1
|
Feng P, Zhang X, Gao J, Jiang L, Li Y. The Roles of Exosomes in Anti-Cancer Drugs. Cancer Med 2025; 14:e70897. [PMID: 40298189 PMCID: PMC12038748 DOI: 10.1002/cam4.70897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Revised: 04/03/2025] [Accepted: 04/09/2025] [Indexed: 04/30/2025] Open
Abstract
BACKGROUND Cancer is an escalating global health issue, with rising incidence rates annually. Chemotherapy, a primary cancer treatment, often exhibits low tumor-targeting efficiency and severe side effects, limiting its effectiveness. Recent research indicates that exosomes, due to their immunogenicity and molecular delivery capabilities, hold significant potential as drug carriers for tumor treatment. METHODS This review summarizes the current status, powerful therapeutic potential, and challenges of using exosomes for the treatment of tumors. RESULTS Exosomes are crucial in tumor diagnosis, onset, and progression. To improve the efficacy of exosome-based treatments, researchers are exploring various biological, physical, and chemical approaches to engineer exosomes as a new nanomedicine translational therapy platform with broad and alterable therapeutic capabilities. Numerous clinical trials are currently underway investigating the safety and tolerability of exosomes carrying drugs to specific sites for the treatment of tumors. CONCLUSIONS Exosomes can be engineered as carriers to deliver therapeutic molecules to specific cells and tissues, offering a novel approach for disease treatment.
Collapse
Affiliation(s)
- Panpan Feng
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Xiaodong Zhang
- Department of General SurgeryBeijing Friendship Hospital, Capital Medical UniversityBeijingChina
| | - Jian Gao
- Science Experiment Center of China Medical UniversityShenyangChina
| | - Lei Jiang
- Department of General SurgeryThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| | - Yan Li
- Department of RadiotherapyThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
- Liaoning Provincial Key Laboratory of Clinical Oncology MetabonomicsThe First Affiliated Hospital of Jinzhou Medical UniversityJinzhouChina
| |
Collapse
|
2
|
Lee YH, Huang CY. Engineered Perfluorochemical Cancer-Derived Exosomes Loaded with Indocyanine Green and Camptothecin Provide Targeted Photochemotherapy for Effective Cancer Treatment. Int J Nanomedicine 2025; 20:327-342. [PMID: 39802383 PMCID: PMC11725285 DOI: 10.2147/ijn.s505458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/03/2025] [Indexed: 01/16/2025] Open
Abstract
Background Cancer treatments are still limited by various challenges, such as off-target drug delivery, posttreatment inflammation, and the hypoxic conditions in the tumor microenvironment; thus, the development of effective therapeutics remains highly desirable. Exosomes are extracellular vesicles with a size of 30-200 nm that have been widely applied as drug carriers over the last decade. In this study, melanoma-derived exosomes were used to develop a perfluorocarbon (PFC) drug nanocarriers loaded with indocyanine green (ICG) and camptothecin (CPT) (ICFESs) for targeted cancer photochemotherapy. Methods The ICFESs were fabricated by emulsification approach and characterized through instrumental detection. The capabilities of the ICFESs on tumor targeting, intratumoral retention, and cancer photochemotherapy were evaluated using melanoma tumor-bearing mice in association with histological studies and serum marker analyses. Results ICFESs can be rapidly internalized by homologous melanoma cells, induce hyperthermia and increase the yield of singlet oxygen upon exposure to near-infrared (NIR) irradiation. After 5 min of NIR exposure and 24 h of in vitro culture, ICFESs encapsulating ≥ 10/10 μM [ICG]/[CPT] effectively killed more than 70% of the cancer cells, inducing greater mortality than that caused by a 4-fold higher dose of CPT alone. In a murine melanoma model, we demonstrated that ICFESs indeed targeted homologous tumors with prolonged intratumoral retention compared with free ICG in vivo. Moreover, tumor growth was significantly arrested by ICFESs containing 40/40 μM [ICG]/[CPT] in combination with 30 sec of NIR exposure without systemic toxicity, and the resulting tumors were approximately 15-fold smaller than those treated for 14 days with 40 μM free CPT alone. Conclusion We suggest that the aforementioned anticancer efficacy was achieved via a dual-stage mechanism, phototherapy followed by chemotherapy. Taken together, the developed ICFESs are anticipated to be highly applicable for clinical cancer treatment.
