1
|
Ezerskyte E, Butkiene G, Katelnikovas A, Klimkevicius V. Development of Biocompatible, UV and NIR Excitable Nanoparticles with Multiwavelength Emission and Enhanced Colloidal Stability. ACS MATERIALS AU 2025; 5:353-364. [PMID: 40093831 PMCID: PMC11907297 DOI: 10.1021/acsmaterialsau.4c00151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 03/19/2025]
Abstract
The development of functional nanoprobes for biomedical applications is highly important in the field of modern nanotechnology. Due to strict requirements, such as the ability to be excited using irradiation, which allows deep tissue penetration, nonblinking behavior, and good optical and colloidal stability, the choice of nanoparticles is limited, and their synthesis is challenging. Among all of the functional nanoprobes for biomedical purposes, upconverting nanoparticles, especially those with more complex architectures (e.g., core-shell or core-shell-shell), are the most promising candidates. This study demonstrates advanced synthetic routes for constructing biocompatible nanoprobes with tunable optical properties and colloidal stability. The core-shell-shell architecture of the nanoprobes allows excitation from at least four sources, such as 272 and 394 nm of near-ultraviolet (near-UV) irradiation and 980 and 808 nm near-infrared (NIR) lasers. Furthermore, Gd-matrix-based nanoprobes doped with lanthanide ions (Nd3+, Yb3+, Tm3+, and Eu3+) are known for their paramagnetic properties for magnetic resonance imaging (MRI) imaging as well as upconversion luminescence with diverse emission bands across the entire visible spectrum. This feature is highly desirable for photodynamic therapy applications, as the upconversion emission of the proposed nanoprobes could overlap with the absorption band of commonly used photosensitizers and could potentially result in an efficient energy transfer process and enhanced generation of reactive oxygen species or singlet oxygen.
Collapse
Affiliation(s)
- Egle Ezerskyte
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
- Biomedical
Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| | - Greta Butkiene
- Biomedical
Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| | - Arturas Katelnikovas
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Vaidas Klimkevicius
- Institute
of Chemistry, Faculty of Chemistry and Geosciences, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
- Biomedical
Physics Laboratory, National Cancer Institute, Baublio 3b, LT-08406 Vilnius, Lithuania
| |
Collapse
|
2
|
Pongkulapa T, Yum JH, McLoughlin CD, Conklin B, Kumagai T, Goldston LL, Sugiyama H, Park S, Lee KB. NIR-Induced Photoswitching Hybrid DNA Nanoconstruct-Based Drug Delivery System for Spatiotemporal Control of Stem Cell Fate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2409530. [PMID: 40007062 DOI: 10.1002/smll.202409530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 01/20/2025] [Indexed: 02/27/2025]
Abstract
Precise spatiotemporal control of drug delivery is extremely valuable for regulating stem cell fate, particularly in stem cell differentiation. A novel near-infrared (NIR)-mediated spatiotemporal delivery system is reported combining photo-switchable arylazopyrazole (AAP)-containing DNA strands and upconversion nanoparticles (UCNPs). This nano-drug delivery system (NDDS) enables precise modulation of DNA duplex structures in response to NIR stimuli, overcoming the limitations of traditional UV-responsive systems. AAP derivatives with enhanced photoswitching efficiency (≈98%) and significantly improved cis-form stability are engineered. The successful delivery of curcumin, a neurogenic compound with an affinity for the minor groove of DNA, to human neural stem cells (NSCs) is achieved using UCNP-DNA-AAP constructs. Upon 980 nm NIR light exposure, UCNPs efficiently up-converted NIR to UV light, triggering AAP photoisomerization and DNA dissociation, thus releasing curcumin. This approach enabled efficient spatiotemporal control over NSC differentiation while facilitating neuroprotection. Immunofluorescence and gene expression analyses demonstrated enhanced neuronal mRNA levels and neurite outgrowth in treated cells. In short, the NIR-mediated photo-switchable NDDS offers a precise and innovative approach to control stem cell fate, enabling spatiotemporal regulation of cellular processes. This technology has significant potential applications in nanomedicine and neuroscience, where precise drug delivery is crucial for targeted neural interventions.
Collapse
Affiliation(s)
- Thanapat Pongkulapa
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Ji Hye Yum
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Callan D McLoughlin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Brandon Conklin
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Tomotaka Kumagai
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Li Ling Goldston
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| | - Hiroshi Sugiyama
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
- Institute for Integrated Cell-Material Sciences (iCeMS), Kyoto University, Yoshida-ushinomiyacho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Soyoung Park
- Department of Chemistry, Graduate School of Science, Kyoto University, Kitashirakawa-oiwakecho, Sakyo-ku, Kyoto, 606-8502, Japan
| | - Ki-Bum Lee
- Department of Chemistry and Chemical Biology, Rutgers, The State University of New Jersey, Piscataway, NJ, 08854, USA
| |
Collapse
|
3
|
Märkl S, Przybilla F, Rachel R, Hirsch T, Keller M, Witzgall R, Mély Y, Wegener J. Impact of surface chemistry of upconversion nanoparticles on time-dependent cytotoxicity in non-cancerous epithelial cells. Sci Rep 2024; 14:30610. [PMID: 39715796 DOI: 10.1038/s41598-024-83406-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 12/13/2024] [Indexed: 12/25/2024] Open
Abstract
The application of upconversion nanoparticles (UCNPs) for cell and tissue analysis requires a comprehensive understanding of their interactions with biological entities to prevent toxicity or harmful effects. Whereas most studies focus on cancer cells, this work addresses non-cancerous cells with their regular in vitro physiology. Since it is generally accepted that surface chemistry largely determines biocompatibility in general and uptake of nanomaterials in particular, two bilayer surface coatings with different surface shielding properties have been studied: (i) a phospholipid bilayer membrane (PLM) and (ii) an amphiphilic polymer (AP). Both surface modifications are applied to (12-33) nm core-shell UCNPs NaYF4(Yb, Er)@NaYF4, ensuring colloidal stability in biological media. The impact of UCNPs@AP and UCNPs@PLM on non-cancerous epithelial-like kidney cells in vitro was found to differ significantly. UCNPs@PLM did not exhibit any measurable effect on cell physiology, even with prolonged exposure. In contrast, UCNPs@AP caused changes in cell morphology and induced cell-death after approximately 30 h. These variations in toxicity are attributed to the distinct chemical stability of these particles, which likely influences their intracellular disintegration.
