the nucleolus. By means of rheology, spectroscopy, and scanning microscopy the crucial roles of the extremities in the modulation of the mechanical properties of hydrogels were elucidated. Three of four peptide showed a typical shear-thinning profile and a self-assembly into hierarchical nanostructures fibers and two of them resulted biocompatible in MCF7 cells. The presence of an amide group at C-terminal extremity caused the fastest aggregation and the major content of structured intermediates during gelling process. The tunable mechanical and structural features of this class of hydrogels render derived supramolecular systems versatile and suitable for future biomedical applications.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Daniele Florio
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| | - Valeria Panzetta
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Valentina Roviello
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
| | - Paolo Antonio Netti
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Concetta Di Natale
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples "Federico II", 80125, Naples, Italy
- Department of Ingegneria Chimica del Materiali e della Produzione Industriale (DICMAPI), University of Naples "Federico II", 80125, Naples, Italy
- Istituto Italiano di Tecnologia, Largo Barsanti e Matteucci 53, 80125, Naples, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", 80131, Naples, Italy.
| |
Collapse
|
13
|
Wang L, Liu H, Li X, Yao C. Assessment of New Strategies to Improve the Performance of Antimicrobial Peptides. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3691. [PMID: 36296881 PMCID: PMC9610275 DOI: 10.3390/nano12203691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/15/2022] [Accepted: 10/19/2022] [Indexed: 06/16/2023]
Abstract
In this research, we constructed a novel engineered tripeptide modified with lipoic acid (LA-RWR), followed by crosslinking of lipoic acid to form nanoparticles (c-LA-RWR). LA-RWR was also modified with phenethylamine (PEA) on the C-terminus to achieve better antibacterial activities. The as-prepared c-LA-RWR and LA-RWR-PEA were effective against E.coli, S.aureus, C.albicans, and methicillin-resistant Staphylococcus aureus, with minimum inhibitory concentration values ranging from 2 to 16 µg/mL, which greatly improved the performance of LA-RWR. Similar antibacterial activities were demonstrated in anti-biofilm activity; there was no matter on the biofilm that was already established or forming. Moreover, c-LA-RWR/LA-RWR-PEA remarkably induced cytoplasmic membrane depolarization and outer membrane permeabilization, resulting in varying degrees of damage to the bacterial morphology, which were consistent with the results obtained via electron microscopy. Thus, our results show that c-LA-RWR/LA-RWR-PEA exhibited excellent efficacy against a variety of microorganisms with good biosafety, providing new strategies by which to improve the performance of antimicrobial peptides.
Collapse
Affiliation(s)
| | | | | | - Chen Yao
- Correspondence: ; Tel.: +86-138-1386-1022
| |
Collapse
|
14
|
Fortunato A, Mba M. A Peptide-Based Hydrogel for Adsorption of Dyes and Pharmaceuticals in Water Remediation. Gels 2022; 8:672. [PMID: 36286173 PMCID: PMC9601570 DOI: 10.3390/gels8100672] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 08/26/2023] Open
Abstract
The removal of dyes and pharmaceuticals from water has become a major issue in recent years due to the shortage of freshwater resources. The adsorption of these pollutants through nontoxic, easy-to-make, and environmentally friendly adsorbents has become a popular topic. In this work, a tetrapeptide-pyrene conjugate was rationally designed to form hydrogels under controlled acidic conditions. The hydrogels were thoroughly characterized, and their performance in the adsorption of various dyes and pharmaceuticals from water was investigated. The supramolecular hydrogel efficiently adsorbed methylene blue (MB) and diclofenac (DCF) from water. The effect of concentration in the adsorption efficiency was studied, and results indicated that while the adsorption of MB is governed by the availability of adsorption sites, in the case of DCF, concentration is the driving force of the process. In the case of MB, the nature of the dye-hydrogel interactions and the mechanism of the adsorption process were investigated through UV-Vis absorption spectroscopy. The studies proved how this dye is first adsorbed as a monomer, probably through electrostatic interactions; successively, at increasing concentrations as the electrostatic adsorption sites are depleted, dimerization on the hydrogel surface occurs.
