1
|
Yan X, Mu H, He Y, Guo K, Jiang P, Wang W, Shu Q, Deng H, Liu A, Ge W, Cheng S, Li N, Cao Z, Zheng X, Ai F, Guo L. Self-synergy-powered Ni/Fe nanocube-based cholesterol detection with dual modes. Talanta 2025; 291:127860. [PMID: 40054223 DOI: 10.1016/j.talanta.2025.127860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 02/23/2025] [Accepted: 02/28/2025] [Indexed: 03/24/2025]
Abstract
Nanoenzyme-leveraged multimode detection would benefit enhancing sensitivity and mitigating detection error. Moreover, multienzyme-like nanozymes hold tremendous potential in sensing by offering synergistic effects and cascaded catalysis. Herein, cost-effective multienzymic Ni/Fe nanocubes (Ni/FeNCs) were synthesized via a facile co-precipitation, and verified to catalyze H2O2 decomposition as peroxidase (POD) and catalase (CAT) mimics. Thereby, a dual-mode sensing platform based on Ni/FeNC and cholesterol oxidase (ChOx) was developed for cholesterol detection. Utilizing the H2O2 produced via the oxidation of cholesterol catalyzed by ChOx, OH•/O2•- radicals and O2 were formed efficiently via Ni/FeNCs-based H2O2 decomposition, facilitating the generation of chemiluminescence (CL) and fluorescence signals. For CL assay, an Ni/FeNC-luminol-H2O2 CL system was fabricated, where both POD-mimic-mediated radical decomposition of H2O2 and ferricyanide ions in Ni/FeNCs could induce CL reaction with respective mechanism. Notably, these two CL processes were both deduced to be enhanced by in-situ generated O2. This dual-catalyzed luminol CL system, involving self-cascade catalysis of ferricyanogen and CAT mimic as well as the self-synergy between POD-like and CAT-like activities of Ni/FeNCs, was proposed for the first time, and able to boost CL signal. To generate fluorescent signal, o-phenylenediamine was introduced, and oxidized by both OH•/O2•- and O2 produced via POD/CAT-mimic-mediated H2O2 decomposition to 2,3-diaminophenazinc, which could quench the fluorescence of WS2 quantum dots via internal filtration effect. The Ni/FeNC-based dual-mode assay is applicable and flexible for cholesterol detection. Particularly, the low-cost Ni/FeNC is a promising candidate of luminol-H2O2 CL system due to its dual-CL-mechanism involving self-cascade and synergistic catalysis.
Collapse
Affiliation(s)
- Xiluan Yan
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China; School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China; Jiangxi Province Key Laboratory of New Drug Evaluation and Transformation, Nanchang, 330031, PR China; The MOE Basic Research and Innovation Center for the Targeted Therapeutics of Solid Tumors, Jiangxi Medical College, Nanchang University, Nanchang, PR China
| | - Hongyi Mu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Yun He
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Kangyi Guo
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Pengyan Jiang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Wei Wang
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Qinglei Shu
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Huangying Deng
- Department of Medical Oncology, Jiangxi Cancer Hospital, The Second Affiliated Hospital of Nanchang Medical College, Jiangxi Clinical Research Center for Cancer, Nanchang, 330029, PR China
| | - Ahua Liu
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Wenkai Ge
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Shiyun Cheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Na Li
- School of Pharmacy, Jiangxi Medical College, Nanchang University, Nanchang, 330006, PR China
| | - Zhijua Cao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fudan University, Shanghai, 201203, PR China
| | - Xiangjuan Zheng
- School of Chemistry and Chemical Engineering, Nanchang University, Nanchang, 330031, PR China
| | - Fanrong Ai
- School of Advanced Manufacturing, Nanchang University, Nanchang, 330031, PR China
| | - Liang Guo
- State Key Laboratory of Food Science and Resources, Nanchang University, Nanchang, 330047, PR China; Sino German Joint Research Institute, Nanchang University, Nanchang, 330047, PR China; Jiangxi Provincial Key Laboratory of Agrofood Safety and Quality, Nanchang University, Nanchang, 330047, PR China.
