1
|
Sanchez C, Vargas-Cuebas GG, Michaud ME, Allen RA, Morrison-Lewis KR, Siddiqui S, Minbiole KPC, Wuest WM. Highly Effective Biocides against Pseudomonas aeruginosa Reveal New Mechanistic Insights Across Gram-Negative Bacteria. ACS Infect Dis 2024; 10:3868-3879. [PMID: 39440866 PMCID: PMC11555683 DOI: 10.1021/acsinfecdis.4c00433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 08/28/2024] [Accepted: 10/10/2024] [Indexed: 10/25/2024]
Abstract
Pseudomonas aeruginosa is a major nosocomial pathogen that persists in healthcare settings despite rigorous disinfection protocols due to intrinsic mechanisms conferring resistance. We sought to systematically assess cationic biocide efficacy against this pathogen using a panel of multidrug-resistant P. aeruginosa clinical isolates. Our studies revealed widespread resistance to commercial cationic disinfectants that are the current standard of care, raising concerns about their efficacy. To address this shortcoming, we highlight a new class of quaternary phosphonium compounds that are highly effective against all members of the panel. To understand the difference in efficacy, mechanism of action studies were carried out, which identified a discrete inner-membrane selective target. Resistance selection studies implicated the SmvRA efflux system (a transcriptionally regulated, inner membrane-associated efflux system) as a major determinant of resistance. This system is also implicated in resistance to two commercial bolaamphiphile antiseptics, octenidine and chlorhexidine, which was further validated herein. In sum, this work highlights, for the first time, a discrete inner-membrane specific mechanism for the bolaamphiphile class of disinfectants that contrasts with the prevailing model of indiscriminate membrane interactions of commercial amphiphiles paving the way for future innovations in disinfectant research.
Collapse
Affiliation(s)
- Christian
A. Sanchez
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Germán G. Vargas-Cuebas
- Department
of Microbiology and Immunology, Emory University, Atlanta, Georgia 30322, United States
| | - Marina E. Michaud
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Ryan A. Allen
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | | | - Shehreen Siddiqui
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| | - Kevin P. C. Minbiole
- Department
of Chemistry, Villanova University, Villanova, Pennsylvania 19085, United States
| | - William M. Wuest
- Department
of Chemistry, Emory University, Atlanta, Georgia 30322, United States
| |
Collapse
|
2
|
Alfei S, Zuccari G, Athanassopoulos CM, Domenicotti C, Marengo B. Strongly ROS-Correlated, Time-Dependent, and Selective Antiproliferative Effects of Synthesized Nano Vesicles on BRAF Mutant Melanoma Cells and Their Hyaluronic Acid-Based Hydrogel Formulation. Int J Mol Sci 2024; 25:10071. [PMID: 39337557 PMCID: PMC11432396 DOI: 10.3390/ijms251810071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 09/30/2024] Open
Abstract
Cutaneous metastatic melanoma (CMM) is the most aggressive form of skin cancer with a poor prognosis. Drug-induced secondary tumorigenesis and the emergency of drug resistance worsen an already worrying scenario, thus rendering urgent the development of new treatments not dealing with mutable cellular processes. Triphenyl phosphonium salts (TPPSs), in addiction to acting as cytoplasmic membrane disruptors, are reported to be mitochondria-targeting compounds, exerting anticancer effects mainly by damaging their membranes and causing depolarization, impairing mitochondria functions and their DNA, triggering oxidative stress (OS), and priming primarily apoptotic cell death. TPP-based bola amphiphiles are capable of self-forming nanoparticles (NPs) with enhanced biological properties, as commonly observed for nanomaterials. Already employed in several other biomedical applications, the per se selective potent antibacterial effects of a TPP bola amphiphile have only recently been demonstrated on 50 multidrug resistant (MDR) clinical superbugs, as well as its exceptional and selective anticancer properties on sensitive and MDR neuroblastoma cells. Here, aiming at finding new molecules possibly developable as new treatments for counteracting CMM, the effects of this TPP-based bola amphiphile (BPPB) have been investigated against two BRAF mutants CMM cell lines (MeOV and MeTRAV) with