1
|
Luo HY, Lin WQ, Zhu SS, Yang SY, Ye TX, Qin F, Chen C. A near infrared fluorescent probe for hypoxia based on dicyanoisophorone and its application in Hela cells imaging. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2025; 327:125383. [PMID: 39547141 DOI: 10.1016/j.saa.2024.125383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/30/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024]
Abstract
Hypoxia will accelerate tumors metastasis and deterioration, thereby limiting the effects of chemotherapy or radiotherapy. Thus, developing efficient techniques for detecting hypoxia in tumor cells is extremely important for cancer diagnosis and therapy. In this work, we reported a dicyanoisophorone-based probe (DCI-Azo) that specifically switched on its near infrared emission with hypoxia up-regulated azo-reductase (AzoR). In order to reduce the difficulty of synthesis and simplify the post-processing process, we adopted a one-pot-synthesis method to synthesized NIR fluorophore (DCI-Am) with yield 97 %. Based on the fluorophore, DCI-Azo was designed and synthesized. The sensitivity of DCI-Azo for hypoxia in vitro was evaluated with Na2S2O4 and rat liver microsomes. It exhibited near-infrared emission (λem = 650 nm), large Stokes Shift (>160 nm), high sensitivity (LOD 0.53 μg mL-1 rat liver microsomes), high selectivity, and low cytotoxicity (cell viability > 80 % after incubation for 24 h). Moreover, the probe was successfully used for detecting hypoxia (1% O2) in Hela cells and tumor tissue in mouse model. The fluorescence intensity in Hela cells has increased ∼ 26-fold when the oxygen level is reduced to 1 % from 21 % O2. The fluorescence intensity of the tumor area enhanced ∼ 5 folds compared to the normal area nearby. All these features demonstrated that the probe DCI-Azo was a versatile tool for in vivo assay and imaging for cancer diagnosis studies.
Collapse
Affiliation(s)
- Hong-Yuan Luo
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China; Institute of Respiratory Diseases, Xiamen Medical College, Xiamen 361023, PR China.
| | - Wei-Qi Lin
- Xiamen Products Quality Supervision & Inspection Institute, Xiamen 361004, PR China
| | - Shan-Shan Zhu
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China
| | - Shuang-Ying Yang
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China; School of Pharmacy, Fujian Medical University, Fuzhou 350004, PR China
| | - Ting-Xiu Ye
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China
| | - Fei Qin
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China
| | - Chuan Chen
- Innovation Center for Enzyme Catalysis and Drug Synthesis, School of Pharmacy and Pharmaceutical Sciences, Xiamen Medical College, Xiamen 361023, PR China.
| |
Collapse
|
2
|
Jiang W, Liu H, Zhang J, Yang J, Wang P. A NIR fluorescent probe based on tricyanofuran for the detection of β-galactosidase in living ovarian tumor cells and in vivo. Bioorg Chem 2024; 153:107926. [PMID: 39486112 DOI: 10.1016/j.bioorg.2024.107926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 10/25/2024] [Indexed: 11/04/2024]
Abstract
β-Galactosidase (β-Gal) as an important glycoside hydrolase plays an important role in the early diagnosis of ovarian cancer. It is important to accurately and conveniently detect β-Gal in organisms. In this study, we developed a fluorescent probe TCF-GAL based on the tricyanofuran structure, which is linked to β-galactose through ether bonds for β-Gal detection. Probe TCF-GAL exhibited satisfactory selectivity and sensitivity toward β-Gal with the calculated LOD of 1.45 × 10-4 U/mL. Moreover, it can be applied to image endogenous β-Gal in living SKOV3 cells with low cytotoxicity. Importantly, probe TCF-GAL was successfully employed in monitoring β-Gal in the mouse subcutaneous model of ovarian cancer. These results indicated that this probe had great potential for diagnosing β-Gal related diseases.