Collapse
Affiliation(s)
- Susanne Märkl
- Institute for Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Frédéric Przybilla
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg, 67000, France
| | - Reinhard Rachel
- Centre for EM, University of Regensburg, 93053, Regensburg, Germany
| | - Thomas Hirsch
- Institute for Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany
| | - Max Keller
- Institute for Pharmacy, University of Regensburg, 93053, Regensburg, Germany
| | - Ralph Witzgall
- Institute for Anatomy, University of Regensburg, 93053, Regensburg, Germany
| | - Yves Mély
- Laboratory of Bioimaging and Pathologies, UMR 7021 CNRS, University of Strasbourg, Strasbourg, 67000, France
| | - Joachim Wegener
- Institute for Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, 93053, Regensburg, Germany.
- Fraunhofer Institute for Electronic Microsystems and Solid State Technologies EMFT, 93053, Regensburg, Germany.
| |
Collapse
|
4
|
Mirmajidi H, Lee H, Nipu N, Thomas J, Gajdosechova Z, Kennedy D, Mennigen JA, Hemmer E. Nano-bio interactions of Gum Arabic-stabilized lanthanide-based upconverting nanoparticles: in vitro and in vivo study. J Mater Chem B 2024; 13:160-176. [PMID: 39539248 DOI: 10.1039/d4tb01579g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Lanthanide-based nanoparticles (Ln-NPs) are highly valued for their unique optical and magnetic properties, making them useful in various scientific fields, including materials science and biomedicine. This study investigated the use of Gum Arabic (GA), a natural, non-toxic biopolymer, as capping agent for Ln-NPs to enhance their biocompatibility and chemical and colloidal stability. Specifically, Er3+/Yb3+ co-doped NaGdF4 Ln-NPs were modified with GA, followed by their characterization with respect to upconversion properties and in vitro as well as in vivo toxicity. Herein, widely used ligand-free and polyacrylic acid (PAA)-capped Ln-NPs were used as reference materials. Importantly, the GA-modified Ln-NPs exhibited superior stability in aqueous and biologically relevant media, as well as relatively lower cytotoxicity across multiple cell lines, including U-87 MG, HEPG2, and J774A.1. In vivo studies using zebrafish embryos confirmed the minimal toxicity of GA-capped Ln-NPs. Despite overall low non-specific cellular uptake, hyperspectral imaging and inductively coupled plasma mass spectrometry confirmed the colocalization of the Ln-NPs as a function of their surface chemistry in both cell models and zebrafish. The results suggest GA as an effective surface-stabilizing agent for Ln-NPs, paving the way for future functionalization with targeting agents.
Collapse
Affiliation(s)
- Hana Mirmajidi
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Hyojin Lee
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Niepukolie Nipu
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Jith Thomas
- Bureau of Chemical Safety, Food and Nutrition Directorate, Health Products and Food Branch, Health Canada, 251 Sir Frederick Banting Driveway, Tunney's Pasture, Ottawa (ON) K1A 0K9, Canada
| | - Zuzana Gajdosechova
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa (ON) K1A 0R6, Canada
| | - David Kennedy
- Metrology, National Research Council Canada, 1200 Montreal Road, Ottawa (ON) K1A 0R6, Canada
| | - Jan A Mennigen
- Department of Biology, University of Ottawa, 20 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| | - Eva Hemmer
- Department of Chemistry and Biomolecular Sciences, University of Ottawa, 10 Marie-Curie Private, Ottawa (ON) K1N 6N5, Canada.
| |
Collapse
|
5
|
Arellano L, Martínez R, Pardo A, Diez I, Velasco B, Moreda-Piñeiro A, Bermejo-Barrera P, Barbosa S, Taboada P. Assessing the Effect of Surface Coating on the Stability, Degradation, Toxicity and Cell Endocytosis/Exocytosis of Upconverting Nanoparticles. J Colloid Interface Sci 2024; 668:575-586. [PMID: 38691966 DOI: 10.1016/j.jcis.2024.04.188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 03/26/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Lanthanide-doped up-converting nanoparticles (UCNPs) have emerged as promising biomedical tools in recent years. Most research efforts were devoted to the synthesis of inorganic cores with the optimal physicochemical properties. However, the careful design of UCNPs with the adequate surface coating to optimize their biological performance still remains a significant challenge. Here, we propose the functionalization of UCNPs with four distinct types of surface coatings, which were compared in terms of the provided colloidal stability and resistance to degradation in different biological-relevant media, including commonly avoided analysis in acidic lysosomal-mimicking fluids. Moreover, the influence of the type of particle surface coating on cell cytotoxicity and endocytosis/exocytosis was also evaluated. The obtained results demonstrated that the functionalization of UCNPs with poly(isobutylene-alt-maleic anhydride) grafted with dodecylamine (PMA-g-dodecyl) constitutes an outstanding strategy for their subsequent biomedical application, whereas poly(ethylene glycol) (PEG) coating, although suitable for colloidal stability purposes, hinders extensive cell internalization. Conversely, surface coating with small ligand were found not to be suitable, leading to large degradation degrees of UCNPs. The analysis of particle' behavior in different biological media and in vitro conditions here performed pretends to help researchers to improve the design and implementation of UCNPs as theranostic nanotools.
Collapse
Affiliation(s)
- Lilia Arellano
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Raquel Martínez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Alberto Pardo
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain.