excellent results (even IC50 = 49 nM on MeOV after 72 h treatment). With these findings and considering the low cytotoxicity of BPPB against different mammalian non-tumoral cell lines and red blood cells (RBCs, selectivity indexes up to 299 on MeOV after 72 h treatment), the possible future development of BPPB as topical treatment for CMM lesions was presumed. With this aim, a biodegradable hyaluronic acid (HA)-based hydrogel formulation (HA-BPPB-HG) was prepared without using any potentially toxic crosslinking agents simply by dispersing suitable amounts of the two ingredients in water and sonicating under gentle heating. HA-BPPB-HA was completely characterized, with promising outcomes such as high swelling capability, high porosity, and viscous elastic rheological behavior.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy;
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy;
- IRCCS Ospedale Policlinico San Martino, 16132 Genoa, Italy
| |
Collapse
|
3
|
Alfei S, Giannoni P, Signorello MG, Torazza C, Zuccari G, Athanassopoulos CM, Domenicotti C, Marengo B. The Remarkable and Selective In Vitro Cytotoxicity of Synthesized Bola-Amphiphilic Nanovesicles on Etoposide-Sensitive and -Resistant Neuroblastoma Cells. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1505. [PMID: 39330662 PMCID: PMC11434613 DOI: 10.3390/nano14181505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024]
Abstract
Neuroblastoma (NB) is a solid tumor occurring in infancy and childhood. Its high-risk form has currently a survival rate <50%, despite aggressive treatments. This worrying scenario is worsened by drug-induced secondary tumorigenesis and the emergency of drug resistance, calling for the urgent development of new extra-genomic treatments. Triphenyl phosphonium salts (TPPs) are mitochondria-targeting compounds that exert anticancer effects, impair mitochondria functions, and damage DNA at the same time. Despite several biochemical applications, TPP-based bola-amphiphiles self-assembling nanoparticles (NPs) in water have never been tested as antitumor agents. Here, with the aim of developing new antitumor devices to also counteract resistant forms of HR-NB, the anticancer effects of a TPP-based bola-amphiphile molecule have been investigated in vitro for the first time. To this end, we considered the previously synthesized and characterized sterically hindered quaternary phosphonium salt (BPPB). It embodies both the characteristics of mitochondria-targeting compounds and those of bola-amphiphiles. The anticancer effects of BPPB were assessed against HTLA-230 human stage-IV NB cells and their counterpart, which is resistant to etoposide (ETO), doxorubicin (DOX), and many other therapeutics (HTLA-ER). Very low IC50 values of 0.2 µM on HTLA-230 and 1.1 µM on HTLA-ER (538-fold lower than that of ETO) were already determined after 24 h of treatment. The very low cell viability observed after 24 h did not significantly differ from that observed for the longest exposure timing. The putative future inclusion of BPPB in a chemotherapeutic cocktail for HR-NB was assessed by investigating in vitro its cytotoxic effects against mammalian cell lines. These included monkey kidney cells (Cos-7, IC50 = 4.9 µM), human hepatic cells (HepG2, IC50 = 9.6 µM), a lung-derived fibroblast cell line (MRC-5, IC50 = 2.8 µM), and red blood cells (RBCs, IC50 = 14.9 µM). Appreciable to very high selectivity indexes (SIs) have been determined after 24 h treatments (SIs = 2.5-74.6), which provided evidence that both NB cell populations were already fully exterminated. These in vitro results pave the way for future investigations of BPPB on animal models and upon confirmation for the possible development of BPPB as a novel therapeutic to treat MDR HR-NB cells.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
| | - Paolo Giannoni
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
| | - Maria Grazia Signorello
- Biochemistry Laboratory, Department of Pharmacy, University of Genoa, Viale Benedetto XV 3, 16132 Genova, Italy;
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy; (C.T.); (G.Z.)
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | | | - Cinzia Domenicotti
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Barbara Marengo
- Department of Experimental Medicine (DIMES), University of Genova, Via Alberti L.B., 16132 Genoa, Italy; (P.G.); (C.D.)