Collapse
Affiliation(s)
- Wen Jiang
- Department of Pathology, Nanjing Drum Tower Hospital, Affliated Hospital of Medical School, Nanjing University, Nanjing 210008, China
| | - Huijia Liu
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jiaqi Zhang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China
| | - Jing Yang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| | - Peng Wang
- Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, Nanjing 211198, China.
| |
Collapse
|
3
|
Nemakhavhani L, Abrahamse H, Kumar SSD. A review on dendrimer-based nanoconjugates and their intracellular trafficking in cancer photodynamic therapy. ARTIFICIAL CELLS, NANOMEDICINE, AND BIOTECHNOLOGY 2024; 52:384-398. [PMID: 39101753 DOI: 10.1080/21691401.2024.2368033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/03/2024] [Accepted: 06/10/2024] [Indexed: 08/06/2024]
Abstract
Nanotechnology-based cancer treatment has received considerable attention, and these treatments generally use drug-loaded nanoparticles (NPs) to target and destroy cancer cells. Nanotechnology combined with photodynamic therapy (PDT) has demonstrated positive outcomes in cancer therapy. Combining nanotechnology and PDT is effective in targeting metastatic cancer cells. Nanotechnology can also increase the effectiveness of PDT by targeting cells at a molecular level. Dendrimer-based nanoconjugates (DBNs) are highly stable and biocompatible, making them suitable for drug delivery applications. Moreover, the hyperbranched structures in DBNs have the capacity to load hydrophobic compounds, such as photosensitizers (PSs) and chemotherapy drugs, and deliver them efficiently to tumour cells. This review primarily focuses on DBNs and their potential applications in cancer treatment. We discuss the chemical design, mechanism of action, and targeting efficiency of DBNs in tumour metastasis, intracellular trafficking in cancer treatment, and DBNs' biocompatibility, biodegradability and clearance properties. Overall, this study will provide the most recent insights into the application of DBNs and PDT in cancer therapy.
Collapse
Affiliation(s)
- Lufuno Nemakhavhani
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, University of Johannesburg, Johannesburg, South Africa
| | | |
Collapse
|
4
|
Baruah M, Kwon HY, Cho H, Chang YT, Samanta A. A Photoinduced Electron Transfer-Based Hypochlorite-Specific Fluorescent Probe for Selective Imaging of Proinflammatory M1 in a Rheumatoid Arthritis Model. Anal Chem 2023; 95:4147-4154. [PMID: 36800528 DOI: 10.1021/acs.analchem.2c05218] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
The differentiation of the distinct phenotypes of macrophages is essential for monitoring the stage of inflammatory diseases for accurate diagnosis and treatment. Recent studies revealed that the level of hypochlorite (OCl-) varies from activated M1 macrophages (killing pathogens) to M2 (resolution of inflammation) during inflammation. Thus, we developed a simple and efficient fluorescent probe for discriminating M1 from M0 and M2. Herein, fluorescent-based imaging is applied as an alternative to immunohistochemistry, which is challenging due to the tedious process and high cost. We developed a hypochlorite-specific probe PMS-T to differentiate M1 and M2, employing a metabolism-oriented live-cell distinction. This probe enables the detection of inflammatory rheumatoid arthritis in an ex vivo mouse model. Thus, it can be a potential chemical tool for monitoring inflammatory diseases, including rheumatoid arthritis, that may overcome the existing barriers of immunohistochemistry.