| |
Collapse
|
2
|
Liu S, Chen Y, Cheng X, Li G, Hu Y. Dual enzyme-mimicking bimetallic MOF for selective SERS detection of L-DOPA in human serum based on cascade catalytic reaction. Talanta 2025; 294:128178. [PMID: 40262351 DOI: 10.1016/j.talanta.2025.128178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 04/04/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025]
Abstract
Surface-enhanced Raman scattering (SERS) in conjunction with nanozymes has emerged as a powerful technique for bioanalysis due to their signal conversion and amplification effect. However, clinical applications continue to encounter challenges such as inadequate selectivity. Herein, we proposed a novel approach for the selective SERS detection of L-DOPA in human serum with dual enzyme-mimicking MOF-919(Fe-Cu). This material exhibits both catechol oxidase-like and peroxidase-like activities, enabling it to catalyze catecholic compounds to o-quinones and subsequently oxidize 3,3',5,5'-tetramethylbenzidine (TMB) molecules into SERS-active ox-TMB. Ultrasonic-assisted synthesis ensures uniform and dense loading of AgNPs within MOF-919(Fe-Cu), thereby enhancing SERS activity. A sensitive and selective method for SERS detection of L-DOPA was developed. The catechol oxidase-like activity of MOF-919(Fe-Cu) provides ideal selectivity and anti-interference to L-DOPA, while the cascade catalytic system transforms weak SERS signals of L-DOPA into amplified SERS signals of ox-TMB. The mechanism of dual enzyme-mimicking activity was further discussed. The detection process was optimized to achieve high sensitivity towards L-DOPA with a linear range 0.5-100 μmol/L and low limit of detection (LOD) of 0.16 μmol/L. Furthermore, it has been applied in serum sample of Parkinson's patients, demonstrating excellent recovery and low relative error compared to HPLC-UV. This approach offers an economical, efficient and accurate strategy for the detection of L-DOPA and provides valuable insights for the integration of selective multifunctional nanozyme and sensitive SERS detection method.
Collapse
Affiliation(s)
- Shuojiang Liu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Ying Chen
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Xingliang Cheng
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Gongke Li
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China
| | - Yuling Hu
- School of Chemistry, Institute of Green Chemistry and Molecular Engineering, Sun Yat-sen University, Guangzhou, 510006, China.
| |
Collapse
|
3
|
Krishnendu MR, Bhagat S, Jain V, Mehta D, Singh S. Paper immobilized BSA-decorated gold nanoclusters for single-step optical sensing of glucose and cholesterol without cross-reactivity. Colloids Surf B Biointerfaces 2024; 245:114303. [PMID: 39413484 DOI: 10.1016/j.colsurfb.2024.114303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/25/2024] [Accepted: 10/05/2024] [Indexed: 10/18/2024]
Abstract
Minimally invasive methods for detecting glucose, cholesterol and hydrogen peroxide are crucial for monitoring the nutritional and health status of humans and animals. The peroxidase mimetic activity by nanozymes is one of the versatile methods for detecting glucose, cholesterol, hydrogen peroxide, and other biomolecules. However, the strict requirement of acidic pH limits their sensing and interfacing ability with natural enzymes. The present study developed bovine serum albumin (BSA) coated gold nanoclusters (AuNC) immobilized on paper fabric to enable single-step visual detection of glucose, cholesterol and hydrogen peroxide in complex biological fluids like serum and milk. The BSA-AuNC suspension and immobilized paper fabric synergistically interface with the natural oxidative enzymes, glucose oxidase or cholesterol oxidase, at physiological pH. The concomitant loss in the fluorescent intensity of BSA-AuNC-loaded paper fabric exposed to the generated hydrogen peroxide (glucose/glucose oxidase or cholesterol/cholesterol oxidase) was directly proportional to the concentration of glucose or cholesterol. These reactions enabled simple visual detection as well as quantification of hydrogen peroxide, glucose and cholesterol using Image-J software and common smartphone-based mobile applications. The detection ability of BSA-AuNC-embedded paper fabric is specific and remains unaltered in the presence of similar oxidase enzymes or similar substrate analogues. With these unique features, the BSA-AuNC embedded paper fabric stands out as a prominent analytical device with enormous potential as a simple, user-friendly detection tool for monitoring biomolecules that are important to health, nutrition, and environmental safeguarding.