Collapse
Affiliation(s)
| | - Miriam Mba
- Dipartimento di Scienze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padova, Italy
| |
Collapse
|
15
|
Bouguet-Bonnet S, Giraud T, Stefan L, Averlant-Petit MC, Canet D. On the Observation of 14N Quadrupole Resonance Transitions in Water Proton NMR Relaxometry Dispersion Curves: The Case of a Labile NH Grouping in a Semirigid Molecular Moiety. J Phys Chem B 2022; 126:7159-7165. [PMID: 36099394 DOI: 10.1021/acs.jpcb.2c05208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The electric field gradient tensor (considered here at the level of a nitrogen nucleus) can be described by two parameters: the largest element in the (X,Y,Z) principal axis system, denoted by VZZ (leading to the nuclear quadrupole coupling), and the asymmetry parameter η = (|VYY| - |VXX|)/|VZZ| with |VZZ| > |VYY| > |VXX|. The frequencies of the three nitrogen-14 nuclear quadrupole resonance (NQR) transitions depend on both parameters but, for sensitivity reasons, their determination may be especially difficult and time consuming. For a partly rigid NH grouping with a labile proton, water nuclear magnetic resonance (NMR) relaxometry curves may exhibit these three transitions (dubbed quadrupolar dips or quadrupole relaxation enhancement (QRE)), provided that the NH grouping belongs to a moiety possessing a sufficient degree of ordering. Their line shape leads to the correlation time describing mainly the motion of the NH grouping (the proton of which being in exchange with water protons), and their amplitude can be interpreted in terms of an effective NH distance. This approach is applied to a hydrogel, where separate NQR lines are observed for the different types of water existing in this system. Furthermore, the analysis of experimental data allows one to determine the nuclear quadrupole coupling in the protonated and deprotonated forms of this molecular moiety involving a labile NH grouping.
Collapse
Affiliation(s)
| | - Tristan Giraud
- UMR 7375 LCPM, Université de Lorraine, CNRS, F-54000 Nancy, France
| | - Loic Stefan
- UMR 7375 LCPM, Université de Lorraine, CNRS, F-54000 Nancy, France
| | | | - Daniel Canet
- UMR 7563 LEMTA, Université de Lorraine, CNRS, F-54000 Nancy, France
| |
Collapse
|
16
|
Abraham BL, Mensah SG, Gwinnell BR, Nilsson BL. Side-chain halogen effects on self-assembly and hydrogelation of cationic phenylalanine derivatives. SOFT MATTER 2022; 18:5999-6008. [PMID: 35920399 DOI: 10.1039/d2sm00713d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Low molecular weight (LMW) supramolecular hydrogels have great potential as next-generation biomaterials for drug delivery, tissue engineering, and regenerative medicine. The design of LMW gelators is complicated by the lack of understanding regarding how the chemical structure of the gelator correlates to self-assembly potential and emergent hydrogel material properties. The fluorenylmethyloxycarbonyl-phenylalanine (Fmoc-Phe) motif is a privileged scaffold that is prone to undergo self-assembly into self-supporting hydrogel networks. Cationic Fmoc-Phe-DAP derivatives modified with diaminopropane (DAP) at the C-terminus have been developed that self-assemble into hydrogel networks in aqueous solutions of sufficient ionic strength. We report herein the impact of side-chain halogenation on the self-assembly and hydrogelation properties of Fmoc-Phe-DAP derivatives. A systematic study of the self-assembly and hydrogelation of monohalogenated Fmoc-Phe-DAP derivatives with F, Cl, or Br atoms in the ortho, meta, or para positions of the phenyl side chain reveal significant differences in self-assembly and gelation potential, nanoscale assembly morphology, and hydrogel viscoelastic properties as a function of halogen identity and substitution position. These results demonstrate the profound impact that subtle changes to the chemical scaffold can have on the behavior of LMW supramolecular gelators and illustrate the ongoing difficulty of predicting the emergent self-assembly and hydrogelation behavior of LMW gelators that differ even modestly in chemical structure.