| | - Iago Diez
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Brenda Velasco
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Antonio Moreda-Piñeiro
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pilar Bermejo-Barrera
- Trace Element, Spectroscopy and Speciation Group (GETEE), Faculty of Chemistry and Materials Institute (iMATUS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Silvia Barbosa
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Pablo Taboada
- Colloids and Polymers Physics Group, Particle Physics Department, Materials Institute (iMATUS), and Health Research Institute (IDIS), University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| |
Collapse
|
6
|
Malhotra K, Kumar B, Piunno PAE, Krull UJ. Cellular Uptake of Upconversion Nanoparticles Based on Surface Polymer Coatings and Protein Corona. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35985-36001. [PMID: 38958411 DOI: 10.1021/acsami.4c04148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Upconversion nanoparticles (UCNPs) are materials that provide unique advantages for biomedical applications. There are constantly emerging customized UCNPs with varying compositions, coatings, and upconversion mechanisms. Cellular uptake is a key parameter for the biological application of UCNPs. Uptake experiments have yielded highly varying results, and correlating trends between cellular uptake with different types of UCNP coatings remains challenging. In this report, the impact of surface polymer coatings on the formation of protein coronas and subsequent cellular uptake of UCNPs by macrophages and cancer cells was investigated. Luminescence confocal microscopy and elemental analysis techniques were used to evaluate the different coatings for internalization within cells. Pathway inhibitors were used to unravel the specific internalization mechanisms of polymer-coated UCNPs. Coatings were chosen as the most promising for colloidal stability, conjugation chemistry, and biomedical applications. PIMA-PEG (poly(isobutylene-alt-maleic) anhydride with polyethylene glycol)-coated UCNPs were found to have low cytotoxicity, low uptake by macrophages (when compared with PEI, poly(ethylenimine)), and sufficient uptake by tumor cells for surface-loaded drug delivery applications. Inductively coupled plasma-optical emission spectroscopy (ICP-OES) studies revealed that PIMA-coated NPs were preferentially internalized by the clathrin- and caveolar-independent pathways, with a preference for clathrin-mediated uptake at longer time points. PMAO-PEG (poly(maleic anhydride-alt-1-octadecene) with polyethylene glycol)-coated UCNPs were internalized by energy-dependent pathways, while PAA- (poly(acrylic acid)) and PEI-coated NPs were internalized by multifactorial mechanisms of internalization. The results indicate that copolymers of PIMA-PEG coatings on UCNPs were well suited for the next-generation of biomedical applications.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga L5L1C6, Ontario, Canada
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga L5L1C6, Ontario, Canada
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga L5L1C6, Ontario, Canada
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga L5L1C6, Ontario, Canada
| |
Collapse
|
7
|
Xu H, Dai M, Fu Z. The Art of Nanoparticle Design: Unconventional Morphologies for Advancing Luminescent Technologies. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2400218. [PMID: 38415814 DOI: 10.1002/smll.202400218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/16/2024] [Indexed: 02/29/2024]
Abstract
The advanced design of rare-earth-doped (RE-doped) fluoride nanoparticles has expanded their applications ranging from anticounterfeiting luminescence and contactless temperature measurement to photodynamic therapy. Several recent studies have focused on developing rare morphologies of RE-doped nanoparticles. Distinct physical morphologies of RE-doped fluoride materials set them apart from contemporary nanoparticles. Every unusual structure holds the potential to dramatically improve the physical performance of nanoparticles, resulting in a remarkable revolution and a wide range of applications. This comprehensive review serves as a guide offering insights into various uniquely structured nanoparticles, including hollow, dumbbell-shaped, and peasecod-like forms. It aims to cater to both novices and experts interested in exploring the morphological transformations of nanoparticles. Discovering new energy transfer pathways and enhancing the optical application performance have been long-term challenges for which new solutions can be found in old papers. In the future, nanoparticle morphology design is expected to involve more refined microphysical methods and chemically-induced syntheses. Targeted modification of nanoparticle morphology and the aggregation of nanoparticles of various shapes can provide the advantages of different structures and enhance the universality of nanoparticles.
Collapse
Affiliation(s)
- Hanyu Xu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, 130012, China
| | - Mengmeng Dai
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, 130012, China
| | - Zuoling Fu
- Coherent Light and Atomic and Molecular Spectroscopy Laboratory, Key Laboratory of Physics and Technology for Advanced Batteries, College of Physics, Jilin University, Changchun, 130012, China
| |
Collapse
|
8
|
Li Z, Lu S, Liu W, Chen Z, Huang Y, Li X, Gong J, Chen X. Customized Lanthanide Nanobiohybrids for Noninvasive Precise Phototheranostics of Pulmonary Biofilm Infection. ACS NANO 2024; 18:11837-11848. [PMID: 38654614 DOI: 10.1021/acsnano.4c00777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A noninvasive strategy for in situ diagnosis and precise treatment of bacterial biofilm infections is highly anticipated but still a great challenge. Currently, no in vivo biofilm-targeted theranostic agent is available. Herein, we fabricated intelligent theranostic alginate lyase (Aly)-NaNdF4 nanohybrids with a 220 nm sunflower-like structure (NaNdF4@DMS-Aly) through an enrichment-encapsulating strategy, which exhibited excellent photothermal conversion efficiency and the second near-infrared (NIR-II) luminescence. Benefiting from the site-specific targeting and biofilm-responsive Aly release from NaNdF4@DMS-Aly, we not only enabled noninvasive diagnosis but also realized Aly-photothermal synergistic therapy and real-time evaluation of therapeutic effect in mice models with Pseudomonas aeruginosa biofilm-induced pulmonary infection. Furthermore, such nanobiohybrids with a sheddable siliceous shell are capable of delaying the NaNdF4 dissolution and biodegradation upon accomplishing the therapy, which is highly beneficial for the biosafety of theranostic agents.
Collapse
Affiliation(s)
- Zhuo Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shan Lu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Wenzhen Liu
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuo Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunmei Huang
- Academy of Integrative Medicine, Fujian University of Traditional Chinese Medicine, Fuzhou 350122, Fujian, China
| | - Xingjun Li
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiacheng Gong
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| | - Xueyuan Chen
- State Key Laboratory of Structural Chemistry, Fujian Key Laboratory of Nanomaterials, and CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, Fujian, China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou 350108, Fujian, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- College of Chemistry and Materials Science, Fujian Normal University, Fuzhou 350007, Fujian, China
| |
Collapse
|
9
|
Gao R, Xu W, Wang Z, Li F, Liu Y, Li G, Chen K. Heteroepitaxial Growth to Construct Hexagonal/Hexagonal β-NaYF 4:Yb,Tm/Cs 4PbBr 6 Multi-Code Emitting Core/Shell Nanocrystals. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309107. [PMID: 38145322 DOI: 10.1002/smll.202309107] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/05/2023] [Indexed: 12/26/2023]
Abstract
Synthesis of upconversion nanoparticles (UCNPs)-metal halide perovskites (MHPs) heterostructure is garnered immense attentions due to their unparalleled photophysical properties. However, the obvious difference in their structural forms makes it a huge challenge. Herein, hexagonal β-NaYF4 and hexagonal Cs4PbBr6 are filtrated to construct the UCNP/MHP heterostructural luminescent material. The similarity in their crystal structures facilitate the heteroepitaxial growth of Cs4PbBr6 on the surface of β-NaYF4 NPs, leading to the formation of high-quality β-NaYF4:Yb,Tm/Cs4PbBr6 core/shell nanocrystals (NCs). Interestingly, this heterostructure endows the core/shell NCs with typically narrow-band green emission centered at 524 nm under 980 nm excitation, which should be attributed to the Förster resonance energy transfer (FRET) from Tm3+ to Cs4PbBr6. It is noteworthy that the FRET efficiency of β-NaYF4:Yb,Tm/Cs4PbBr6 core/shell NCs (58.33%) is much higher than that of the physically mixed sample (1.84%). In addition, the reduced defect density, lattice anchoring effect, as well as diluted ionic bonding proportion induced by the core/shell structure further increase the excellent water-resistance and thermal cycling stability of Cs4PbBr6. These findings open up a new way to construct UCNP/MHP heterostructure with better multi-code luminescence performance and stability and promote its wide optoelectronic applications.
