1
|
Chaudhari VS, White B, Dahiya A, Bose S. Gingerol-zinc complex loaded 3D-printed calcium phosphate for controlled release application. Drug Deliv Transl Res 2025; 15:1317-1329. [PMID: 39179707 DOI: 10.1007/s13346-024-01677-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2024] [Indexed: 08/26/2024]
Abstract
The therapeutic potential of natural medicines in treating bone disorders is well-established. Modifications in formulation or molecular structure can enhance their efficacy. Gingerol, an osteogenic active compound derived from ginger roots (Zingiber officinale), can form metal ion complexes. Zinc (Zn), a trace element that combats bacterial infections and promotes osteoblast proliferation, can be complexed with gingerol to form a G-Zn+2 complex. This study investigates a porous 3D-printed (3DP) calcium phosphate (CaP) scaffold loaded with the G-Zn+2 complex for drug release and cellular interactions. The scaffold is coated with polycaprolactone (PCL) to control the drug release. Diffusion-mediated kinetics results in 50% release of the G-Zn+2 complex over 6 weeks. The G-Zn+2 complex demonstrates cytotoxicity against MG-63 osteosarcoma cells, indicated by the formation of apoptotic bodies and ruptured cell morphology on the scaffolds. G-Zn+2 PCL-coated scaffolds show a 1.2 ± 0.1-fold increase in osteoblast cell viability, and an 11.6 ± 0.5% increase in alkaline phosphatase compared to untreated scaffolds. Treated scaffolds also exhibit reduced bacterial colonization against Staphylococcus aureus bacteria, highlighting the antibacterial potential of the G-Zn+2 complex. The functionalized 3DP CaP scaffold with the G-Zn+2 complex shows significant potential for enhancing bone regeneration and preventing infections in low-load-bearing applications.
Collapse
Affiliation(s)
- Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Bryson White
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Aditi Dahiya
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA, 99164, USA.
| |
Collapse
|
2
|
Jo Y, Kushram P, Bose S. Curcumin and vitamin D3 release from calcium phosphate enhances bone regeneration. Biomater Sci 2025; 13:1568-1577. [PMID: 39960074 DOI: 10.1039/d4bm01188k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/12/2025]
Abstract
Improving early in vivo osseointegration and removing residual cancer cells after tumor removal requires the development of novel bone implants with osteogenic and anti-cancer properties. Here, curcumin and vitamin D3 (Cur/VitD3) are loaded into calcium phosphate (CaP) matrices to improve in vivo osteogenesis and inhibit the proliferation of human osteosarcoma cells. Patient-specific, 3D-printed tricalcium phosphate (TCP) loaded with Cur/VitD3 increases the viability of in vitro osteoblast cells after 11 days. When delivered in combination, Cur/VitD3 loaded hydroxyapatite (HA)-coated Ti64 implant promotes new bone formation by 2.7-fold compared to the control after 6 weeks. This delivery system also decreases osteosarcoma cell viability relative to the 3D-printed TCP after day 11, indicating its anti-cancer properties. These findings contribute to the understanding of multifunctional CaP bone grafts to improve early osteogenesis after severe bone trauma and suppress the proliferation of osteosarcoma cells after tumor resection surgery.
Collapse
Affiliation(s)
- Yongdeok Jo
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, USA.
| |
Collapse
|
3
|
Bose S, Chaudhari VS, Kushram P. 3D printed scaffolds with quercetin and vitamin D3 nanocarriers: In vitro cellular evaluation. J Biomed Mater Res A 2024; 112:2110-2123. [PMID: 38894584 PMCID: PMC11464199 DOI: 10.1002/jbm.a.37756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Increasing bone diseases and anomalies significantly challenge bone regeneration, necessitating the development of innovative implantable devices for effective healing. This study explores the potential of 3D-printed calcium phosphate (CaP) scaffolds functionalized with natural medicine to address this issue. Specifically, quercetin and vitamin D3 (QVD) encapsulated solid lipid nanoparticles (QVD-SLNs) are incorporated into the scaffold to enhance bone regeneration. The melt emulsification method is utilized to achieve high drug encapsulation efficiency (~98%) and controlled biphasic release kinetics. The process-structure-property performance of these systems allows more controlled release while maintaining healthy cell-material interactions. The functionalized scaffolds show ~1.3- and ~-1.6-fold increase in osteoblast cell proliferation and differentiation, respectively, as compared with the control. The treated scaffold demonstrates a reduction in osteoclastic activity as compared with the control. The QVD-SLN-loaded scaffolds show ~4.2-fold in vitro chemopreventive potential against osteosarcoma cells. Bacterial assessment with both Staphylococcus aureus and Pseudomonas aeruginosa shows a significant reduction in bacterial colony growth over the treated scaffold. These findings summarize that the release of QVD-SLNs through a 3D-printed CaP scaffold can treat various bone-related disorders for low or non-load-bearing applications.