Collapse
Affiliation(s)
- Brittany L Abraham
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | - Samantha G Mensah
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
| | | | - Bradley L Nilsson
- Department of Chemistry, University of Rochester, Rochester, NY 14627, USA.
- Materials Science Program, University of Rochester, Rochester, NY 14627, USA
| |
Collapse
|
17
|
Giraud T, Hoschtettler P, Pickaert G, Averlant-Petit MC, Stefan L. Emerging low-molecular weight nucleopeptide-based hydrogels: state of the art, applications, challenges and perspectives. NANOSCALE 2022; 14:4908-4921. [PMID: 35319034 DOI: 10.1039/d1nr06131c] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Over the last twenty years, low-molecular weight gelators and, in particular, peptide-based hydrogels, have drawn great attention from scientists thanks to both their inherent advantages in terms of properties and their high modularity (e.g., number and nature of the amino acids). These supramolecular hydrogels originate from specific peptide self-assembly processes that can be driven, modulated and optimized via specific chemical modifications brought to the peptide sequence. Among them, the incorporation of nucleobases, another class of biomolecules well-known for their abilities to self-assemble, has recently appeared as a new promising and burgeoning approach to finely design supramolecular hydrogels. In this minireview, we would like to highlight the interest, high potential, applications and perspectives of these innovative and emerging low-molecular weight nucleopeptide-based hydrogels.
Collapse
Affiliation(s)
- Tristan Giraud
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| | | | | | | | - Loic Stefan
- Université de Lorraine, CNRS, LCPM, F-54000 Nancy, France.
| |
Collapse
|
18
|
Wei H, Lin S, Liu W, Li Y, Li B, Yang Y. Stereostructure Dependence Phenomenon on the Self-Assembly of Ala-Ala-Ala Lipotripeptides. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:2248-2256. [PMID: 35133849 DOI: 10.1021/acs.langmuir.1c02813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A series of lipotripeptide stereoisomers based on alanine were synthesized, and their self-assembling behaviors were studied by means of circular dichroism spectra, ATR-IR, temperature-dependent 1H NMR, and X-ray diffraction patterns. In the mixed solvent of hexafluoroisopropanol/H2O (1/9, v/v), eight lipotripeptides were able to self-assembled into nanoflakes or nanoribbons driven by the hydrophobic association of alkyl chains, intermolecular hydrogen bonding among carboxyl groups at C-terminal and amide groups of alanine moieties in the peptide segment. It was found that the stacking chirality of carbonyl groups was determined by the chirality of alanine residue at C-terminal (i.e., "C-terminal determination" rule). Moreover, our research also highlighted the intermolecular hydrogen bonding on amide groups of each alanine residue, terminal carboxyl as well as the molecular packing structures can be subtly manipulated by changing the stereochemical sequence of peptide segment.