Collapse
Affiliation(s)
- M R Krishnendu
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Stuti Bhagat
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India; Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Vidhi Jain
- Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India
| | - Divya Mehta
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India
| | - Sanjay Singh
- Nanobiology and Nanozymology Laboratory, National Institute of Animal Biotechnology (NIAB), Opposite Journalist Colony, Near Gowlidoddy, Extended Q-City Road, Gachibowli, Hyderabad, Telangana 500032, India; Biological and Life Sciences, School of Arts and Sciences, Ahmedabad University, Central Campus, Navrangpura, Ahmedabad, Gujarat 380009, India.
| |
Collapse
|
4
|
Tingyuan P, Xiaorui L, Jia L, Qi S, Junren L, Ling H, Wenying S, Xiaoshun J, Meimei Z. Highly sensitive and accurate detection of cholesterol based on a single red upconversion biosensor. RSC Adv 2024; 14:7858-7866. [PMID: 38449817 PMCID: PMC10915588 DOI: 10.1039/d3ra07354h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Accepted: 12/02/2023] [Indexed: 03/08/2024] Open
Abstract
Cholesterol (CHOL) is an important clinical biochemical indicator that plays an important role in the regulation of the fluidity, permeability, and microstructure of cell membranes. Therefore, it is necessary to accurately monitor CHOL levels in biological samples for the early prevention and diagnosis of various diseases. The single-band red upconversion nanoparticle (UCNP) emits light within the optical transmission window of biological tissues, and can penetrate deeper biological tissues and cause less energy loss due to scattering and thus have higher sensitivity and accuracy. Here, using the nontoxic, sensitive, and photochemically stable 3,3',5,5'-tetramethylbenzidine (TMB) as the quenching agent and single red UCNP as the fluorescent donor, a dual-readout colorimetric and fluorescent sensor was developed to detect CHOL. The detection mechanism and feasibility were discussed in detail, and experimental conditions such as Fe2+ concentration, TMB concentration and reaction time were explored. Under optimal conditions, the limits of CHOL detection by colorimetry and fluorescence were 0.85 μM and 0.63 μM. The sensing system was used to measure CHOL in serum samples and the values obtained by these two modes were close, and the spiked recoveries were 97.2-102.2% and 97.1-103.7%, respectively, which holds great potential in clinical diagnosis and health management.
Collapse
Affiliation(s)
- Pang Tingyuan
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Liu Xiaorui
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Li Jia
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Song Qi
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Li Junren
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Han Ling
- Integrated Traditional Chinese and Western Medicine Department (Internal Medicine Section 5), Affiliated Cancer Hospital & Institute of Guangzhou Medical University Guangzhou China
| | - Shu Wenying
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Jian Xiaoshun
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| | - Zhang Meimei
- Department of Pharmacy, Affiliated Cancer Hospital, Institute of Guangzhou Medical University Guangzhou China
| |
Collapse
|
5
|
Li T, Bu J, Yang Y, Zhong S. A smartphone-assisted one-step bicolor colorimetric detection of glucose in neutral environment based on molecularly imprinted polymer nanozymes. Talanta 2024; 267:125256. [PMID: 37801931 DOI: 10.1016/j.talanta.2023.125256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 09/26/2023] [Accepted: 09/29/2023] [Indexed: 10/08/2023]
Abstract
In order to improve the specificity and the peroxidase-like activity of nanozyme at the neutral pH as well as to facilitate the naked-eye visual detection of the analyte concentration, a nanozyme based on molecularly imprinted polymers (MIPNs) for selective and bicolor colorimetric detection of glucose in neutral environment was developed. Compared with free nanozyme, the synthesized MIPNs showed a better catalytic capability, with a catalytic efficiency (kcat/Km) 9.5 times higher than that of free nanozyme. The kinetics experiment showed that the MIPNs demonstrated a fast kinetic feature and the kinetic data fitted a pseudo-first-order model. In practical application, the color of the detection system changed gradually from pink to blue as the glucose concentration increased in a broad linear range from 0 to 3 mM, with a detection limit of 6.22 μM. The colorimetric visualization of glucose concentration was read with a smartphone and no other instrument was needed. Therefore, a manageable and highly efficient method for the MIPNs-catalyzed visualization at the neutral pH and the one-step bicolor visual detection was constructed. This newly established method may also provide a new idea for further development and application of nanozymes.