Collapse
Affiliation(s)
- Mousumi Baruah
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| | - Haw-Young Kwon
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea
| | - Heewon Cho
- School of Interdisciplinary Bioscience and Bioengineering, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Young-Tae Chang
- Center for Self-Assembly and Complexity, Institute for Basic Science (IBS), Pohang 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Animesh Samanta
- Molecular Sensors and Therapeutics (MST) Research Laboratory, Department of Chemistry, School of Natural Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Greater Noida, Uttar Pradesh 201314, India
| |
Collapse
|
5
|
Rong X, Liu C, Li X, Zhu H, Wang K, Zhu B. Recent advances in chemotherapy-based organic small molecule theranostic reagents. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214808] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
6
|
Baruah M, Jana A, Ali M, Mapa K, Samanta A. An efficient PeT based fluorescent probe for mapping mitochondrial oxidative stress produced via the Nox2 pathway. J Mater Chem B 2022; 10:2230-2237. [PMID: 35289831 DOI: 10.1039/d2tb00356b] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The human innate immune system eliminates invading pathogens through phagocytosis. The first step of this process is activating the nicotinamide adenine dinucleotide phosphate oxidase (Nox2) that utilizes NADPH to produce superoxide anion radicals and other reactive oxygen species (ROS). These ROS then alter the mitochondrial membrane potential and increase peroxide in the mitochondria. The peroxide reacts with myeloperoxidase (MPO) and chloride ions to produce pro-inflammatory oxidant hypochlorous acid (HOCl), which causes oxidative stress leading to cell death. The adverse effects of HOCl are highly associated with cardiovascular disease, neurodegenerative disorders, acute lung injuries, inflammatory diseases, and cancer. Therefore, mapping HOCl in the Nox2 pathway is crucial for an in-depth understanding of the innate immune system. Herein, we developed a unique pentacyclic pyridinium probe, PM-S, that exhibited efficient photoinduced electron transfer (PeT) with HOCl triggered methyl(phenyl)sulfane. PM-S showed several advantages, including better chemical stability, large Stokes shifts (>6258 cm-1), high sensitivity (∼50 nM) and specificity to mitochondria, compared to its parent pyrylium PY-S derivative. This probe is also efficient in studying the HOCl produced via the Nox2 pathway in HepG2 and HeLa cells. Analysis using a simple microplate reader and FACS analysis with various inhibitors and inducers supported the mechanistic understanding of Nox2, which can offer an advanced platform for monitoring the inflammatory process more efficiently.
Collapse
Affiliation(s)
- Mousumi Baruah
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Anal Jana
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| | - Mudassar Ali
- Protein Homeostasis Laboratory, Department of Life Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Koyeli Mapa
- Protein Homeostasis Laboratory, Department of Life Sciences, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India
| | - Animesh Samanta
- Molecular Sensors and Therapeutics Research Laboratory, Department of Chemistry, Shiv Nadar University, Delhi NCR, NH 91, Tehsil Dadri, Gautam Buddha Nagar, Uttar Pradesh, 201314, India.
| |
Collapse
|
7
|
Liu J, Si S, Xu J, Xue P, Li K. Construction of synergistic pH/H 2O 2-responsive prodrug for prolonging blood circulation and accelerating cellular internalization. Bioorg Chem 2021; 119:105510. [PMID: 34847429 DOI: 10.1016/j.bioorg.2021.105510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/09/2021] [Accepted: 11/19/2021] [Indexed: 11/02/2022]
Abstract
We have developed a real-time and multifunctional doxifluridine-conjugate prodrug (LYX), which involved the preliminary methylfluorescein with 5-fluorouracil linker as protecting group, the targeting biotin unit, and a model therapeutic drug (doxifluridine). The shielding group (5'-DFUR) was found to be effective in prolonging circulation at physiological pH 7.4 and improving accumulation in the acidic microenvironment of the tumor. Based on this strategy, the stability and stimulus responsive properties of prodrug could enhance drug release efficiency and exhibit fewer side effects, thereby providing a unique opportunity for diagnosis and imaging additional analytes or enzymatic activities.
Collapse
Affiliation(s)
- Jun Liu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City 734000, Gansu Province, PR China.
| | - Shuang Si
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City 734000, Gansu Province, PR China
| | - Jinyi Xu
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City 734000, Gansu Province, PR China
| | - Peng Xue
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City 734000, Gansu Province, PR China
| | - Kaipeng Li
- College of Chemistry and Chemical Engineering, Hexi University, Zhangye City 734000, Gansu Province, PR China
| |
Collapse
|