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| |
Collapse
|
4
|
Chaves I, Morais FMP, Vieira C, Bartolomeu M, Faustino MAF, Neves MGMS, Almeida A, Moura NMM. Can Porphyrin-Triphenylphosphonium Conjugates Enhance the Photosensitizer Performance Toward Bacterial Strains? ACS APPLIED BIO MATERIALS 2024; 7:5541-5552. [PMID: 39008849 PMCID: PMC11337165 DOI: 10.1021/acsabm.4c00659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/26/2024] [Accepted: 07/01/2024] [Indexed: 07/17/2024]
Abstract
Antimicrobial photodynamic treatment (aPDT) offers an alternative option for combating microbial pathogens, and in this way, addressing the challenges of growing antimicrobial resistance. In this promising and effective approach, cationic porphyrins and related macrocycles have emerged as leading photosensitizers (PS) for aPDT. In general, their preparation occurs via N-alkylation of nitrogen-based moieties with alkyl halides, which limits the ability to fine-tune the features of porphyrin-based PS. Herein, is reported that the conjugation of porphyrin macrocycles with triphenylphosphonium units created a series of effective cationic porphyrin-based PS for aPDT. The presence of positive charges at both the porphyrin macrocycle and triphenylphosphonium moieties significantly enhances the photodynamic activity of porphyrin-based PS against both Gram-positive and Gram-negative bacterial strains. Moreover, bacterial photoinactivation is achieved with a notable reduction in irradiation time, exceeding 50%, compared to 5,10,15,20-tetrakis(1-methylpyridinium-4-yl)porphyrin (TMPyP), used as the reference and known as good PS. The improved capability of the porphyrin macrocycle to generate singlet oxygen combined with the enhanced membrane interaction promoted by the presence of triphenylphosphonium moieties represents a promising approach to developing porphyrin-based PS with enhanced photosensitizing activity.
Collapse
Affiliation(s)
- Inês Chaves
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Filipe M. P. Morais
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | - Cátia Vieira
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Maria Bartolomeu
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - M. Amparo F. Faustino
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| | | | - Adelaide Almeida
- CESAM,
Department of Biology, University of Aveiro, Aveiro 3810-193, Portugal
| | - Nuno M. M. Moura
- LAQV-REQUIMTE,
Department of Chemistry, University of Aveiro, Aveiro 3810-193, Portugal
| |
Collapse
|
5
|
Alfei S, Zuccari G, Bacchetti F, Torazza C, Milanese M, Siciliano C, Athanassopoulos CM, Piatti G, Schito AM. Synthesized Bis-Triphenyl Phosphonium-Based Nano Vesicles Have Potent and Selective Antibacterial Effects on Several Clinically Relevant Superbugs. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1351. [PMID: 39195389 DOI: 10.3390/nano14161351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/05/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
The increasing emergence of multidrug-resistant (MDR) pathogens due to antibiotic misuse translates into obstinate infections with high morbidity and high-cost hospitalizations. To oppose these MDR superbugs, new antimicrobial options are necessary. Although both quaternary ammonium salts (QASs) and phosphonium salts (QPSs) possess antimicrobial effects, QPSs have been studied to a lesser extent. Recently, we successfully reported the bacteriostatic and cytotoxic effects of a triphenyl phosphonium salt against MDR isolates of the Enterococcus and Staphylococcus genera. Here, aiming at finding new antibacterial devices possibly active toward a broader spectrum of clinically relevant bacteria responsible for severe human infections, we synthesized a water-soluble, sterically hindered quaternary phosphonium salt (BPPB). It encompasses two triphenyl phosphonium groups linked by a C12 alkyl chain, thus embodying the characteristics of molecules known as bola-amphiphiles. BPPB was characterized by ATR-FTIR, NMR, and UV spectroscopy, FIA-MS (ESI), elemental analysis, and potentiometric titrations. Optical and DLS analyses evidenced BPPB tendency to self-forming spherical vesicles of 45 nm (DLS) in dilute solution, tending to form larger aggregates in concentrate solution (DLS and optical microscope), having a positive zeta potential (+18 mV). The antibacterial effects of BPPB were, for the first time, assessed against fifty clinical isolates of both Gram-positive and Gram-negative species. Excellent antibacterial effects were observed for all strains tested, involving all the most concerning species included in ESKAPE bacteria. The lowest MICs were 0.250 µg/mL, while the highest ones (32 µg/mL) were observed for MDR Gram-negative metallo-β-lactamase-producing bacteria and/or species resistant also to colistin, carbapenems, cefiderocol, and therefore intractable with currently available antibiotics. Moreover, when administered to HepG2 human hepatic and Cos-7 monkey kidney cell lines, BPPB showed selectivity indices > 10 for all Gram-positive isolates and for clinically relevant Gram-negative superbugs such as those of E. coli species, thus being very promising for clinical development.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Guendalina Zuccari
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| | - Francesca Bacchetti
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Carola Torazza
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