Collapse
Affiliation(s)
- He Wei
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Shuwei Lin
- Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, School of Optoelectronics Science and Engineering, Soochow University, Suzhou 215123, China
| | - Wei Liu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yi Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Baozong Li
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| | - Yonggang Yang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
| |
Collapse
|
19
|
Theodoroula NF, Karavasili C, Vlasiou MC, Primikyri A, Nicolaou C, Chatzikonstantinou AV, Chatzitaki AT, Petrou C, Bouropoulos N, Zacharis CK, Galatou E, Sarigiannis Y, Fatouros DG, Vizirianakis IS. NGIWY-Amide: A Bioinspired Ultrashort Self-Assembled Peptide Gelator for Local Drug Delivery Applications. Pharmaceutics 2022; 14:133. [PMID: 35057029 PMCID: PMC8778326 DOI: 10.3390/pharmaceutics14010133] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 12/30/2021] [Accepted: 12/31/2021] [Indexed: 01/14/2023] Open
Abstract
Fibrillar structures derived from plant or animal origin have long been a source of inspiration for the design of new biomaterials. The Asn-Gly-Ile-Trp-Tyr-NH2 (NGIWY-amide) pentapeptide, isolated from the sea cucumber Apostichopus japonicus, which spontaneously self-assembles in water to form hydrogel, pertains to this category. In this study, we evaluated this ultra-short cosmetic bioinspired peptide as vector for local drug delivery applications. Combining nuclear magnetic resonance, circular dichroism, infrared spectroscopy, X-ray diffraction, and rheological studies, the synthesized pentapeptide formed a stiff hydrogel with a high β-sheet content. Molecular dynamic simulations aligned well with scanning electron and atomic-force microscopy studies, revealing a highly filamentous structure with the fibers adopting a helical-twisted morphology. Model dye localization within the supramolecular hydrogel provided insights on the preferential distribution of hydrophobic and hydrophilic compounds in the hydrogel network. That was further depicted in the diffusion kinetics of drugs differing in their aqueous solubility and molecular weight, namely, doxorubicin hydrochloride, curcumin, and octreotide acetate, highlighting its versatility as a delivery vector of both hydrophobic and hydrophilic compounds of different molecular weight. Along with the observed cytocompatibility of the hydrogel, the NGIWY-amide pentapeptide may offer new approaches for cell growth, drug delivery, and 3D bioprinting tissue-engineering applications.
Collapse
Affiliation(s)
- Nikoleta F. Theodoroula
- Department of Molecular Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Christina Karavasili
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (A.-T.C.); (D.G.F.)
| | - Manos C. Vlasiou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | | | - Christia Nicolaou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Alexandra V. Chatzikonstantinou
- Biotechnology Laboratory, Department of Biological Applications and Technologies, University of Ioannina, 45110 Ioannina, Greece;
| | - Aikaterini-Theodora Chatzitaki
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (A.-T.C.); (D.G.F.)
| | - Christos Petrou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Nikolaos Bouropoulos
- Department of Materials Science, University of Patras, 26504 Patras, Greece;
- Foundation for Research and Technology Hellas, Institute of Chemical Engineering and High Temperature Chemical Processes, 26504 Patras, Greece
| | - Constantinos K. Zacharis
- Laboratory of Pharmaceutical Analysis, Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Eleftheria Galatou
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Yiannis Sarigiannis
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| | - Dimitrios G. Fatouros
- Department of Pharmaceutical Technology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (C.K.); (A.-T.C.); (D.G.F.)
| | - Ioannis S. Vizirianakis
- Department of Molecular Pharmacology, School of Pharmacy, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
- Department of Life & Health Sciences, University of Nicosia, Nicosia 2417, Cyprus; (M.C.V.); (C.N.); (C.P.); (E.G.)
| |
Collapse
|
20
|
Giuri D, Marshall LJ, Wilson C, Seddon A, Adams DJ. Understanding gel-to-crystal transitions in supramolecular gels. SOFT MATTER 2021; 17:7221-7226. [PMID: 34286796 DOI: 10.1039/d1sm00770j] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Most supramolecular gels are stable or assumed to be stable over time, and aging effects are often not studied. However, some gels do show clear changes on aging, and a small number of systems exhibit gel-to-crystal transitions. In these cases, crystals form over time, typically at the expense of the network underpinning the gel; this leads to the gel falling apart. These systems are rare, and little is known about how these gel-to-crystal transitions occur. Here, we use a range of techniques to understand in detail a gel-to-crystal transition for a specific functionalised dipeptide based gelator. We show that the gel-to-crystal transition depends on the final pH of the medium which we control by varying the amount of glucon-δ-lactone (GdL) added. In the gel phase, at low concentrations of GdL, and at early time points with high concentrations of GdL, we are able to show the nanometre scale dimensions of the self-assembled fibre using SAXS; however there is no evidence of molecular ordering of the gel fibres in the WAXS. At low concentrations of GdL, these self-assembled fibres stiffen with time but do not crystallise over the timescale of the SAXS experiment. At high concentrations of GdL, the fibres are already stiffened, and then, as the pH drops further, give way to the presence of crystals which appear to grow preferentially along the direction of the fibre axis. We definitively show therefore that the gel and crystal phase are not the same. Our work shows that many assumptions in the literature are incorrect. Finally, we also show that the sample holder geometry is an important parameter for these experiments, with the rate of crystallisation depending on the holder in which the experiment is carried out.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna, Via Selmi, 2, 40126, Bologna, Italy