Collapse
Affiliation(s)
- Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington, USA
| |
Collapse
|
4
|
Dahiya A, Chaudhari VS, Bose S. Bone Healing via Carvacrol and Curcumin Nanoparticle on 3D Printed Scaffolds. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405642. [PMID: 39463050 PMCID: PMC11636189 DOI: 10.1002/smll.202405642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/22/2024] [Indexed: 10/29/2024]
Abstract
Carvacrol is a potent antimicrobial and anti-inflammatory agent, while curcumin possesses antioxidant, anti-inflammatory, and anticancer properties. These phytochemicals have poor solubility, bioavailability, and stability in their free form. Nanoencapsulation can reduce these limitations with enhanced translational capability. Integrating nanocarriers with 3D-printed calcium phosphate (CaP) scaffolds presents a novel strategy for bone regeneration. Carvacrol and curcumin-loaded nanoparticles (CC-NP) synthesized with melt emulsification produced negatively charged, monodispersed particles with a hydrodynamic diameter of ≈127 nm. Their release from the scaffold shows a biphasic release under physiological and acidic conditions. At pH 5.0, the CC-NP exhibits a 53% release of curcumin and nearly 100% release of carvacrol, compared to 19% and 36% from their respective drug solutions. At pH 7.4, ≈40% of curcumin and 76% of carvacrol releases, highlighting their pH-sensitive release mechanism. In vitro studies demonstrate a 1.4-fold increase in osteoblast cell viability with CC-NP treatment. CC-NP exhibit cytotoxic effects against osteosarcoma cells, reducing cell viability by ≈2.9-fold. The antibacterial efficacy of CC-NP evaluated against Staphylococcus aureus (SA) and Pseudomonas aeruginosa (PA) exhibiting 98% antibacterial efficacy. This approach enhances therapeutic outcomes and minimizes the potential side effects associated with conventional treatments, paving the way for innovative applications in regenerative medicine.
Collapse
Affiliation(s)
- Aditi Dahiya
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research LaboratorySchool of Mechanical and Materials EngineeringWashington State UniversityPullmanWashington99164USA
- Department of ChemistryWashington State UniversityPullmanWashington99164USA
| |
Collapse
|
5
|
Chaudhari VS, Kushram P, Bose S. Drug delivery strategies through 3D-printed calcium phosphate. Trends Biotechnol 2024; 42:1396-1409. [PMID: 38955569 DOI: 10.1016/j.tibtech.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/17/2024] [Accepted: 05/28/2024] [Indexed: 07/04/2024]
Abstract
3D printing has revolutionized bone tissue engineering (BTE) by enabling the fabrication of patient- or defect-specific scaffolds to enhance bone regeneration. The superior biocompatibility, customizable bioactivity, and biodegradability have enabled calcium phosphate (CaP) to gain significance as a bone graft material. 3D-printed (3DP) CaP scaffolds allow precise drug delivery due to their porous structure, adaptable structure-property relationship, dynamic chemistry, and controlled dissolution. The effectiveness of conventional scaffold-based drug delivery is hampered by initial burst release and drug loss. This review summarizes different multifunctional drug delivery approaches explored in controlling drug release, including polymer coatings, formulation integration, microporous scaffold design, chemical crosslinking, and direct extrusion printing for BTE applications. The review also outlines perspectives and future challenges in drug delivery research, paving the way for next-generation bone repair methodologies.
Collapse
Affiliation(s)
- Vishal S Chaudhari
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Priya Kushram
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA
| | - Susmita Bose
- W.M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, WA 99164, USA.
| |
Collapse
|
6
|
Kushram P, Bose S. Improving Biological Performance of 3D-Printed Scaffolds with Garlic-Extract Nanoemulsions. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48955-48968. [PMID: 39196793 DOI: 10.1021/acsami.4c05588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/30/2024]
Abstract
Complex bone diseases such as osteomyelitis, osteosarcoma, and osteoporosis often cause critical-size bone defects that the body cannot self-repair and require an advanced bone graft material to repair. We have fabricated 3D-printed tricalcium phosphate bone scaffolds functionalized with garlic extract (GE). GE was encapsulated in a nanoemulsion (GE-NE) to enhance bioavailability and stability. GE-NE showed ∼73% drug encapsulation efficiency, with an average particle size of 158 nm and a zeta potential of -14.2 mV. Release of GE-NEs from the scaffold displayed a controlled and biphasic release profile at both acidic and physiological mediums. Results from the osteosarcoma study show that GE-NE demonstrated ∼88% reduction in cancer cell growth while exhibiting no cytotoxicity toward bone-forming cells. Interaction for the functionalized scaffold with Gram-positive Staphylococcus aureus and Gram-negative Pseudomonas aeruginosa showed a substantial reduction in bacteria growth by more than 90% compared to the unfunctionalized scaffold. These findings demonstrate the potential of GE-NEs-treated porous scaffolds to treat bone-related diseases, particularly for non-load bearing applications.