| | - Marco Milanese
- Department of Pharmacy, University of Genoa, Viale Cembrano, 16148 Genoa, Italy
- IRCCS, Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Carlo Siciliano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | | | - Gabriella Piatti
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| | - Anna Maria Schito
- Department of Surgical Sciences and Integrated Diagnostics (DISC), University of Genoa, Viale Benedetto XV, 6, 16132 Genova, Italy
| |
Collapse
|
6
|
Chavarria D, Borges A, Benfeito S, Sequeira L, Ribeiro M, Oliveira C, Borges F, Simões M, Cagide F. Phytochemicals and quaternary phosphonium ionic liquids: Connecting the dots to develop a new class of antimicrobial agents. J Adv Res 2023; 54:251-269. [PMID: 36822390 DOI: 10.1016/j.jare.2023.02.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/24/2023] Open
Abstract
INTRODUCTION The infections by multidrug-resistant bacteria are a growing threat to human health, and the efficacy of the available antibiotics is gradually decreasing. As such, new antibiotic classes are urgently needed. OBJECTIVES This study aims to evaluate the antimicrobial activity, safety and mechanism of action of phytochemical-based triphenylphosphonium (TPP+) conjugates. METHODS A library of phytochemical-based TPP+ conjugates was repositioned and extended, and its antimicrobial activity was evaluated against a panel of Gram-positive (methicillin-resistant Staphylococcus aureus - MRSA) and Gram-negative bacteria (Escherichia coli, Klebsiella pneumoniae, Pseudomonas aeruginosa, Acinetobacter baumannii) and fungi (Candida albicans, Cryptococcus neoformans var. grubii). The compounds' cytotoxicity and haemolytic profile were also evaluated. To unravel the mechanism of action of the best compounds, the alterations in the surface charge, bacterial membrane integrity, and cytoplasmic leakage were assessed. RESULTS Structure-activity-toxicity data revealed the contributions of the different structural components (phenolic ring, carbon-based spacers, carboxamide group, alkyl linker) to the compounds' bioactivity and safety. Dihydrocinnamic derivatives 5 m and 5n stood out as safe, potent and selective antibacterial agents against S. aureus (MIC < 0.25 µg/mL; CC50 > 32 µg/mL; HC10 > 32 µg/mL). Mechanistic studies suggest that the antibacterial activity of compounds 5 m and 5n may result from interactions with the bacterial cell wall and membrane. CONCLUSIONS Collectively, these studies demonstrate the potential of phytochemical-based TPP+ conjugates as a new class of antibiotics.
Collapse
Affiliation(s)
- Daniel Chavarria
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Anabela Borges
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Sofia Benfeito
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Lisa Sequeira
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Marta Ribeiro
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal
| | - Catarina Oliveira
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Fernanda Borges
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Manuel Simões
- LEPABE - Laboratory for Process Engineering, Environment, Biotechnology and Energy, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal; ALiCE - Associate Laboratory in Chemical Engineering, Faculty of Engineering, University of Porto, Rua Dr. Roberto Frias, 4200-465 Porto, Portugal.
| | - Fernando Cagide
- CIQUP-IMS/Department of Chemistry and Biochemistry, Faculty of Sciences, University of Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal.
| |
Collapse
|
7
|
Leal M, Morais C, Ramos B, Pomba C, Abrantes P, Costa SS, Couto I. Exploring Efflux as a Mechanism of Reduced Susceptibility towards Biocides and Fluoroquinolones in Staphylococcus pseudintermedius. Animals (Basel) 2023; 13:1270. [PMID: 37048526 PMCID: PMC10093712 DOI: 10.3390/ani13071270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/27/2023] [Accepted: 03/30/2023] [Indexed: 04/14/2023] Open
Abstract
Staphylococcus pseudintermedius is the main bacterial cause of skin and soft tissue infections (SSTIs) in companion animals, particularly dogs. The emergence of methicillin-resistant S. pseudintermedius (MRSP) strains, frequently with multidrug resistance phenotypes is a public health concern. This study aimed to evaluate efflux, a resistance mechanism still poorly characterized in S. pseudintermedius, as a contributor to biocide and fluoroquinolone resistance. Susceptibility to the efflux pump substrates ethidium bromide (EtBr), tetraphenylphosphonium bromide (TPP) and ciprofloxacin (CIP) was evaluated by minimum inhibitory concentration (MIC) determination for 155 SSTIs-related S. pseudintermedius in companion animals. EtBr and TPP MIC distributions were analyzed to estimate cut-off (COWT) values. The effect of the efflux inhibitors (EIs) thioridazine and verapamil was assessed upon MICs and fluorometric EtBr accumulation assays, performed with/without glucose and/or EIs. This approach detected a non-wild type population towards TPP with increased efflux, showed to be strain-specific and glucose-dependent. Resistance to fluoroquinolones was mainly linked to target gene mutations, yet a contribution of efflux on CIP resistance levels could not be ruled out. In sum, this study highlights the relevance of efflux-mediated resistance in clinical S. pseudintermedius, particularly to biocides, and provides a methodological basis for further studies on the efflux activity on this important pathogen of companion animals.