Collapse
Affiliation(s)
- Tianhao Li
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Jiaqi Bu
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Yanjing Yang
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China.
| | - Shian Zhong
- College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China; Changsha Medical University, Changsha, Hunan, 410219, China.
| |
Collapse
|
6
|
Lu M, Wang Z, Xie W, Zhang Z, Su L, Chen Z, Xiong Y. Cu-MOF derived CuO@g-C 3N 4 nanozyme for cascade catalytic colorimetric sensing. Anal Bioanal Chem 2023; 415:5949-5960. [PMID: 37468755 DOI: 10.1007/s00216-023-04844-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 06/20/2023] [Accepted: 07/03/2023] [Indexed: 07/21/2023]
Abstract
The use of peroxidase mimics has great potential for various real applications due to their strong catalytic activity. Herein, a facile strategy was proposed to directly prepare CuO@g-C3N4 by Cu-MOF derivatization and demonstrated its efficacy in constructing a multiple enzymatic cascade system by loading protein enzymes onto it. The resulting CuO@g-C3N4 possessed high peroxidase-like activity, with a Michaelis constant (Km) of 0.25 and 0.16 mM for H2O2 and 3,3',5,5'-tetramethylbenzidine (TMB), respectively. Additionally, the high surface area of CuO@g-C3N4 facilitated the loading of protein enzymes and maintained their activity over an extended period, expanding the potential applications of CuO@g-C3N4. To test its feasibility, CuO@g-C3N4/protein oxidase complex was prepared and used to sense the ripeness and freshness of fruits and meat, respectively. The mechanism relied on the fact that the ripeness of fruits increased and freshness of food decreased with the release of marked targets, such as glucose and xanthine, which could produce H2O2 when digested by the corresponding oxidase. The peroxidase mimics of CuO@g-C3N4 could then sensitively colorimetric detect H2O2 in present of TMB. The obtained CuO@g-C3N4/oxidase complex exhibited an excellent linear response to glucose or xanthine in the range of 1.0-120 μmol/L or 8.0-350 μmol/L, respectively. Furthermore, accurate quantification of glucose and xanthine in real samples is achieved with spiked recoveries ranging from 80.2% to 120.0% and from 94.2% to 112.0%, respectively. Overall, this work demonstrates the potential of CuO@g-C3N4 in various practical applications, such as food freshness detection.
Collapse
Affiliation(s)
- Manman Lu
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
- Department of Food and Chemical Engineering, Liuzhou Institute of Technology, Liuzhou, 545616, People's Republic of China
| | - Zhifeng Wang
- Department of Burn, Wound Repair Surgery, and Plastic Surgery, Department of Aesthetic Surgery, Affiliated Hospital of Guilin Medical University, Guilin, 541001, People's Republic of China
| | - Wei Xie
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Zhi Zhang
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Linjing Su
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| | - Zhengyi Chen
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University, Guilin, 541199, People's Republic of China.
| | - Yuhao Xiong
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| |
Collapse
|
7
|
Yang J, Chen B, Qiu H, Meng S, Yang Y. Ni 3V 2O 8 nanoflower mimetic enzyme constructs a dual-signal system for ascorbic acid detection. RSC Adv 2023; 13:26102-26110. [PMID: 37664210 PMCID: PMC10472798 DOI: 10.1039/d3ra04202b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 08/24/2023] [Indexed: 09/05/2023] Open
Abstract
Ascorbic acid is a nutritional small molecule essential to human life activities and health, playing a vital role in many physiological processes. Fresh fruits and beverages can provide abundant AA to maintain human metabolic balance. Therefore, it is of great significance to develop a nanomaterial with superior nanozyme activity for rapid and convenient detection of ascorbic acid (AA) in fruits and beverages. Herein, a dual-signal sensing platform based on UV-vis absorption and test strip chromaticity for the quantitative determination of AA is presented. The sensing platform is based on the horseradish peroxidase-like activity of Ni3V2O8 nanoflowers, which catalyzes the oxidation of 3,3',5,5'-tetramethylbenzidine (TMB) by hydrogen peroxide to the blue oxide TMB (ox TMB). The ox TMB produced by the oxidation has a characteristic absorption peak at 650 nm. In the presence of AA, the blue ox TMB is reduced to colorless TMB, and the quantitative detection of AA can be achieved by detecting the decrease in intensity of the absorption peak by UV-Vis spectrophotometry. Under the optimal experimental conditions, the sensing platform exhibited excellent sensitivity and selectivity. A wide linear range of 0.1 μM to 40 μM with a detection limit of 0.032 μM was obtained. The linear equation is ΔA = 0.02513c + 0.1164 with a correlation coefficient of 0.9979. It showed excellent properties in the detection of real samples of fruit juices and beverages, meanwhile, a method for the rapid detection of AA based on chromaticity change of test strips was constructed with high sensitivity and convenience. The linearity range for the ascorbic acid was 1-50 μM with LOD of 0.42 μM. The developed sensing platform has the capability to quickly and accurately detect ascorbic acid (AA) in fresh fruits and beverages. This proposed method offers a new and promising approach for the rapid and cost-effective detection of ascorbic acid, which has a wide range of potential applications.