Collapse
Affiliation(s)
- Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
7
|
Yue C, Ma M, Guo J, Li H, Yang Y, Liu Y, Xu B. Altered gut microbe metabolites in patients with alcohol‑induced osteonecrosis of the femoral head: An integrated omics analysis. Exp Ther Med 2024; 28:311. [PMID: 38873043 PMCID: PMC11170330 DOI: 10.3892/etm.2024.12599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 03/19/2024] [Indexed: 06/15/2024] Open
Abstract
Excessive alcohol consumption is considered to be a major risk factor of alcohol-induced osteonecrosis of the femoral head (AONFH). The gut microbiota (GM) has been reported to aid in the regulation of human physiology and its composition can be altered by alcohol consumption. The aim of the present study was to improve the understanding of the GM and its metabolites in patients with AONFH. Metabolomic sequencing and 16S rDNA analysis of fecal samples were performed using liquid chromatography-mass spectrometry to characterize the GM of patients with AONFH and healthy normal controls (NCs). Metagenomic sequencing of fecal samples was performed to identify whether GM changes on the species level were associated with the expression of gut bacteria genes or their associated functions in patients with AONFH. The abundance of 58 genera was found to differ between the NC group and the AONFH group. Specifically, Klebsiella, Holdemanella, Citrobacter and Lentilactobacillus were significantly more abundant in the AONFH group compared with those in the NC group. Metagenomic sequencing demonstrated that the majority of the bacterial species that exhibited significantly different abundance in patients with AONFH belonged to the genus Pseudomonas. Fecal metabolomic analysis demonstrated that several metabolites were present at significantly different concentrations in the AONFH group compared with those in the NC group. These metabolites were products of vitamin B6 metabolism, retinol metabolism, pentose and glucuronate interconversions and glycerophospholipid metabolism. In addition, these changes in metabolite levels were observed to be associated with the altered abundance of specific bacterial species, such as Basidiobolus, Mortierella, Phanerochaete and Ceratobasidium. According to the results of the present study, a comprehensive landscape of the GM and metabolites in patients with AONFH was revealed, suggesting the existence of interplay between the gut microbiome and metabolome in AONFH pathogenesis.
Collapse
Affiliation(s)
- Chen Yue
- Evidence Based Medicine Center, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Maoxiao Ma
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Jiayi Guo
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Hongjun Li
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Yuxia Yang
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Youwen Liu
- Department of Orthopedics, Luoyang Orthopedic-Traumatological Hospital of Henan Province, Luoyang, Henan 471002, P.R. China
| | - Bin Xu
- Department of Orthopedics, Tongde Hospital of Zhejiang Province, Hangzhou, Zhejiang 310012, P.R. China
| |
Collapse
|
8
|
Dahiya A, Chaudhari VS, Kushram P, Bose S. 3D Printed SiO 2-Tricalcium Phosphate Scaffolds Loaded with Carvacrol Nanoparticles for Bone Tissue Engineering Application. J Med Chem 2024; 67:2745-2757. [PMID: 38146876 PMCID: PMC11164277 DOI: 10.1021/acs.jmedchem.3c01884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2023]
Abstract
Bone damage resulting from trauma or aging poses challenges in clinical settings that need to be addressed using bone tissue engineering (BTE). Carvacrol (CA) possesses anti-inflammatory, anticancer, and antibacterial properties. Limited solubility and physicochemical stability restrict its biological activity, requiring a stable carrier system for delivery. Here, we investigate the utilization of a three-dimensional printed (3DP) SiO2-doped tricalcium phosphate (TCP) scaffold functionalized with carvacrol-loaded lipid nanoparticles (CA-LNPs) to improve bone health. It exhibits a negative surface charge with an entrapment efficiency of ∼97% and size ∼129 nm with polydispersity index (PDI) and zeta potential values of 0.18 and -16 mV, respectively. CA-LNPs exhibit higher and long-term release over 35 days. The CA-LNP loaded SiO2-doped TCP scaffold demonstrates improved antibacterial properties against Staphylococcus aureus and Pseudomonas aeruginosa by >90% reduction in bacterial growth. Functionalized scaffolds result in 3-fold decrease and 2-fold increase in osteosarcoma and osteoblast cell viability, respectively. These findings highlight the therapeutic potential of the CA-LNP loaded SiO2-doped TCP scaffold for bone defect treatment.