Collapse
Affiliation(s)
- Marta Leal
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Catarina Morais
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Bárbara Ramos
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Constança Pomba
- CIISA, Centre of Interdisciplinary Research in Animal Health, Faculty of Veterinary Medicine, University of Lisbon, Avenida da Universidade Técnica, 1300-477 Lisbon, Portugal
- GeneVet, Laboratório de Diagnóstico Molecular Veterinário, Rua Quinta da Nora Loja 3B, 2790-140 Carnaxide, Portugal
| | - Patrícia Abrantes
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Sofia Santos Costa
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| | - Isabel Couto
- Global Health and Tropical Medicine, GHTM, Instituto de Higiene e Medicina Tropical, IHMT, Universidade Nova de Lisboa, UNL, Rua da Junqueira 100, 1349-008 Lisbon, Portugal
| |
Collapse
|
8
|
Yin F, Liu X, Xu Y, Fu B, Zhang X, Xiao Y, Li J, Qin Z. Triphenylphosphonium-Driven Targeting of Pyrimorph Fragment Derivatives Greatly Improved Its Action on Phytopathogen Mitochondria. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:2842-2852. [PMID: 36722627 DOI: 10.1021/acs.jafc.2c07902] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pyrimorph is a carboxylic acid amide (CAA) fungicide, which shows excellent activity against oomycetes such as pepper phytophthora blight, tomato late blight, and downy mildew of cucumber. It works mainly by inhibiting the biosynthesis of cell wall of oomycetes. However, pyrimorph also shows weak activity of inhibiting mitochondrial complex III, which is the first CAA fungicide found to act on mitochondria. To improve this effect on mitochondria and develop fungicides that may have a novel mechanism of action, in this paper, by disassembling pyrimorph and conjugating the fragments with the mitochondrial-targeted delivery system (triphenylphosphonium), three series of mitochondrial-targeting analogues of pyrimorph were designed and synthesized. The results show that the pyridine-containing 1,1-diaryl is the core module of inhibition mitochondrial function of pyrimorph. Among these conjugates, compound 3b with a short linker showed the highest and broad-spectrum fungicidal activity, strong respiratory inhibition activity, and adenosine 5'-triphosphate synthesis inhibition activity, suggesting its potential as a fungicide candidate. 3b exhibited greatly improved action on mitochondria, such as by destroying the mitochondrial function of pathogens, causing mitochondrial swelling, weakening its influence on cell wall morphology, and so on. More importantly, this study provides a method to strengthen the drugs or pesticides with weak mitochondrial action, which is of special significance for developing mitochondrial bioactive molecules with the novel action mechanism.
Collapse
Affiliation(s)
- Fahong Yin
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xuelian Liu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Yong Xu
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Bin Fu
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Xueqin Zhang
- College of Biological Science, China Agricultural University, Beijing 100193, China
| | - Yumei Xiao
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Jiaqi Li
- College of Sciences, China Agricultural University, Beijing 100193, China
| | - Zhaohai Qin
- College of Sciences, China Agricultural University, Beijing 100193, China
| |
Collapse
|
9
|
Pang X, Zhong S, Wang Y, Yang W, Zheng W, Sun G. A Review on the Prediction of Health State and Serving Life of Lithium-Ion Batteries. CHEM REC 2022; 22:e202200131. [PMID: 35785467 DOI: 10.1002/tcr.202200131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/06/2022] [Indexed: 11/11/2022]
Abstract
The monitoring and prediction of the health status and the end of life of batteries during the actual operation plays a key role in the battery safety management. However, although many related studies have achieved exciting results, there are few systematic and comprehensive reviews on these prediction methods. In this paper, the current prediction models of remaining useful life of lithium-ion batteries are divided into mechanism-based models, semi-empirical models and data-driven models. Their advantages, technical obstacles, improvement methods and prediction performance are summarized, and the latest research results are shown by comparison. We highlight that the fusion models of convolution neural network, long short term memory network and so on, which have great practical application prospects because of their outstanding computing efficiency and strong modeling ability. Finally, we look forward to the future work in simplifying the model and improving its interpretability.