Collapse
Affiliation(s)
- Yu-Hsiang Lee
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
- Department of Chemical and Materials Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
- Department of Medical Research, Cathay General Hospital, Taipei City, Taiwan, Republic of China
| | - Cheng-You Huang
- Department of Biomedical Sciences and Engineering, National Central University, Taoyuan City, Taiwan, Republic of China
| |
Collapse
|
3
|
Zhang R, Li D, Zhou Z, Hong H, Shi J, Wu Z. Chemo-Enzymatic Functionalization of Bovine Milk Exosomes with an EGFR Nanobody for Target-specific Drug Delivery. Chembiochem 2024; 25:e202400512. [PMID: 39192477 DOI: 10.1002/cbic.202400512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 08/29/2024]
Abstract
Bovine milk exosomes (BmExo) have been identified as versatile nanovesicles for anti-cancer drugs delivery due to their natural availability and biocompatibility. However, tumor-specific delivery based on BmExo often requires post-isolation modifications of the membrane surface with active-targeting ligands. In this study, we report an alternative approach to functionalize BmExo with nanobody combining facile chemical modification and Sortase A-mediated site-specific ligation, as demonstrated by the development of an epidermal growth factor receptor (EGFR)-targeted drug delivery system. The BmExo membrane was first coated with a diglycine-containing amphiphile molecule, NH2-GG-PEG2000-DSPE, by hydrophobic insertion. The diglycine as nucleophiles displayed on the membrane enabled the subsequent ligation of the EGFR nanobody (7D12) by Sortase A (SrtA)-mediated site-specific transpeptidation. The successful construction of BmExo-7D12 was confirmed by Western blotting analysis, electron microscopy, and dynamic light scattering (DLS). As a demonstration model, BmExo-7D12 loaded with the chemotherapeutic drug doxorubicin (Dox) was shown to be able to deliver Dox to cancer cells in response to the expression of EGFR as manifested by immunocytochemistry and flow cytometry analysis. Finally, the cytotoxicity assay showed that BmExo-7D12-Dox was more effective in killing tumor cells with high EGFR expression while significantly reduced the non-specific toxicity to EGFR negative cells. In conclusion, these results demonstrate that 7D12-functionalized BmExo can serve as a target-specific delivery system for Dox to selectively kill EGFR-expressing tumor cells. This approach should prove to be versatile and efficient for the generation of protein-ligands modified BmExo.
Collapse
Affiliation(s)
- Ranran Zhang
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Dan Li
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Haofei Hong
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, No. 1800, Lihu Avenue, Wuxi, 214122, China
| |
Collapse
|
4
|
Lu L, Han C, Wang M, Du H, Chen N, Gao M, Wang N, Qi D, Bai W, Yin J, Dong F, Li T, Ge X. Assessment of bovine milk exosome preparation and lyophilized powder stability. JOURNAL OF EXTRACELLULAR BIOLOGY 2024; 3:e70009. [PMID: 39554868 PMCID: PMC11565256 DOI: 10.1002/jex2.70009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/18/2024] [Accepted: 08/30/2024] [Indexed: 11/19/2024]
Abstract
Exosomes are cell-derived nanovesicles that play a crucial role in intercellular communication, presenting promising potential as biomarkers and therapeutic agents. Bovine milk exosomes (MK-Exo) show production scalability and cost-effectiveness, offering distinct advantages over cell-derived exosomes. However, exosome storage and transportation are challenging owing to their unstable nature, necessitating preservation at ultralow temperatures. Research findings suggest that freeze-drying could provide a viable solution; however, different sources of exosomes may require specific protocols. In this study, we aimed to successfully isolate high-purity MK-Exo and develop a specialized freeze-drying and lyophilization method for improved long-term preservation of MK-Exo. Specifically, the stability of the lyophilized MK-Exo was evaluated using storage stability tests. Notably, lyophilized MK-Exo remained stable for at least 3 months under high temperature of 50°C and for at least 24 months under low temperatures of 2°C-8°C, preserving their physicochemical properties and biological activity. Conclusively, these findings provide a potential solution for ambient-temperature transportation of MK-Exo, facilitating their industrial-scale production.
Collapse
Affiliation(s)
- Lu Lu
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Chunle Han
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Miao Wang
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Huanqing Du
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Ning Chen
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Mengya Gao
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Na Wang
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Dongli Qi
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Wei Bai
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | - Jianxin Yin
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| | | | - Tianshi Li
- Pekin University Shenzhen HospitalShenzhenChina
| | - Xiaohu Ge
- Tingo Exosomes Technology Co. Ltd.TianjinChina
| |
Collapse
|
5
|
Palakurthi SS, Shah B, Kapre S, Charbe N, Immanuel S, Pasham S, Thalla M, Jain A, Palakurthi S. A comprehensive review of challenges and advances in exosome-based drug delivery systems. NANOSCALE ADVANCES 2024; 6:5803-5826. [PMID: 39484149 PMCID: PMC11523810 DOI: 10.1039/d4na00501e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Accepted: 09/22/2024] [Indexed: 11/03/2024]
Abstract
Exosomes or so-called natural nanoparticles have recently shown enormous potential for targeted drug delivery systems. Several studies have reported that exosomes as advanced drug delivery platforms offer efficient targeting of chemotherapeutics compared to individual polymeric nanoparticles or liposomes. Taking structural constituents of exosomes, viz., proteins, nucleic acids, and lipids, into consideration, exosomes are the most promising carriers as genetic messengers and for treating genetic deficiencies or tumor progression. Unfortunately, very little attention has been paid to the factors like source, scalability, stability, and validation that contribute to the quality attributes of exosome-based drug products. Some studies suggested that exosomes were stable at around -80 °C, which is impractical for storing pharmaceutical products. Currently, no reports on the shelf-life and in vivo stability of exosome formulations are available. Exosomes are quickly cleared from blood circulation, and their in vivo distribution depends on the source. Considering these challenges, further studies are necessary to address major limitations such as poor drug loading, reduced in vivo stability, a need for robust, economical, and scalable production methods, etc., which may unlock the potential of exosomes in clinical applications. A few reports based on hybrid exosomes involving hybridization between different cell/tumor/macrophage-derived exosomes with synthetic liposomes through membrane fusion have shown to overcome some limitations associated with natural or synthetic exosomes. Yet, sufficient evidence is indispensable to prove their stability and clinical efficacy.