Collapse
Affiliation(s)
- Jierui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming China 650500 +86 871 65941086
| | - Benqi Chen
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming China 650500 +86 871 65941086
| | - Huiting Qiu
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming China 650500 +86 871 65941086
| | - Shuang Meng
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming China 650500 +86 871 65941086
| | - Yunhui Yang
- College of Chemistry and Chemical Engineering, Yunnan Normal University Kunming China 650500 +86 871 65941086
| |
Collapse
|
8
|
Arul P, Nandhini C, Huang ST, Gowthaman NSK, Huang CH. Tailoring of peroxidase mimetics bifunctional nanocomposite: Dual mode electro-spectroscopic screening of cholesterol and hydrogen peroxide in real food samples and live cells. Food Chem 2023; 414:135747. [PMID: 36841102 DOI: 10.1016/j.foodchem.2023.135747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 02/06/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023]
Abstract
A simple and rapid screening of biomarkers in clinical and food matrices is urgently needed to diagnose cardiovascular diseases. The cholesterol (Chol) and hydrogen peroxide (H2O2) are critical bio-indicators, which require more inventive detection techniques to be applied to real food, and bio-samples. In this study, a robust dual sensor was developed for Chol and H2O2 using hybrid catalyst. Bovine serum albumin (BSA)-capped nanocatalyst was potentially catalyzed 3,3',5,5'-tetramethylbenzidine (TMB), and H2O2. The enzymatic nanoelectrocatalyst delivered a wide range of signaling concentrations from 250 nM to 3.0 mM and 100 nM to 10 mM, limit of detection (LOD) of 53.2 nM and 18.4 nM for Chol and H2O2. The cholesterol oxidase-BSA-AuNPs-metal-free organic framework (ChOx-BSA-AuNPs-MFOF) based electrode surface effectively operated in live-cells and real-food samples. The enzymatic sensor exhibits adequate recovery of real-food samples (96.96-99.44%). Finally, the proposed system is a suitable choice for the potential applications of Chol and H2O2 in clinical and food chemistry.
Collapse
Affiliation(s)
- P Arul
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - C Nandhini
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - Sheng-Tung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| | - N S K Gowthaman
- School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500 Bandar Sunway, Selangor, Malaysia.
| | - Chih-Hung Huang
- Institute of Biochemical and Biomedical Engineering, Department of Chemical Engineering and Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan, ROC.
| |
Collapse
|
9
|
Lian Q, Chen L, Peng G, Zheng X, Liu Z, Wu S. Preparation of the layered structure Ag@Co3O4 composites as peroxidase memetic for colorimetric detection of ascorbic acid. Chem Phys 2023. [DOI: 10.1016/j.chemphys.2023.111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
|
10
|
Li X, Zhang Y, Tan W, Jin P, Zhang P, Li K. Bioinspired Coassembly of Copper Ions and Nicotinamide Adenine Dinucleotides for Single-Site Nanozyme with Dual Catalytic Functions. Anal Chem 2023; 95:2865-2873. [PMID: 36693006 DOI: 10.1021/acs.analchem.2c04389] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Nanozymes can imitate the catalytic properties of natural enzymes while overcoming the limitations of natural enzymes such as high cost, poor robustness, and difficulty in recycling. However, rational design and facile preparation of nanozymes are still in demand. Inspired by the chemical structure of laccase, we report an amorphous metal-organic coordination nanocomposite named CuNAD, which is composed of copper ions and nicotinamide adenine dinucleotide (NAD+) via a simple coordinating coassembly process. As a single-site nanozyme, CuNAD exhibits excellent robustness under extreme conditions, significantly stronger catalytic activity for phenolic compounds, and 4.02-fold higher sensitivity for epinephrine detection than laccase. Furthermore, by breaking through the functional constraints of laccase, CuNAD is also able to activate H2O2 at neutral pH, benefiting a one-step chromogenic detection platform for cholesterol. This facile approach demonstrates the potential to develop single-site nanozymes by biomimicking natural enzymes and may boost more insights into the structure-function relationship of nanozymes.