Collapse
Affiliation(s)
- Aditi Dahiya
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Vishal Sharad Chaudhari
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Priya Kushram
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| | - Susmita Bose
- Department of Chemistry, Washington State University, Pullman, Washington 99164, United States
- W. M. Keck Biomedical Materials Research Laboratory, School of Mechanical and Materials Engineering, Washington State University, Pullman, Washington 99164, United States
| |
Collapse
|
9
|
Thangavel M, Elsen Selvam R. Review of Physical, Mechanical, and Biological Characteristics of 3D-Printed Bioceramic Scaffolds for Bone Tissue Engineering Applications. ACS Biomater Sci Eng 2022; 8:5060-5093. [PMID: 36415173 DOI: 10.1021/acsbiomaterials.2c00793] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
This review focuses on the advancements in additive manufacturing techniques that are utilized for fabricating bioceramic scaffolds and their characterizations leading to bone tissue regeneration. Bioscaffolds are made by mimicking the human bone structure, material composition, and properties. Calcium phosphate apatite materials are the most commonly used scaffold materials as they closely resemble live bone in their inorganic composition. The functionally graded scaffolds are fabricated by utilizing the right choice of the 3D printing method and material combinations to achieve the requirement of the bioscaffold. To tailor the physical, mechanical, and biological properties of the scaffold, certain materials are reinforced, doped, or coated to incorporate the functionality. The biomechanical loading conditions that involve flexion, torsion, and tension exerted on the implanted scaffold are discussed. The finite element analysis (FEA) technique is used to investigate the mechanical property of the scaffold before fabrication. This helps in reducing the actual number of samples used for testing. The FEA simulated results and the experimental result are compared. This review also highlights some of the challenges associated while processing the scaffold such as shrinkage, mechanical instability, cytotoxicity, and printability. In the end, the new materials that are evolved for tissue engineering applications are compiled and discussed.
Collapse
Affiliation(s)
- Mahendran Thangavel
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| | - Renold Elsen Selvam
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, Tamil Nadu 632014, India
| |
Collapse
|
10
|
Elango J, Zamora-Ledezma C, Negrete-Bolagay D, Aza PND, Gómez-López VM, López-González I, Belén Hernández A, De Val JEMS, Wu W. Retinol-Loaded Poly(vinyl alcohol)-Based Hydrogels as Suitable Biomaterials with Antimicrobial Properties for the Proliferation of Mesenchymal Stem Cells. Int J Mol Sci 2022; 23:ijms232415623. [PMID: 36555266 PMCID: PMC9779207 DOI: 10.3390/ijms232415623] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/30/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022] Open
Abstract
Polyvinyl alcohol (PVA) hydrogels are well-known biomimetic 3D systems for mammalian cell cultures to mimic native tissues. Recently, several biomolecules were intended for use in PVA hydrogels to improve their biological properties. However, retinol, an important biomolecule, has not been combined with a PVA hydrogel for culturing bone marrow mesenchymal stem (BMMS) cells. Thus, for the first time, the effect of retinol on the physicochemical, antimicrobial, and cell proliferative properties of a PVA hydrogel was investigated. The ability of protein (3.15 nm) and mineral adsorption (4.8 mg/mL) of a PVA hydrogel was improved by 0.5 wt.% retinol. The antimicrobial effect of hydrogel was more significant in S. aureus (39.3 mm) than in E. coli (14.6 mm), and the effect was improved by increasing the retinol concentration. The BMMS cell proliferation was more upregulated in retinol-loaded PVA hydrogel than in the control at 7 days. We demonstrate that the respective in vitro degradation rate of retinol-loaded PVA hydrogels (RPH) (75-78% degradation) may promote both antibacterial and cellular proliferation. Interestingly, the incorporation of retinol did not affect the cell-loading capacity of PVA hydrogel. Accordingly, the fabricated PVA retinol hydrogel proved its compatibility in a stem cell culture and could be a potential biomaterial for tissue regeneration.
Collapse
Affiliation(s)
- Jeevithan Elango
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Center of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Camilo Zamora-Ledezma
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
- Correspondence: or (J.E.); (C.Z.-L.)
| | - Daniela Negrete-Bolagay
- School of Biological Sciences and Engineering, Yachay Tech University, Urcuquí 100119, Ecuador
| | - Piedad N. De Aza
- Instituto de Bioingeniería, Universidad Miguel Hernández, Avda. de la Universidad s/n, 03202 Elche, Spain
| | - Vicente M. Gómez-López
- Green and Innovative Technologies for Food, Environment and Bioengineering Research Group (FEnBeT), Faculty of Pharmacy and Nutrition, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ivan López-González
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Ana Belén Hernández
- Tissue Regeneration and Repair Group, Biomaterials and Tissue Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - José Eduardo Maté Sánchez De Val
- Department of Biomaterials Engineering, Faculty of Health Sciences, UCAM-Universidad Católica San Antonio de Murcia, Campus de los Jerónimos 135, Guadalupe, 30107 Murcia, Spain
| | - Wenhui Wu
- Department of Marine Bio-Pharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| |
Collapse
|