Collapse
Affiliation(s)
- Rui Gao
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Wanqing Xu
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Zhiqing Wang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Fen Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
| | - Yueli Liu
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, State Key Laboratory of Silicate Materials for Architectures, School of Materials Science and Engineering, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Guogang Li
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
| | - Keqiang Chen
- Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan, 430074, P. R. China
- Zhejiang Institute, China University of Geosciences, Hangzhou, 311305, P. R. China
- Shenzhen Research Institute, China University of Geosciences, Shenzhen, 518052, P. R. China
| |
Collapse
|
10
|
Pan JA, Skripka A, Lee C, Qi X, Pham AL, Woods JJ, Abergel RJ, Schuck PJ, Cohen BE, Chan EM. Ligand-Assisted Direct Lithography of Upconverting and Avalanching Nanoparticles for Nonlinear Photonics. J Am Chem Soc 2024; 146:7487-7497. [PMID: 38466925 DOI: 10.1021/jacs.3c12850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2024]
Abstract
Upconverting nanoparticles (UCNPs) exhibit unique nonlinear optical properties that can be harnessed in microscopy, sensing, and photonics. However, forming high-resolution nano- and micropatterns of UCNPs with large packing fractions is still challenging. Additionally, there is limited understanding of how nanoparticle patterning chemistries are affected by the particle size. Here, we explore direct patterning chemistries for 6-18 nm Tm3+-, Yb3+/Tm3+-, and Yb3+/Er3+-based UCNPs using ligands that form either new ionic linkages or covalent bonds between UCNPs under ultraviolet (UV), electron-beam (e-beam), and near-infrared (NIR) exposure. We study the effect of UCNP size on these patterning approaches and find that 6 nm UCNPs can be patterned with compact ionic-based ligands. In contrast, patterning larger UCNPs requires long-chain, cross-linkable ligands that provide sufficient interparticle spacing to prevent irreversible aggregation upon film casting. Compared to approaches that use a cross-linkable liquid monomer, our patterning method limits the cross-linking reaction to the ligands bound on UCNPs deposited as a thin film. This highly localized photo-/electron-initiated chemistry enables the fabrication of densely packed UCNP patterns with high resolutions (∼1 μm with UV and NIR exposure; <100 nm with e-beam). Our upconversion NIR lithography approach demonstrates the potential to use inexpensive continuous-wave lasers for high-resolution 2D and 3D lithography of colloidal materials. The deposited UCNP patterns retain their upconverting, avalanching, and photoswitching behaviors, which can be exploited in patterned optical devices for next-generation UCNP applications.
Collapse
Affiliation(s)
- Jia-Ahn Pan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Artiom Skripka
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Nanomaterials for Bioimaging Group, Departamento de Física de Materiales, Facultad de Ciencias, Universidad Autónoma de Madrid, Madrid 28049, Spain
| | - Changhwan Lee
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Xiao Qi
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Anne L Pham
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Joshua J Woods
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering and Chemistry, University of California, Berkeley, California 94720, United States
| | - Rebecca J Abergel
- Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Department of Nuclear Engineering and Chemistry, University of California, Berkeley, California 94720, United States
| | - P James Schuck
- Department of Mechanical Engineering, Columbia University, New York, New York 10027, United States
| | - Bruce E Cohen
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
- Division of Molecular Biophysics & Integrated Bioimaging, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| | - Emory M Chan
- Molecular Foundry, Lawrence Berkeley National Laboratory, Berkeley, California 94720, United States
| |
Collapse
|
11
|
Abeywickrama TM, Mao Y. Strong green upconversion emission from submicron spindle-shaped SrMoO 4:Yb 3+,Er 3. Dalton Trans 2024; 53:1014-1030. [PMID: 38088783 DOI: 10.1039/d3dt03213b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024]
Abstract
Upconversion luminescence (UCL) is a fluorescence process where two or more lower-energy photons convert into a higher-energy photon. Lanthanide (Ln3+)-doped UCL materials often suffer from weak luminescence, especially when directly synthesized by a hydrothermal (HT) process due to the existing hydroxyl group and undesirable arrangement of dopants within host lattices which quench luminescence and limit energy transfer. Therefore, additional heat treatment processes are required to enhance their UCL emission, even though direct hydrothermal synthesis without further heat treatment has the advantages of low energy consumption, fast synthesis, and wide applicability to generate UCL materials. In this study, via a HT process without annealing, we have produced Yb3+ and Er3+ co-doped SrMoO4 submicron spindles with a strong green UCL emission which can be seen with the naked eye, which HT produced oxide-based UCL materials often fail to demonstrate. We have investigated different HT synthesis conditions, such as temperature, time, pH and dopant composition, which control the nucleation, growth, lattice structure arrangement, and ultimately their UCL properties through XRD, SEM, EDS and UCL measurements. The bright green UCL from the SrMoO4:Yb,Er submicron spindles is further enhanced by post-synthesis annealing within a molten NaNO3/KNO3 system to prevent particle size growth. The green UCL intensity from the annealed SrMoO4:Yb,Er submicron spindles surpasses samples produced by the solid-state method and is comparable to that from the commercial NaYF4:Yb,Er sample. We have further studied the temperature-dependent luminescence of both the HT-prepared and molten-salt annealed SrMoO4:Yb,Er submicron spindle samples. The strong UCL from our SrMoO4:Yb,Er submicron spindles could warrant their candidacy for bioimaging and anticounterfeiting applications.
Collapse
Affiliation(s)
- Thulitha M Abeywickrama
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA.
| | - Yuanbing Mao
- Department of Chemistry, Illinois Institute of Technology, 3105 South Dearborn Street, Chicago, IL 60616, USA.
| |
Collapse
|
12
|
Tripathi N, Kamada K, Nakamura H, Akai T. Enhanced near infrared-to-visible upconversion in the CaTiO 3:Yb 3+/Er 3+ phosphor via the host lattice modification using co-doping of Mg 2+ ions. RSC Adv 2023; 13:35391-35396. [PMID: 38058553 PMCID: PMC10696410 DOI: 10.1039/d3ra05938c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 11/09/2023] [Indexed: 12/08/2023] Open
Abstract
The CaTiO3:Er3+/Yb3+ upconversion phosphor was synthesized using a simplified co-precipitation method and the effect of Mg2+ ion co-doping was investigated on the structural and optical properties focusing on the near-infrared (NIR)-to-visible upconversion. The introduction of Mg2+ ions into the host lattice produced substantial changes in the crystal structure, grain size, and absorption, thus leading to the enhancement in upconversion emission intensities. X-ray diffraction (XRD) analysis indicated the formation of polycrystalline CaTiO3-Ca4Ti3O10 composite crystals and an increase in the crystallite size was observed upon increasing the Mg2+ ion concentration in the samples. Elemental analysis by energy dispersive spectroscopy (EDS) suggested the substitution of Ca2+ ions by Mg2+ ions in the CaTiO3 host lattice. Moreover, a change in the Yb3+/Er3+ ratio from 0.25 to 1.1 indicated the redistribution of the Er3+ or Yb3+ ions caused by the Mg2+ ions. These lattice deformations further resulted in an improved absorption of Er3+ ions, exhibiting a ∼3-fold enhancement in the upconversion emission intensity (at the excitation intensity of ∼1 W cm-2).