Collapse
Affiliation(s)
- Xu Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha410082, P. R. China
| | - Yan Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha410082, P. R. China
| | - Wenlong Tan
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha410082, P. R. China
| | - Peng Jin
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha410082, P. R. China
| | - Pei Zhang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha410082, P. R. China
| | - Kun Li
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, Hunan University, Changsha410082, P. R. China
| |
Collapse
|
11
|
Hefnawy MA, Fadlallah SA, El-Sherif RM, Medany SS. Competition between enzymatic and non-enzymatic electrochemical determination of cholesterol. J Electroanal Chem (Lausanne) 2023; 930:117169. [DOI: 10.1016/j.jelechem.2023.117169] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
12
|
Wang M, Zhao Z, Gong W, Zhang M, Lu N. Modulating the Biomimetic and Fluorescence Quenching Activities of Metal-Organic Framework/Platinum Nanoparticle Composites and Their Applications in Molecular Biosensing. ACS APPLIED MATERIALS & INTERFACES 2022; 14:21677-21686. [PMID: 35499462 DOI: 10.1021/acsami.2c02781] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Nanoscale metal-organic frameworks (nMOFs) have gained considerable attention with significant potential applications. Although great efforts have been devoted to designing and fabricating nanoscaffold structures, approaches of deliberately regulating the intrinsic functionality of nMOFs have been poorly explored. Herein, we report a simple and novel strategy to regulate the catalytic and fluorescence quenching behaviors of nMOFs through coordination-driven self-assembly. As a proof-of-concept, we synthesized a synergistic and stable MOF-metal nanocomposite by loading platinum nanoparticles (PtNPs) on a commonly used Fe-MOF, i.e., MIL-88B-NH2/Pt, as a MOF composite model for exploration. On one hand, the complexation with ATP effectively broke the pH limitation of the peroxidase-mimicking MIL-88B-NH2/Pt nanozyme, bringing a 10-fold increased catalytic activity under alkaline condition. Based on the distinct catalytic enhancement between ATP and other nucleotides, real-time monitoring of apyrase activity as well as colorimetric detection of alkaline phosphatase (ALP) was performed. On the other hand, interactions of MIL-88B-NH2/Pt with fluorescent DNA were tolerant of different nucleic acids and, more importantly, were further manipulated by inorganic molecules. As a result, H2O2 could only trigger the release of a G-rich sequence, while phosphates could readily induce desorption of various DNA molecules with varying lengths, sequences, and fluorescent dyes. Accordingly, fluorescent DNA and MIL-88B-NH2/Pt as functional probe-quencher pairs were proposed, allowing the establishment of a fluorescence bioassay for ALP and PPase detection and Boolean logic calculations. This work offers a means to tune the intrinsic activities of nMOFs by surface engineering, benefiting design of functional nanomaterials and development of advanced biosensing systems.
Collapse
Affiliation(s)
- Mengqin Wang
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Zhihang Zhao
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Weijing Gong
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Min Zhang
- College of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Na Lu
- School of Materials Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| |
Collapse
|
13
|
Li J, Liu T, Dahlgren RA, Ye H, Wang Q, Ding Y, Gao M, Wang X, Wang H. N, S-co-doped carbon/Co 1-xS nanocomposite with dual-enzyme activities for a smartphone-based colorimetric assay of total cholesterol in human serum. Anal Chim Acta 2022; 1204:339703. [PMID: 35397915 DOI: 10.1016/j.aca.2022.339703] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 02/11/2022] [Accepted: 03/07/2022] [Indexed: 11/01/2022]
Abstract
We fabricated a novel N,S-co-doped carbon/Co1-xS nanocomposite (NSC/Co1-xS) using a facile sol-gel approach, which featured a multiporous structure, abundant S vacancies and Co-S nanoparticles filling the carbon-layer pores. When the Co1-xS nanoparticles were anchored onto the surface of N,S-co-doped carbon, a synergistic catalysis action occurred. The NSC/Co1-xS nanocomposites possessed both peroxidase-like and oxidase-mimetic dual-enzyme activities, in which the oxidase-mimetic activity dominated. By scavenger capture tests, the nanozyme was demonstrated to catalyze H2O2 to produce h+, •OH and •O2-, among which the strongest and weakest signals were h+ and •OH, respectively. The multi-valence states of Co atoms in the NSC/Co1-xS structure facilitated electronic transfer that enhanced redox reactions, thereby improving the resultant color reaction. Based on the NSC/Co1-xS's enzyme-mimetic catalytic reaction, a visual colorimetric assay and Android "Thing Identify" application (app), installed on a smartphone, offered detection limits of 1.93 and 2.51 mg/dl, respectively, in human serum samples. The selectivity/interference experiments, using fortified macromolecules and metal ions, demonstrated that this sensor had high selectivity and low interference potential for cholesterol analysis. Compared to standard assay kits and previously reported visual detection, the Android smartphone-based assays provided higher accuracy (recoveries up to 93.6-104.1%), feasibility for trace-level detection, and more convenient on-site application for cholesterol assay due to the superior enzymatic activity of NSC/Co1-xS. These compelling performance metrics lead us to posit that the NSC/Co1-xS-based nanozymic sensor offers a promising methodology for several practical applications, such as point-of-care diagnosis and workplace health evaluations.
