1
|
Zeng J, Heilig S, Ryma M, Groll J, Li C, Matsusaki M. Outermost Cationic Surface Charge of Layer-by-Layer Films Prevents Endothelial Cells Migration for Cell Compartmentalization in Three-Dimensional Tissues. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2417538. [PMID: 39985273 DOI: 10.1002/advs.202417538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Indexed: 02/24/2025]
Abstract
Tissues and organs possess an organized cellular arrangement that enables their unique functions. However, conventional three-dimensional (3D) encapsulation techniques fail to recapitulate this complexity due to the cell migration during cell culture. In biological tissues, basement membranes (BMs) are essential to mechanically support cellular organization. This study finds that a positively charged outermost surface of multilayered nanofilms, fabricated through layer-by-layer assembly of poly-l-lysine (PLL) and dextran (Dex) via hydrogen bonds, stimulates the barrier functions of BMs. This type of artificial BM (A-BM) demonstrates enhanced barrier properties in comparison to other types of A-BMs composed of BM components such as collagen type IV and laminin. Such an enhancement is potentially associated with the outermost cationic layer, which inhibits the sprouting of endothelial cells (ECs) and effectively prevents EC migration over a 14-d period, aligning with the formation timeline of natural BMs in 3D tissues. Finally, 3D organized vascular channels are successfully engineered with the support of shape-adaptable PLL/Dex nanofilms. This approach offers a guideline for engineering organized 3D tissue models by regulating cell migration, which can provide reliable platforms for in vitro permeability assay of new drugs or drug delivery carriers.
Collapse
Affiliation(s)
- Jinfeng Zeng
- College of Textiles, Donghua University, Shanghai, 201620, China
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Sven Heilig
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Matthias Ryma
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Jürgen Groll
- University of Würzburg, Pleicherwall 2, 97070, Würzburg, Germany
| | - Congju Li
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Michiya Matsusaki
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
- Joint Research Laboratory (TOPPAN) for Advanced Cell Regulatory Chemistry, Osaka University, Suita, Osaka, Japan
| |
Collapse
|
2
|
Baek H, Yang SW, Kim MK, Kim D, Lee C, Kim S, Lee Y, Park M, Hwang HS, Paik HJ, Kang YS. Activation of Immune Responses Through the RIG-I Pathway Using TRITC-Dextran Encapsulated Nanoparticles. Immune Netw 2024; 24:e44. [PMID: 39801741 PMCID: PMC11711124 DOI: 10.4110/in.2024.24.e44] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 12/13/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025] Open
Abstract
Pathogen-associated molecular patterns (PAMPs) are highly conserved motifs originating from microorganisms that act as ligands for pattern recognition receptors (PRRs), which are crucial for defense against pathogens. Thus, PAMP-mimicking vaccines may induce potent immune activation and provide broad-spectrum protection against microbes. Dextran encapsulation can regulate the surface characteristics of nanoparticles (NPs) and induces their surface modification. To determine whether dextran-encapsulated NPs can be used to develop antiviral vaccines by mimicking viral PAMPs, we synthesized NPs in a cyclohexane inverse miniemulsion (Basic-NPs) and further encapsulated them with dextran or tetramethylrhodamine isothiocyanate (TRITC)-dextran (Dex-NPs or TDex-NPs). We hypothesized that these dextran encapsulated NPs could activate innate immunity through cell surface or cytosolic PRRs. In vitro and in vivo experiments were performed using RAW 264.7 and C57BL/6 mice to test different concentrations and routes of administration. Only TDex-NPs rapidly increased retinoic acid-inducible gene I (RIG-I) at 8 h and directly bound to it, producing 120-300 pg/ml of IFN-α via the ERK/NF-κB signaling pathway in both in vitro and in vivo models. The effect of TDex-NPs in mice was observed exclusively with footpad injections. Our findings suggest that TRITC-dextran encapsulated NPs exhibit surface properties for RIG-I binding, offering potential development as a novel antiviral and anticancer RIG-I agonist.