Collapse
Affiliation(s)
- Xiaoxian Pang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Shi Zhong
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Yali Wang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wei Yang
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Wenzhi Zheng
- School of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, China
| | - Gengzhi Sun
- Institute of Advanced Materials, Nanjing Tech University, Nanjing, 210009, China
| |
Collapse
|
10
|
Ermolaev VV, Arkhipova DM, Miluykov VA, Lyubina AP, Amerhanova SK, Kulik NV, Voloshina AD, Ananikov VP. Sterically Hindered Quaternary Phosphonium Salts (QPSs): Antimicrobial Activity and Hemolytic and Cytotoxic Properties. Int J Mol Sci 2021; 23:86. [PMID: 35008507 PMCID: PMC8744835 DOI: 10.3390/ijms23010086] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 12/09/2021] [Accepted: 12/19/2021] [Indexed: 02/06/2023] Open
Abstract
Structure-activity relationships are important for the design of biocides and sanitizers. During the spread of resistant strains of pathogenic microbes, insights into the correlation between structure and activity become especially significant. The most commonly used biocides are nitrogen-containing compounds; the phosphorus-containing ones have been studied to a lesser extent. In the present study, a broad range of sterically hindered quaternary phosphonium salts (QPSs) based on tri-tert-butylphosphine was tested for their activity against Gram-positive (Staphylococcus aureus, Bacillus cereus, Enterococcus faecalis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacteria and fungi (Candida albicans, Trichophyton mentagrophytes var. gypseum). The cation structure was confirmed to determine their biological activity. A number of QPSs not only exhibit high activity against both Gram-positive and -negative bacteria but also possess antifungal properties. Additionally, the hemolytic and cytotoxic properties of QPSs were determined using blood and a normal liver cell line, respectively. The results show that tri-tert-butyl(n-dodecyl)phosphonium and tri-tert-butyl(n-tridecyl)phosphonium bromides exhibit both low cytotoxicity against normal human cells and high antimicrobial activity against bacteria, including methicillin-resistant strains S. aureus (MRSA). The mechanism of QPS action on microbes is discussed. Due to their high selectivity for pathogens, sterically hindered QPSs could serve as effective tunable biocides.
Collapse
Affiliation(s)
- Vadim V. Ermolaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia; (V.V.E.); (V.A.M.); (A.P.L.); (S.K.A.); (N.V.K.); (A.D.V.)
| | - Daria M. Arkhipova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia; (V.V.E.); (V.A.M.); (A.P.L.); (S.K.A.); (N.V.K.); (A.D.V.)
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow 119991, Russia;
| | - Vasili A. Miluykov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia; (V.V.E.); (V.A.M.); (A.P.L.); (S.K.A.); (N.V.K.); (A.D.V.)
| | - Anna P. Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia; (V.V.E.); (V.A.M.); (A.P.L.); (S.K.A.); (N.V.K.); (A.D.V.)
| | - Syumbelya K. Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia; (V.V.E.); (V.A.M.); (A.P.L.); (S.K.A.); (N.V.K.); (A.D.V.)
| | - Natalia V. Kulik
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia; (V.V.E.); (V.A.M.); (A.P.L.); (S.K.A.); (N.V.K.); (A.D.V.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str., 8, Kazan 420088, Russia; (V.V.E.); (V.A.M.); (A.P.L.); (S.K.A.); (N.V.K.); (A.D.V.)