Collapse
Affiliation(s)
- Jiani Li
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China; College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China
| | - Tingting Liu
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Randy A Dahlgren
- Department of Land, Air and Water Resources, University of California, Davis, CA, 95616, USA
| | - Hanzhang Ye
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Qi Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongli Ding
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Ming Gao
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Xuedong Wang
- Jiangsu Key Laboratory of Environmental Science and Engineering, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
| | - Huili Wang
- College of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou, 325035, China.
| |
Collapse
|
14
|
Zhang L, Hu S, Lu Y, Jiang B, Liu X, Li X, Zhao X, Yan X, Wang C, Jia X, Liu F, Dong B, Lu G. Photonic Crystal Effects on Upconversion Enhancement of LiErF 4:0.5%Tm 3+@LiYF 4 for Noncontact Cholesterol Detection. ACS APPLIED MATERIALS & INTERFACES 2022; 14:428-438. [PMID: 34964605 DOI: 10.1021/acsami.1c21834] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cholesterol is a vital compound in maintenance for human health, and its concentration levels are tightly associated with various diseases. Therefore, accurate monitoring of cholesterol is of great significance in clinical diagnosis. Herein, we fabricated a noncontact biosensor based on photonic crystal-enhanced upconversion nanoparticles (UCNPs) for highly sensitive and interference-free cholesterol detection. By compounding LiErF4:0.5%Tm3+@LiYF4 UCNPs with poly(methyl methacrylate) (PMMA) photonic crystals (OPCs), we were able to selectively tune the coupling of the photonic band gap to the excitation field and modulate the upconversion (UC) luminescence intensity, given the unique multi-wavelength excitation property of LiErF4:0.5%Tm3+@LiYF4. A 48.5-fold enhancement of the monochromatic red UC emission was ultimately achieved at 980 nm excitation, ensuring improved detection sensitivity. Based on the principle of quenching of the intense monochromic red UC emission by the oxidation products of 3,3',5,5'-tetramethylbenzidine (TMB) yielded from the cholesterol cascade reactions, the biosensor has a detection limit of 1.6 μM for cholesterol with excellent specificity and stability. In addition, the testing results of the as-designed biosensor in patients are highly consistent with clinical diagnostic data, providing a sensitive, reliable, reusable, interference-free, and alternative strategy for clinical cholesterol detection.
Collapse
Affiliation(s)
- Ling Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Songtao Hu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Yang Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Bin Jiang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaomin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaodan Li
- Department of Respiratory Medicine, The First Hospital, Jilin University, Changchun 130021, People's Republic of China
| | - Xu Zhao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xu Yan
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Chenguang Wang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Xiaoteng Jia
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Fengmin Liu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Biao Dong
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| | - Geyu Lu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
15
|
Feng X, Fu H, Bai Z, Li P, Song X, Hu X. Colorimetric detection of glucose by a hybrid nanomaterial based on amplified peroxidase-like activity of ferrosoferric oxide modified with gold–platinum heterodimer. NEW J CHEM 2022. [DOI: 10.1039/d1nj04491e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An easy and sensitive colorimetric sensor based on the Fe3O4@Au–Pt hybrid nanomaterial was constructed for H2O2 and glucose detection.