| | - Libby J Marshall
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Claire Wilson
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Annela Seddon
- School of Physics, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK. and Bristol Centre for Functional Nanomaterials, HH Wills Physics Laboratory, University of Bristol, Tyndall Avenue, Bristol, BS8 1TL, UK
| | - Dave J Adams
- School of Chemistry, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
21
|
Giuri D, Marshall LJ, Dietrich B, McDowall D, Thomson L, Newton JY, Wilson C, Schweins R, Adams DJ. Exploiting and controlling gel-to-crystal transitions in multicomponent supramolecular gels. Chem Sci 2021; 12:9720-9725. [PMID: 34349943 PMCID: PMC8293982 DOI: 10.1039/d1sc02347k] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 06/11/2021] [Indexed: 12/31/2022] Open
Abstract
Multicomponent supramolecular gels provide opportunities to form materials that are not accessible when using the single components alone. Different scenarios are possible when mixing multiple components, from complete co-assembly (mixing of the components within the self-assembled structures formed) to complete self-sorting such that each structure contains only one of the components. Most examples of multicomponent gels that currently exist form stable gels. Here, we show that this can be used to control the mechanical properties of the gels, but what is probably most exciting is that we show that we can use a magnetic field to control the shape of the crystals. The gelling component aligns in a magnetic field and so results in anisotropic crystals being formed.
Collapse
Affiliation(s)
- Demetra Giuri
- Dipartimento di Chimica Giacomo Ciamician, Alma Mater Studiorum, Università di Bologna Via Selmi, 2 40126 Bologna Italy
| | | | - Bart Dietrich
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Daniel McDowall
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Lisa Thomson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Jenny Y Newton
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Claire Wilson
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| | - Ralf Schweins
- Large Scale Structures Group, Institut Laue-Langevin 71 Avenue des Martyrs, CS 20156 F-38042 Grenoble CEDEX 9 France
| | - Dave J Adams
- School of Chemistry, University of Glasgow Glasgow G12 8QQ UK
| |
Collapse
|
22
|
Zhang Z, Ma X, Xia T, Wu Y, Shi S, Lei L, Li X, Chen H, Lin D. A Novel Indomethacin-Tripeptide Hydrogel for Inhibiting Ocular Inflammation. J Biomed Nanotechnol 2021; 17:1417-1425. [PMID: 34446144 DOI: 10.1166/jbn.2021.3118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
A highly efficient method for constructing indomethacin-peptide conjugates was developed using the natural amino acid tyrosine (Y) as the anchor for indomethacin (Idm). With pH = 6, Idm-YEE conjugate self-assembled in a low critical micelle concentration (CMC, 0.037 mg/mL) and formed a transparent hydrogel (0.4 wt%). The formed Idm-YEE hydrogel presented sustained drug release of indomethacin with a maximum of 40% during first 24 hours, which was superior to the reported Idm-containing supramolecular hydrogel systems. As kept at 4 °C, the Idm-YEE hydrogel showed good storage stability up to 30 days without obvious hydrolysis. As shown by MTT assay, the Idm-YEE hydrogel exhibited good cell compatibility against retinal pigment epithelial cells (ARPE-19) and Human corneal epithelial cells (HCEC). Ocular irritation test (i.e., clinical observations, fluorescein staining and H&E histological analysis) results showed good integrity of corneal architecture and no edema after Idm-YEE hydrogel treatment, which proved its good ocular biocompatibility. Besides, the LPS-stimulated levels of key inflammatory mediators, including NO, PGE₂ and IL-6, were greatly reduced by Idm-YEE hydrogel even in a low concentration (50 μM) in Raw264.7 cells, which indicated its comparable in vitro anti-inflammatory activity to indomethacin. Furthermore, the therapeutic efficacy of Idm-YEE hydrogel was evaluated in endotoxin-induced uveitis (EIU) rabbit model. By treating with dm-YEE hydrogel, the rabbit eyes had significantly lowered inflammation and exudation in the anterior chamber. The results of histological analysis, clinical score, inflammatory cell counts, aqueous protein concentration and immunohistochemical staining also demonstrated its good in vivo therapeutic activity towards ocular inflammation. Therefore, with good ocular biocompatibility and comparable anti-inflammatory effect towards ocular inflammation, the novel indomethacin-tripeptide hydrogel (Idm-YEE) developed in this work provides a potential treatment for anterior uveitis.