Collapse
Affiliation(s)
- Neeti Tripathi
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563-8577 Japan
| | - Kenji Kamada
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563-8577 Japan
| | - Hitomi Nakamura
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563-8577 Japan
| | - Tomoko Akai
- Nanomaterials Research Institute (NMRI), National Institute of Advanced Industrial Science and Technology (AIST) Ikeda Osaka 563-8577 Japan
| |
Collapse
|
13
|
Zheng S, Zhang H, Sheng T, Xiang Y, Wang J, Tang Y, Wu Y, Liu J, Zhu X, Zhang Y. Photoswitchable upconversion nanoparticles with excitation-dependent emission for programmed stepwise NIR phototherapy. iScience 2023; 26:107859. [PMID: 37766981 PMCID: PMC10520541 DOI: 10.1016/j.isci.2023.107859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 07/12/2023] [Accepted: 09/06/2023] [Indexed: 09/29/2023] Open
Abstract
Programmable control over therapeutic processes in phototherapy, like photodynamic therapy (PDT), is promising but challenging. This study uses an energy segmentation-based strategy to synthesize core-multi-shell upconversion nanoparticles (UCNPs), which can release three different colors (red, green, and blue) upon exposure to different near-infrared light (1550 nm, 808 nm, and 980 nm). By combining these UCNPs with photosensitizers and nitric oxide (NO) donors, a smart "off-on" PDT nanoplatform is developed. UCNPs enable independent activation of imaging, release of NO, and generation of reactive oxygen species using specific light wavelengths. The results show that sequential NO release before PDT can greatly alleviate tumor hypoxia by reducing oxygen consumption. This stepwise approach shows potential for precise NIR light-activated and imaging-guided phototherapy.
Collapse
Affiliation(s)
- Shanshan Zheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Hengji Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Ting Sheng
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yi Xiang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jing Wang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yao Tang
- China Steel Development Research Institute, Beijing 100029, China
| | - Yihan Wu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Jinliang Liu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Xiaohui Zhu
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Yong Zhang
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore 117583, Singapore
| |
Collapse
|
14
|
Tzanetopoulos E, Schwartz J, Gamelin DR. HF-Free synthesis of colloidal Cs 2ZrF 6 and (NH 4) 2ZrF 6 nanocrystals. Chem Commun (Camb) 2023; 59:5451-5454. [PMID: 37067805 DOI: 10.1039/d3cc00374d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
A solution-phase synthesis of colloidally stable A2BF6 nanocrystals is reported for the first time, focusing on A+ = Cs+, NH4+ and B4+ = Zr4+. Handling hypertoxic HF is avoided by using NH4F and a low-boiling-point alcohol, representing the first synthesis of any A2BF6 nanocrystals without HF addition. The chemical incompatability of Zr4+ with other common fluoride sources is discussed.
Collapse
Affiliation(s)
- Eden Tzanetopoulos
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA.
| | - Julie Schwartz
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA.
| | - Daniel R Gamelin
- Department of Chemistry, University of Washington, Seattle, Washington, 98195-1700, USA.
| |
Collapse
|
15
|
Cressoni C, Vurro F, Milan E, Muccilli M, Mazzer F, Gerosa M, Boschi F, Spinelli AE, Badocco D, Pastore P, Delgado NF, Collado MH, Marzola P, Speghini A. From Nanothermometry to Bioimaging: Lanthanide-Activated KY 3F 10 Nanostructures as Biocompatible Multifunctional Tools for Nanomedicine. ACS APPLIED MATERIALS & INTERFACES 2023; 15:12171-12188. [PMID: 36826830 PMCID: PMC9999348 DOI: 10.1021/acsami.2c22000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Lanthanide-activated fluoride-based nanostructures are extremely interesting multifunctional tools for many modern applications in nanomedicine, e.g., bioimaging, sensing, drug delivery, and photodynamic therapy. Importantly, environmental-friendly preparations using a green chemistry approach, as hydrothermal synthesis route, are nowadays highly desirable to obtain colloidal nanoparticles, directly dispersible in hydrophilic media, as physiological solution. The nanomaterials under investigation are new KY3F10-based citrate-capped core@shell nanostructures activated with several lanthanide ions, namely, Er3+, Yb3+, Nd3+, and Gd3+, prepared as colloidal water dispersions. A new facile microwave-assisted synthesis has been exploited for their preparation, with significant reduction of the reaction times and a fine control of the nanoparticle size. These core@shell multifunctional architectures have been investigated for use as biocompatible and efficient contrast agents for optical, magnetic resonance imaging (MRI) and computerized tomography (CT) techniques. These multifunctional nanostructures are also efficient noninvasive optical nanothermometers. In fact, the lanthanide emission intensities have shown a relevant relative variation as a function of the temperature, in the visible and near-infrared optical ranges, efficiently exploiting ratiometric intensity methods for optical thermometry. Importantly, in contrast with other fluoride hosts, chemical dissolution of KY3F10 citrate-capped nanocrystals in aqueous environment is very limited, of paramount importance for applications in biological fluids. Furthermore, due to the strong paramagnetic properties of lanthanides (e.g., Gd3+), and X-ray absorption of both yttrium and lanthanides, the nanostructures under investigation are extremely useful for MRI and CT imaging. Biocompatibility studies of the nanomaterials have revealed very low cytotoxicity in dfferent human cell lines. All these features point to a successful use of these fluoride-based core@shell nanoarchitectures for simultaneous diagnostics and temperature sensing, ensuring an excellent biocompatibility.