Collapse
Affiliation(s)
- Hayeon Baek
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Seung-Woo Yang
- Sanford Consortium for Regenerative Medicine, School of Medicine, University of California, San Diego, CA 92521, USA
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Min-Kyung Kim
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Dongwoo Kim
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Chaeyeon Lee
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Seulki Kim
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| | - Yunseok Lee
- Department of Animal Science and Technology, College of Sang-Huh Life Science, Konkuk University, Seoul 05029, Korea
| | - Min Park
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
| | - Han-Sung Hwang
- Division of Maternal and Fetal Medicine, Department of Obstetrics and Gynecology, Research Institute of Medical Science, Konkuk University School of Medicine, Seoul 05029, Korea
| | - Hyun-jong Paik
- Department of Polymer Science and Engineering, Pusan National University, Busan 46241, Korea
| | - Young-Sun Kang
- Department of KONKUK-KIST Biomedical Science & Technology, Konkuk University, Seoul 05029, Korea
- Department of Veterinary Pharmacology and Toxicology, Veterinary Science Research Institute, College of Veterinary Medicine, Konkuk University, Seoul 05029, Korea
| |
Collapse
|
3
|
Ridella F, Carpintero M, Marcet I, Matos M, Gutiérrez G, Rendueles M, Díaz M. Esterification of dextran by octenyl succinic anhydride (OSA): Physicochemical characterization and functional properties assessment. Carbohydr Polym 2024; 340:122300. [PMID: 38858007 DOI: 10.1016/j.carbpol.2024.122300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/15/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024]
Abstract
The chemical modification of biopolymers to enhance their functional properties in the food, cosmetic, and pharmaceutical industries is an area of particular interest today. In this study, different molecular weight dextrans were chemically modified for the first time with octenyl succinic anhydride (OSA). This reaction involves an esterification process wherein the hydroxy groups of dextran are partially substituted by a carbonaceous chain, imparting hydrophobic properties to dextran molecules and, consequently, an amphiphilic nature. To assess and quantify the incorporation of OSA into the dextran structure, reaction products were analysed using NMR and FTIR. Additionally, the thermal properties, the Z-potential and the foaming and emulsifying capacity of both native and modified dextrans were examined. The introduction of OSA groups to dextran molecules, with degrees of substitution between 0.028 and 0.058, increased the zeta potential and the thermal stability of the polymer. Furthermore, the chemical modification of dextran backbone with this radical conferred a hydrophobic nature to the biopolymer, which enhance its foaming and emulsifying capacity. Therefore, these results demonstrate that the incorporation of hydrophobic moieties into dextran polymers improves their functional properties and broadens their potential applications in the industry.
Collapse
Affiliation(s)
- Florencia Ridella
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - María Carpintero
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Ismael Marcet
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - María Matos
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Gemma Gutiérrez
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| | - Manuel Rendueles
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain.
| | - Mario Díaz
- Department of Chemical and Environmental Engineering, University of Oviedo, C/Julián Clavería 8, 33006 Oviedo, Spain
| |
Collapse
|
4
|
Miller Naranjo B, Zollo M, Sieber SA, Lieleg O. Lubricity, wear prevention, and anti-biofouling properties of macromolecular coatings for endotracheal tubes. Biomater Sci 2024; 12:1228-1238. [PMID: 38230671 DOI: 10.1039/d3bm01985c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Macromolecular coatings can improve the surface properties of many medical devices by enhancing their wetting behavior, tribological performance, and anti-biofouling properties - and covalent coatings produced from mucin glycoproteins have been shown to be very powerful in all those aspects. However, obtaining highly functional mucin glycoproteins is, at the moment, still a time-consuming process, which renders mucins rather expensive compared to other biomacromolecules. Here, we study a set of commercially available macromolecules that have the potential of substituting mucins in coatings for endotracheal tubes (ETTs). We present an overview of the different properties these macromolecular coatings establish on the ETT surface and whether they withstand storage or sterilization processes. Our study pinpoints several strategies of how to enhance the lubricity of ETTs by applying macromolecular coatings but also demonstrates the limited anti-biofouling abilities of well-established macromolecules such as hyaluronic acid, polyethylene glycol, and dextran. Based on the obtained results, we discuss to what extent those coatings can be considered equivalent alternatives to mucin coatings for applications on medical devices - their applicability does not have to be limited to ETTs, but could be broadened to catheters and endoscopes as well.
Collapse
Affiliation(s)
- Bernardo Miller Naranjo
- TUM School of Engineering and Design Department of Materials Engineering, Technical University of Munich (TUM), Boltzmannstraße 15, 85748 Garching, Germany.
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), Ernst-Otto-Fischer Straße 8, 85748 Garching, Germany
| | - Michael Zollo
- TUM School of Natural Sciences, Department of Bioscience, Chair of Organic Chemistry II Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| | - Stephan A Sieber
- TUM School of Natural Sciences, Department of Bioscience, Chair of Organic Chemistry II Center for Functional Protein Assemblies (CPA), Technical University of Munich (TUM), Ernst-Otto-Fischer-Str. 8, Garching 85748, Germany
| | - Oliver Lieleg
- TUM School of Engineering and Design Department of Materials Engineering, Technical University of Munich (TUM), Boltzmannstraße 15, 85748 Garching, Germany.