Collapse
Affiliation(s)
- Xiaoyang Feng
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Hao Fu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Zhenyu Bai
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Ping Li
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Xingliang Song
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| | - Xueping Hu
- School of Chemistry and Chemical Engineering, Linyi University, Linyi, 276005, P. R. China
| |
Collapse
|
16
|
Li X, Zhu H, Liu P, Wang M, Pan J, Qiu F, Ni L, Niu X. Realizing selective detection with nanozymes: Strategies and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116379] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
17
|
Liu L, Wang J, Wang J, Wu J, Wu S, Xie L. Colorimetric Detection of Cholesterol Based on the Peroxidase‐Like Activity of Metal‐Organic Framework MIL‐101(Cr). ChemistrySelect 2021. [DOI: 10.1002/slct.202102053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Luying Liu
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Jingshan Wang
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Jing Wang
- Sun Yat-Sen Memorial Hospital Sun Yat-Sen University Guangzhou 510120 China
| | - Jiating Wu
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Shuping Wu
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| | - Lijun Xie
- Department of Chemistry Guangdong University of Education Guangzhou 510303 China
| |
Collapse
|
18
|
Kitchawengkul N, Prakobkij A, Anutrasakda W, Yodsin N, Jungsuttiwong S, Chunta S, Amatatongchai M, Jarujamrus P. Mimicking Peroxidase-Like Activity of Nitrogen-Doped Carbon Dots (N-CDs) Coupled with a Laminated Three-Dimensional Microfluidic Paper-Based Analytical Device (Laminated 3D-μPAD) for Smart Sensing of Total Cholesterol from Whole Blood. Anal Chem 2021; 93:6989-6999. [PMID: 33909416 DOI: 10.1021/acs.analchem.0c05459] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This work presents a simple hydrothermal synthesis of nitrogen-doped carbon dots (N-CDs), fabrication of microfluidic paper-based analytical device (μPAD), and their joint application for colorimetric determination of total cholesterol (TC) in human blood. The N-CDs were characterized by various techniques including transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and X-ray powder diffraction (XRD), and the optical and electronic properties of computational models were studied using the time-dependent density functional theory (TD-DFT). The characterization results confirmed the successful doping of nitrogen on the surface of carbon dots. The N-CDs exhibited high affinity toward 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid)-diammonium salt (ABTS) with the Michaelis-Menten constant (KM) of 0.018 mM in a test for their peroxidase-like activity. Particularly, since hydrogen peroxide (H2O2) is the oxidative product of cholesterol in the presence of cholesterol oxidase, a sensitive and selective method of cholesterol detection was developed. Overall, the obtained results from TD-DFT confirm the strong adsorption of H2O2 on the graphitic N positions of the N-CDs. The laminated three-dimensional (3D)-μPAD featuring a 6 mm circular detection zone was fabricated using a simple wax screen printing technique. Classification of TC according to the clinically relevant criteria (healthy, <5.2 mM; borderline, 5.2-6.2 mM; and high risk, >6.2 mM) could be determined by the naked eye within 10 min by simple comparison using a color chart. Overall, the proposed colorimetric device serves as a low-cost, rapid, simple, sensitive, and selective alternative for TC detection in whole blood samples that is friendly to unskilled end users.
Collapse
Affiliation(s)
- Nattasa Kitchawengkul
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science Ubon, Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Akarapong Prakobkij
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science Ubon, Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Wipark Anutrasakda
- Department of Chemistry, Faculty of Science, Chulalongkorn University, Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Nuttapon Yodsin
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Center for Organic Electronic and Alternative Energy, Department of Chemistry, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Siriporn Jungsuttiwong
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Center for Organic Electronic and Alternative Energy, Department of Chemistry, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Suticha Chunta
- Department of Clinical Chemistry, Faculty of Medical Technology, Prince of Songkla University, Songkhla 90110, Thailand
| | - Maliwan Amatatongchai
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science Ubon, Ratchathani University, Ubon Ratchathani 34190, Thailand
| | - Purim Jarujamrus
- Department of Chemistry and Center of Excellence for Innovation in Chemistry, Faculty of Science, Ubon Ratchathani University, Ubon Ratchathani 34190, Thailand.,Nanomaterials Science, Sensors & Catalysis for Problem-Based Projects, Faculty of Science Ubon, Ratchathani University, Ubon Ratchathani 34190, Thailand
| |
Collapse
|