Collapse
Affiliation(s)
- Chiara Cressoni
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federica Vurro
- Division
of Experimental Oncology, Urological Research Institute, IRCCS San Raffaele Scientific Institute, Via Olgettina 60, 20132 Milan, Italy
- University
Vita-Salute San Raffaele, Via Olgettina 60, 20132 Milan, Italy
| | - Emil Milan
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Matilde Muccilli
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Francesco Mazzer
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Marco Gerosa
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Federico Boschi
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Antonello Enrico Spinelli
- Experimental
Imaging Centre, San Raffaele Scientific
Institute, Via Olgettina 60, 20132 Milan, Italy
| | - Denis Badocco
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Paolo Pastore
- Department
of Chemical Sciences, University of Padova, Via Marzolo 1, 35122 Padova, Italy
| | - Natalia Fernández Delgado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Miriam Herrera Collado
- Department
of Materials Science and Metallurgic Engineering and Inorganic Chemistry, University of Cadiz, Campus Universitario Río
San Pedro, 11519 Puerto Real, Cádiz, Spain
| | - Pasquina Marzola
- Department
of Computer Science, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| | - Adolfo Speghini
- Nanomaterials
Research Group, Department of Biotechnology, University of Verona, Strada le Grazie 15, 37134 Verona, Italy
| |
Collapse
|
16
|
Rivas MV, Arenas Muñetón MJ, Bordoni AV, Lombardo MV, Spagnuolo CC, Wolosiuk A. Revisiting carboxylic group functionalization of silica sol-gel materials. J Mater Chem B 2023; 11:1628-1653. [PMID: 36752739 DOI: 10.1039/d2tb02279f] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The carboxylic chemical group is a ubiquitous moiety present in amino acids, a ligand for transition metals, a colloidal stabilizer, and a weak acidic ion-exchanger in polymeric resins and given this property, it is attractive for responsive materials or nanopore-based gating applications. As the number of uses increases, subtle requirements are imposed on this molecular group when anchored to various platforms for the functioning of an integrated chemical system. In this context, silica stands as an inert and multipurpose platform that enables the anchoring of multiple chemical entities combined through several orthogonal synthesis methods on the interface. Surface chemical modification relies on the use of organoalkoxysilanes that must meet the demand of tuned chemical properties; this, in turn, urges for innovative approaches for having an improved, but simple, organic toolbox. Starting from commonly available molecular precursors, several approaches have emerged: hydrosilylation, click thiol-ene additions, the use of carbodiimides or the reaction between cyclic anhydrides and anchored amines. In this review, we analyze the importance of the COOH groups in the area of materials science and the commercial availability of COOH-based silanes and present new approaches for obtaining COOH-based organoalkoxide precursors. Undoubtedly, this will attract widespread interest for the ultimate design of highly integrated chemical platforms.
Collapse
Affiliation(s)
- M Verónica Rivas
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina. .,Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - María J Arenas Muñetón
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Andrea V Bordoni
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - M Verónica Lombardo
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| | - Carla C Spagnuolo
- Departamento de Química Orgánica, Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires, Argentina
| | - Alejandro Wolosiuk
- Gerencia Química - Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes, Comisión Nacional de Energía Atómica, CONICET, Av. Gral. Paz 1499, B1650KNA San Martín, Buenos Aires, Argentina.
| |
Collapse
|
17
|
Protein encapsulation of nanocatalysts: A feasible approach to facilitate catalytic theranostics. Adv Drug Deliv Rev 2023; 192:114648. [PMID: 36513163 DOI: 10.1016/j.addr.2022.114648] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/14/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022]
Abstract
Enzyme-mimicking nanocatalysts, also termed nanozymes, have attracted much attention in recent years. They are considered potential alternatives to natural enzymes due to their multiple catalytic activities and high stability. However, concerns regarding the colloidal stability, catalytic specificity, efficiency and biosafety of nanomaterials in biomedical applications still need to be addressed. Proteins are biodegradable macromolecules that exhibit superior biocompatibility and inherent bioactivities; hence, the protein modification of nanocatalysts is expected to improve their bioavailability to match clinical needs. The diversity of amino acid residues in proteins provides abundant functional groups for the conjugation or encapsulation of nanocatalysts. Moreover, protein encapsulation can not only improve the overall performance of nanocatalysts in biological systems, but also bestow materials with new features, such as targeting and retention in pathological sites. This review aims to report the recent developments and perspectives of protein-encapsulated catalysts in their functional improvements, modification methods and applications in biomedicine.
Collapse
|
18
|
Ling S, Qin X, Yan Y, Chen C, Meng K, Ming J, Liao S, Huang Y, Hou L. Crystal defect induced zero thermal quenching β-NaYF 4: Eu 3+, Sm 3+ red-emitting phosphor. RSC Adv 2022; 13:534-546. [PMID: 36605632 PMCID: PMC9773020 DOI: 10.1039/d2ra06567c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/25/2022] [Indexed: 12/24/2022] Open
Abstract
Red phosphors with brilliant performance are crucial for the application of white LEDs as their red-light component. However, the thermal quenching phenomenon is an inevitable obstacle in the practical application of various types of red-light phosphors. In this study, we report the preparation of a novel type of phosphor, NaYF4: 0.065Eu3+, 0.002Sm3+, possessing not only an energy transfer effect from Sm3+ to Eu3+ but also superior negative thermal quenching (NTQ) performance. The phosphor was synthesized via a one-step hydrothermal method, resulting in a prominent improvement in its luminous thermal stability supported by NTQ. The NTQ originated from the thermal stimulation excitement of the captured electrons in electronic traps, which is attributed to the non-equivalence between the different types of ions. The shape of the emission spectrum measured at high temperature was identical to that measured at room temperature, which not only showed the remarkable thermal stability of this novel type of phosphor but also the promising prospect of its practical application. This finding will contribute to improving the thermal stability of phosphor materials doped with lanthanide elements.
Collapse
Affiliation(s)
- Shaokun Ling
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Xiaoyan Qin
- School of Intelligent Equipment Engineering, Guangxi Agricultural Vocational and Technical University 530009 China
| | - Yifeng Yan
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Chang Chen
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Kai Meng
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Junyun Ming
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Sen Liao
- School of Chemistry and Chemical Engineering, Guangxi University Nanning Guangxi 530004 China
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Yingheng Huang
- School of Resources, Environment and Materials, Guangxi University Nanning Guangxi 530004 China
| | - Lei Hou
- Publicity Department and United Front Work Department, Guangxi University of Information Engineering 530200 China
| |
Collapse
|
19
|
Chintamaneni PK, Nagasen D, Babu KC, Mourya A, Madan J, Srinivasarao DA, Ramachandra RK, Santhoshi PM, Pindiprolu SKSS. Engineered upconversion nanocarriers for synergistic breast cancer imaging and therapy: Current state of art. J Control Release 2022; 352:652-672. [PMID: 36328078 DOI: 10.1016/j.jconrel.2022.10.056] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 11/10/2022]
Abstract
Breast cancer is the most common type of cancer in women and is the second leading cause of cancer-related deaths worldwide. Early diagnosis and effective therapeutic interventions are critical determinants that can improve survival and quality of life in breast cancer patients. Nanotheranostics are emerging interventions that offer the dual benefit of in vivo diagnosis and therapeutics through a single nano-sized carrier. Rare earth metal-doped upconversion nanoparticles (UCNPs) with their ability to convert near-infrared light to visible light or UV light in vivo settings have gained special attraction due to their unique luminescence and tumor-targeting properties. In this review, we have discussed applications of UCNPs in drug and gene delivery, photothermal therapy (PTT), photodynamic therapy (PDT) and tumor targeting in breast cancer. Further, present challenges and future opportunities for UCNPs in breast cancer treatment have also been mentioned.