- Center for Protein Assemblies (CPA) and Munich Institute of Biomedical Engineering (MIBE), Technical University of Munich (TUM), Ernst-Otto-Fischer Straße 8, 85748 Garching, Germany
| |
Collapse
|
5
|
Thakur CK, Neupane R, Karthikeyan C, Ashby CR, Babu RJ, Boddu SHS, Tiwari AK, Moorthy NSHN. Lysinated Multiwalled Carbon Nanotubes with Carbohydrate Ligands as an Effective Nanocarrier for Targeted Doxorubicin Delivery to Breast Cancer Cells. Molecules 2022; 27:7461. [PMID: 36364286 PMCID: PMC9657689 DOI: 10.3390/molecules27217461] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 07/30/2023] Open
Abstract
Multiwalled carbon nanotubes (MWCNTs) are elongated, hollow cylindrical nanotubes made of sp2 carbon. MWCNTs have attracted significant attention in the area of drug delivery due to their high drug-loading capacity and large surface area. Furthermore, they can be linked to bioactive ligands molecules via covalent and noncovalent bonds that allow for the targeted delivery of anticancer drugs such as doxorubicin. The majority of methodologies reported for the functionalization of MWCNTs for drug delivery are quite complex and use expensive linkers and ligands. In the present study, we report a simple, cost-effective approach for functionalizing MWCNTs with the carbohydrate ligands, galactose (GA), mannose (MA) and lactose (LA), using lysine as a linker. The doxorubicin (Dox)-loaded functionalized MWCNTs were characterized using FT-IR, NMR, Raman, XRD and FE-SEM. The drug-loaded MWCNTs were evaluated for drug loading, drug release and cell toxicity in vitro, in breast cancer cells. The results indicated that the carbohydrate-modified lysinated MWCNTs had greater Dox loading capacity, compared to carboxylated MWCNTs (COOHMWCNTs) and lysinated MWCNTs (LyMWCNTs). In vitro drug release experiments indicated that the carbohydrate functionalized LyMWCNTs had higher Dox release at pH 5.0, compared to the physiological pH of 7.4, over 120 h, indicating that they are suitable candidates for targeting the tumor microenvironment as a result of their sustained release profile of Dox. Doxorubicin-loaded galactosylated MWCNTs (Dox-GAMWCNTs) and doxorubicin loaded mannosylated MWCNTs (Dox-MAMWCNTs) had greater anticancer efficacy and cellular uptake, compared to doxorubicin-loaded lactosylated MWCNTs (Dox-LAMWCNTs) and pure Dox, in MDA-MB231 and MCF7 breast cancer cells. However, neither the ligand conjugated multiwall blank carbon nanotubes (GAMWCNTs, MAMWCNTs and LAMWCNTs) nor the lysinated multiwalled blank carbon nanotubes produced significant toxicity in the normal cells. Our results suggest that sugar-tethered multiwalled carbon nanotubes, especially the galactosylated (Dox-GAMWCNTs) and mannosylated (Dox-MAMWCNTs) formulations, may be used to improve the targeted delivery of anticancer drugs to breast cancer cells.
Collapse
Affiliation(s)
- Chanchal Kiran Thakur
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 84887, Madhya Pradesh, India
| | - Rabin Neupane
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
| | - Chandrabose Karthikeyan
- Cancept Therapeutics Laboratory, Department of Pharmacy, Indira Gandhi National Tribal University, Lalpur, Amarkantak 84887, Madhya Pradesh, India
| | - Charles R. Ashby
- Department of Pharmaceutical Sciences, College of Pharmacy, St. John’s University, Queens, NY 11431, USA
| | - R. Jayachandra Babu
- Department of Drug Discovery & Development, Harrison School of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Sai H. S. Boddu
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Center of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman P.O. Box 346, United Arab Emirates
| | - Amit K. Tiwari
- Department of Pharmacology and Experimental Therapeutics, College of Pharmacy and Pharmaceutical Sciences, University of Toledo, Toledo, OH 43614, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, Ajman University, Ajman P.O. Box 346, United Arab Emirates
- Department of Cancer Biology, College of Medicine and Life Sciences, University of Toledo, Toledo, OH 43614, USA
| | | |
Collapse
|