| | - Valentine P. Ananikov
- N.D. Zelinsky Institute of Organic Chemistry, Russian Academy of Sciences, Leninsky Prospect, 47, Moscow 119991, Russia;
| |
Collapse
|
11
|
Lei Q, Zhang Y, Zhang W, Li R, Ao N, Zhang H. A synergy between dopamine and electrostatically bound bactericide in a poly (vinyl alcohol) hybrid hydrogel for treating infected wounds. Carbohydr Polym 2021; 272:118513. [PMID: 34420755 DOI: 10.1016/j.carbpol.2021.118513] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/22/2021] [Accepted: 07/29/2021] [Indexed: 12/28/2022]
Abstract
Antibacterial hydrogels have emerged as viable options for battling infections associated with impaired wound healing. It is challenging in developing antibacterial hydrogels that have sustained and stable bactericidal activity while avoiding the use of any agents that may adversely affect safety. In view of this concern, a multi-functional polyvinyl alcohol (PVA)/sodium alginate-dopamine (SA-DA) hydrogel matrix-based wound dressing embedding with bis-quaternary triphenyl-phosphonium salt (BTPP+), that would present long-term intrinsic antimicrobial properties was developed using freeze-thawing (F-T) method herein. DA endows the hydrogel with efficient bacteria capture ability and subsequently the captured bacterial pathogens were in situ killed by electrostatically bound BTPP+, and hence significantly augmented the antibacterial efficacy. Furthermore, DA, co-operating with BTPP+ could promote erythrocyte and platelet aggregation on hydrogels, which ensures hydrogels with improved hemostasis capacity. Thus, this investigation provides a feasible simple avenue for development of long-term intrinsic antimicrobial hydrogel dressings with efficient hemostasis efficacy for infected wounds.
Collapse
Affiliation(s)
- Qiqi Lei
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Yuwei Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Wenning Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Riwang Li
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | - Ningjian Ao
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| | - Hong Zhang
- Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
12
|
Yu Strobykina I, Voloshina AD, Andreeva OV, Sapunova AS, Lyubina AP, Amerhanova SK, Belenok MG, Saifina LF, Semenov VE, Kataev VE. Synthesis, antimicrobial activity and cytotoxicity of triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl nucleoside analogues. Bioorg Chem 2021; 116:105328. [PMID: 34500307 DOI: 10.1016/j.bioorg.2021.105328] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/28/2021] [Accepted: 08/31/2021] [Indexed: 12/22/2022]
Abstract
Four new triphenylphosphonium (TPP) conjugates of 1,2,3-triazolyl nucleoside analogues were synthesized by coupling with 8-bromoctyl- or 10- bromdecyltriphenylphosphonium bromide and evaluated for the in vitro antibacterial activity against S. aureus, B. cereus, E. faecalis, two MRSA strains isolated from patients and resistant to fluoroquinolone antibiotic ciprofloxacin and β-lactam antibiotic amoxicillin, E. coli, antifungal activity against T. mentagrophytes C. albicans and cytotoxicity against human cancer cell lines M-HeLa, MCF-7, A549, HuTu-80, PC3, PANC-1 and normal cell line Wi-38. In these compounds a TPP cation was attached via an octyl or a decyl linker to the N 3 atom of the heterocycle moiety (thymine, 6-methyluracil, quinazoline-2,4-dione) which was bonded with 2',3',5'-tri- O - acetyl-greek beta-d-ribofuranose residue by the (1,2,3-triazol-4-il)methyl bridge. All synthesized compounds showed high antibacterial activity against S. aureus within the range of MIC values 1.2-4.3 greek muM, and three of them appeared to be bactericidal with respect to tis bacterium at MBC values 4.1-4.3 greek muM. Two lead compounds showed both high antibacterial activity against the MRSA strains resistant to Ciprofloxacin and Amoxicillin within the range of MIC values 1.0-4.3 greek muM and high cytotoxicity against human cancer cell lines HuTu-80 and MCF-7 within the range of IC50 values 6.4-10.2 greek muM. This is one of the few examples when phosphonium salts exhibited both antibacterial activity and cytotoxicity against human cancer cell lines. According to the results obtained the bactericidal effect of the lead compounds, unlike classical surfactants, was not caused by a violation of the integrity of the cytoplasmic membrane of bacteria and their cytotoxic activity is most likely associated both with the induction of apoptosis along the mitochondrial pathway and the arrest of the cell cycle in the G0/G1 phase.
Collapse
Affiliation(s)
- Irina Yu Strobykina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation.
| | - Olga V Andreeva
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Anastasiia S Sapunova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Mayya G Belenok
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Liliya F Saifina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Vyacheslav E Semenov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| | - Vladimir E Kataev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzov str. 8, Kazan 420088, Russian Federation
| |
Collapse
|