Collapse
Affiliation(s)
- Pavan Kumar Chintamaneni
- Department of Pharmaceutics, GITAM School of Pharmacy, GITAM (Deemed to be University), Rudraram, 502329 Telangana, India.
| | - Dasari Nagasen
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| | - Katta Chanti Babu
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India
| | - Dadi A Srinivasarao
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad 500037, Telangana, India.
| | - R K Ramachandra
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India; Government Degree College, Chodavaram, Andhra Pradesh, India.
| | - P Madhuri Santhoshi
- Crystal Growth and Nanoscience Research Center, Department of Physics, Government College (A), Rajamahendravaram, Andhra Pradesh, India
| | - Sai Kiran S S Pindiprolu
- Aditya Pharmacy College, Surampalem 533437, India; Jawaharlal Nehru Technological University Kakinada, Kakinada 533003, Andhra Pradesh, India.
| |
Collapse
|
20
|
Malhotra K, Fuku R, Kumar B, Hrovat D, Van Houten J, Piunno PAE, Gunning PT, Krull UJ. Unlocking Long-Term Stability of Upconversion Nanoparticles with Biocompatible Phosphonate-Based Polymer Coatings. NANO LETTERS 2022; 22:7285-7293. [PMID: 36067362 DOI: 10.1021/acs.nanolett.2c00437] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Achieving long-term (>3 months) colloidal stability of upconversion nanoparticles (UCNPs) in biologically relevant buffers has been a major challenge, which has severely limited practical implementation of UCNPs in bioimaging and nanomedicine applications. To address this challenge, nine unique copolymers formulations were prepared and evaluated as UCNP overcoatings. These polymers consisted of a poly(isobutylene-alt-maleic anhydride) (PIMA) backbone functionalized with different ratios and types of phosphonate anchoring groups and poly(ethylene glycol) (PEG) moieties. The syntheses were done as simple, one-pot nucleophilic addition reactions. These copolymers were subsequently coated onto NaYF4:Yb3+,Er3+ UCNPs, and colloidal stability was evaluated in 1 × PBS, 10 × PBS, and other buffers. UCNP colloidal stability improved (up to 4 months) when coated with copolymers containing greater proportions of anchoring groups and higher phosphonate valences. Furthermore, small molecules could be conjugated to these overcoated UCNPs by use of copper-free click chemistry, as was done to demonstrate suitability for sensor and bioprobe development.
Collapse
Affiliation(s)
- Karan Malhotra
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Fuku
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Balmiki Kumar
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - David Hrovat
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Justin Van Houten
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Paul A E Piunno
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Patrick Thomas Gunning
- Gunning Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| | - Ulrich J Krull
- Chemical Sensors Group, Department of Chemical and Physical Sciences, University of Toronto Mississauga, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
21
|
Bogachev NA, Betina AA, Bulatova TS, Nosov VG, Kolesnik SS, Tumkin II, Ryazantsev MN, Skripkin MY, Mereshchenko AS. Lanthanide-Ion-Doping Effect on the Morphology and the Structure of NaYF 4:Ln 3+ Nanoparticles. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:2972. [PMID: 36080009 PMCID: PMC9457563 DOI: 10.3390/nano12172972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 08/21/2022] [Accepted: 08/24/2022] [Indexed: 06/15/2023]
Abstract
Two series of β-NaYF4:Ln3+ nanoparticles (Ln = La-Nd, Sm-Lu) containing 20 at. % and 40 at. % of Ln3+ with well-defined morphology and size were synthesized via a facile citric-acid-assisted hydrothermal method using rare-earth chlorides as the precursors. The materials were composed from the particles that have a shape of uniform hexagonal prisms with an approximate size of 80-1100 nm. The mean diameter of NaYF4:Ln3+ crystals non-monotonically depended on the lanthanide atomic number and the minimum size was observed for Gd3+-doped materials. At the same time, the unit cell parameters decreased from La to Lu according to XRD data analysis. The diameter-to-length ratio increased from La to Lu in both studied series. The effect of the doping lanthanide(III) ion nature on particle size and shape was explained in terms of crystal growth dynamics. This study reports the correlation between the nanoparticle morphologies and the type and content of doping lanthanide ions. The obtained results shed light on the understanding of intrinsic factors' effect on structural features of the nanocrystalline materials.
Collapse
Affiliation(s)
- Nikita A. Bogachev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Anna A. Betina
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Tatyana S. Bulatova
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Viktor G. Nosov
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Stefaniia S. Kolesnik
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Ilya I. Tumkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Mikhail N. Ryazantsev
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
- Nanotechnology Research and Education Centre RAS, Saint Petersburg Academic University, 8/3 Khlopina Street, 194021 St. Petersburg, Russia
| | - Mikhail Yu. Skripkin
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| | - Andrey S. Mereshchenko
- Saint-Petersburg State University, 7/9 Universitetskaya emb., 199034 St. Petersburg, Russia
| |
Collapse
|
22
|
Hlaváček A, Farka Z, Mickert MJ, Kostiv U, Brandmeier JC, Horák D, Skládal P, Foret F, Gorris HH. Bioconjugates of photon-upconversion nanoparticles for cancer biomarker detection and imaging. Nat Protoc 2022; 17:1028-1072. [PMID: 35181766 DOI: 10.1038/s41596-021-00670-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 11/19/2021] [Indexed: 02/07/2023]
Abstract
The detection of cancer biomarkers in histological samples and blood is of paramount importance for clinical diagnosis. Current methods are limited in terms of sensitivity, hindering early detection of disease. We have overcome the shortcomings of currently available staining and fluorescence labeling methods by taking an integrative approach to establish photon-upconversion nanoparticles (UCNP) as a powerful platform for cancer detection. These nanoparticles are readily synthesized in different sizes to yield efficient and tunable short-wavelength light emission under near-infrared excitation, which eliminates optical background interference of the specimen. Here we present a protocol for the synthesis of UCNPs by high-temperature co-precipitation or seed-mediated growth by thermal decomposition, surface modification by silica or poly(ethylene glycol) that renders the particles resistant to nonspecific binding, and the conjugation of streptavidin or antibodies for biological detection. To detect blood-based biomarkers, we present an upconversion-linked immunosorbent assay for the analog and digital detection of the cancer marker prostate-specific antigen. When applied to immunocytochemistry analysis, UCNPs enable the detection of the breast cancer marker human epidermal growth factor receptor 2 with a signal-to-background ratio 50-fold higher than conventional fluorescent labels. UCNP synthesis takes 4.5 d, the preparation of the antibody-silica-UCNP conjugate takes 3 d, the streptavidin-poly(ethylene glycol)-UCNP conjugate takes 2-3 weeks, upconversion-linked immunosorbent assay takes 2-4 d and immunocytochemistry takes 8-10 h. The procedures can be performed after standard laboratory training in nanomaterials research.