Collapse
Affiliation(s)
- Zhiyong Zhang
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Xiaofang Ma
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Tian Xia
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Yuqin Wu
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Shuai Shi
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Lei Lei
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Xingyi Li
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Hao Chen
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| | - Deqing Lin
- Institute of Biomedical Engineering, School of Ophthalmology & Optometry and Eye Hospital, Wenzhou Medical University, Wenzhou, 325027, P. R. China
| |
Collapse
|
23
|
Kulkarni N, Shinde SD, Jadhav GS, Adsare DR, Rao K, Kachhia M, Maingle M, Patil SP, Arya N, Sahu B. Peptide-Chitosan Engineered Scaffolds for Biomedical Applications. Bioconjug Chem 2021; 32:448-465. [PMID: 33656319 DOI: 10.1021/acs.bioconjchem.1c00014] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Peptides are signaling epitopes that control many vital biological events. Increased specificity, synthetic feasibility with concomitant lack of toxicity, and immunogenicity make this emerging class of biomolecules suitable for different applications including therapeutics, diagnostics, and biomedical engineering. Further, chitosan, a naturally occurring linear polymer composed of d-glucosamine and N-acetyl-d-glucosamine units, possesses anti-microbial, muco-adhesive, and hemostatic properties along with excellent biocompatibility. As a result, chitosan finds application in drug/gene delivery, tissue engineering, and bioimaging. Despite these applications, chitosan demonstrates limited cell adhesion and lacks biosignaling. Therefore, peptide-chitosan hybrids have emerged as a new class of biomaterial with improved biosignaling properties and cell adhesion properties. As a result, recent studies encompass increased application of peptide-chitosan hybrids as composites or conjugates in drug delivery, cell therapy, and tissue engineering and as anti-microbial material. This review discusses the recent investigations involving chitosan-peptide materials and uncovers various aspects of these interesting hybrid materials for biomedical applications.
Collapse
|
24
|
Higashi SL, Hirosawa KM, Suzuki KGN, Matsuura K, Ikeda M. One-Pot Construction of Multicomponent Supramolecular Materials Comprising Self-Sorted Supramolecular Architectures of DNA and Semi-Artificial Glycopeptides. ACS APPLIED BIO MATERIALS 2020; 3:9082-9092. [DOI: 10.1021/acsabm.0c01316] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Sayuri L. Higashi
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
| | - Koichiro M. Hirosawa
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kenichi G. N. Suzuki
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
| | - Kazunori Matsuura
- Department of Chemistry and Biotechnology, Graduate School of Engineering, Tottori University, Tottori 680-8552, Japan
| | - Masato Ikeda
- United Graduate School of Drug Discovery and Medical Information Sciences, Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Center for Highly Advanced Integration of Nano and Life Sciences (G-CHAIN), Gifu University, 1-1 Yanagido, Gifu 501-1193, Japan
- Institute for Glyco-core Research (iGCORE), Gifu University, Furo-cho, Chikusa-ku, Nagoya 464-8603, Japan
- Institute of Nano-Life-Systems, Institutes of Innovation for Future Society, Nagoya University, Furo-cho,
Chikusa-ku, Nagoya 464-8603, Japan
| |
Collapse
|