Collapse
Affiliation(s)
- Antonín Hlaváček
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic.
| | - Zdeněk Farka
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic. .,CEITEC MU, Masaryk University, Brno, Czech Republic.
| | | | - Uliana Kostiv
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Julian C Brandmeier
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,Institute of Analytical Chemistry, Chemo- and Biosensors, University of Regensburg, Regensburg, Germany
| | - Daniel Horák
- Institute of Macromolecular Chemistry of the Czech Academy of Sciences, Prague, Czech Republic
| | - Petr Skládal
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.,CEITEC MU, Masaryk University, Brno, Czech Republic
| | - František Foret
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Brno, Czech Republic
| | - Hans H Gorris
- Department of Biochemistry, Faculty of Science, Masaryk University, Brno, Czech Republic.
| |
Collapse
|
23
|
Zhou M, Zou X, Liu Y, Wang H, Su Q. Degradation of upconverting nanoparticles in simulated fluids evaluated by ratiometric luminescence. NEW J CHEM 2022. [DOI: 10.1039/d2nj00590e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The effect of artificially simulated fluids on the optical properties of upconversion nanoparticles and the degradation mechanism was systematically studied.
Collapse
Affiliation(s)
- Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Xi Zou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Yachong Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Haifang Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China
| |
Collapse
|
24
|
Fu M, Yang M, Xu X. Upconversion fluorescent nanoprobe based on 4-NP reversible structure for a wide range of pH determination. NEW J CHEM 2022. [DOI: 10.1039/d2nj01803a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Accurate detection of pH value has received more and more attention in various fields. However, most reported probes show pH values in the acidic or alkaline range and work within...
Collapse
|
25
|
de Godoy KF, de Almeida Rodolpho JM, Brassolatti P, de Lima Fragelli BD, de Castro CA, Assis M, Cancino Bernardi J, de Oliveira Correia R, Albuquerque YR, Speglich C, Longo E, de Freitas Anibal F. New Multi-Walled carbon nanotube of industrial interest induce cell death in murine fibroblast cells. Toxicol Mech Methods 2021; 31:517-530. [PMID: 33998363 DOI: 10.1080/15376516.2021.1930311] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The search for new nanomaterials has brought to the multifactorial industry several opportunities for use and applications for existing materials. Carbon nanotubes (CNT), for example, present excellent properties which allow us to assume a series of applications, however there is concern in the industrial scope about possible adverse health effects related to constant exposure for inhalation or direct skin contact. Thus, using cell models is the fastest and safest way to assess the effects of a new material. The aim of this study was to investigate the cytotoxic profile in LA9 murine fibroblast lineage, of a new multi-walled carbon nanotube (MWCNT) that was functionalized with tetraethylenepentamine (TEPA) to obtain better physical-chemical characteristics for industrial use. The modifications presented in the CNT cause concern, as they can change its initial characteristics, making this nanomaterial harmful. HR-TEM, FE-SEM and zeta potential were used for the characterization. Cytotoxicity and cell proliferation tests, oxidative and nitrosative stress analyzes and inflammatory cytokine assay (TNF-α) were performed. The main findings demonstrated a reduction in cell viability, increased release of intracellular ROS, accompanied by an increase in TNF-α, indicating an important inflammatory profile. Confirmation of the data was performed by flow cytometry and ImageXpress with apoptosis/necrosis markers. These data provide initial evidence that OCNT-TEPA has a cytotoxic profile dependent on the concentration of LA9 fibroblasts, since there was an increase in free radicals, inflammation induction and cell death, suggesting that continuous exposure to this nanoparticle can cause damage to different tissues in the organism.
Collapse
Affiliation(s)
- Krissia Franco de Godoy
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Joice Margareth de Almeida Rodolpho
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Patricia Brassolatti
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Bruna Dias de Lima Fragelli
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Cynthia Aparecida de Castro
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Marcelo Assis
- Departamento de Química, Centro de Desenvolvimento de Materiais Funcionais, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Juliana Cancino Bernardi
- Grupo de Nanomedicina e Nanotoxicologia, Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo, Brazil
| | - Ricardo de Oliveira Correia
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Yulli Roxenne Albuquerque
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Carlos Speglich
- Centro de Pesquisa Leopoldo Américo Miguez de Mello CENPES/Petróbras, Rio de Janeiro, RJ, Brazil
| | - Elson Longo
- Departamento de Química, Centro de Desenvolvimento de Materiais Funcionais, Universidade Federal de São Carlos, São Carlos, Brazil
| | - Fernanda de Freitas Anibal
- Departamento de Morfologia e Patologia, Laboratório de Inflamação e Doenças Infecciosas, Universidade Federal de São Carlos, São Carlos, Brazil
| |
Collapse
|
26
|
Fernanda Torresan M, Morrone J, Sorbello C, Etchenique R, Angelomé PC, Wolosiuk A. Emissive Platforms Employing NaYF
4
‐based Upconverting Nanoparticles and Mesoporous Metal Oxide Thin Films. Eur J Inorg Chem 2021. [DOI: 10.1002/ejic.202100177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- M. Fernanda Torresan
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Josefina Morrone
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| | - Cecilia Sorbello
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Roberto Etchenique
- DQIAyQF – INQUIMAE – CONICET Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires Pabellón 2, Ciudad Universitaria 1428 Buenos Aires Argentina
| | - Paula C. Angelomé
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| | - Alejandro Wolosiuk
- Gerencia Química & Instituto de Nanociencia y Nanotecnología, Centro Atómico Constituyentes Comisión Nacional de Energía Atómica, CONICET Av. Gral. Paz 1499 B1650KNA San Martín Buenos Aires Argentina
| |
Collapse
|