Collapse
Affiliation(s)
- Sushesh Srivatsa Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Brijesh Shah
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sumedha Kapre
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Nitin Charbe
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Susan Immanuel
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Sindhura Pasham
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Maharshi Thalla
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Ankit Jain
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| | - Srinath Palakurthi
- Department of Pharmaceutical Sciences, Irma Lerma Rangel College of Pharmacy, Texas A&M University Kingsville TX 78363 USA +1-361-221-0748
| |
Collapse
|
6
|
Ismail M, Wang Y, Li Y, Liu J, Zheng M, Zou Y. Stimuli-Responsive Polymeric Nanocarriers Accelerate On-Demand Drug Release to Combat Glioblastoma. Biomacromolecules 2024; 25:6250-6282. [PMID: 39259212 DOI: 10.1021/acs.biomac.4c00722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor with a poor prognosis and limited treatment options. Drug delivery by stimuli-responsive nanocarriers holds great promise for improving the treatment modalities of GBM. At the beginning of the review, we highlighted the stimuli-active polymeric nanocarriers carrying therapies that potentially boost anti-GBM responses by employing endogenous (pH, redox, hypoxia, enzyme) or exogenous stimuli (light, ultrasonic, magnetic, temperature, radiation) as triggers for controlled drug release mainly via hydrophobic/hydrophilic transition, degradability, ionizability, etc. Modifying these nanocarriers with target ligands further enhanced their capacity to traverse the blood-brain barrier (BBB) and preferentially accumulate in glioma cells. These unique features potentially lead to more effective brain cancer treatment with minimal adverse reactions and superior therapeutic outcomes. Finally, the review summarizes the existing difficulties and future prospects in stimuli-responsive nanocarriers for treating GBM. Overall, this review offers theoretical guidelines for developing intelligent and versatile stimuli-responsive nanocarriers to facilitate precise drug delivery and treatment of GBM in clinical settings.
Collapse
Affiliation(s)
- Muhammad Ismail
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yibin Wang
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yundong Li
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Jiayi Liu
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Meng Zheng
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
| | - Yan Zou
- Department of Radiotherapy and Translational Medicine Center, Huaihe Hospital of Henan University, Henan University, Kaifeng, Henan 475000, China
- Henan-Macquarie University Joint Centre for Biomedical Innovation, Henan Key Laboratory of Brain Targeted Bio-nanomedicine, School of Life Sciences, Henan University, Kaifeng, Henan 475004, China
- Macquarie Medical School, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| |
Collapse
|
7
|
Torres Quintas S, Canha-Borges A, Oliveira MJ, Sarmento B, Castro F. Special Issue: Nanotherapeutics in Women's Health Emerging Nanotechnologies for Triple-Negative Breast Cancer Treatment. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2300666. [PMID: 36978237 DOI: 10.1002/smll.202300666] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Breast cancer appears as the major cause of cancer-related deaths in women, with more than 2 260 000 cases reported worldwide in 2020, resulting in 684 996 deaths. Triple-negative breast cancer (TNBC), characterized by the absence of estrogen, progesterone, and human epidermal growth factor type 2 receptors, represents ≈20% of all breast cancers. TNBC has a highly aggressive clinical course and is more prevalent in younger women. The standard therapy for advanced TNBC is chemotherapy, but responses are often short-lived, with high rate of relapse. The lack of therapeutic targets and the limited therapeutic options confer to individuals suffering from TNBC the poorest prognosis among breast cancer patients, remaining a major clinical challenge. In recent years, advances in cancer nanomedicine provided innovative therapeutic options, as nanoformulations play an important role in overcoming the shortcomings left by conventional therapies: payload degradation and its low solubility, stability, and circulating half-life, and difficulties regarding biodistribution due to physiological and biological barriers. In this integrative review, the recent advances in the nanomedicine field for TNBC treatment, including the novel nanoparticle-, exosome-, and hybrid-based therapeutic formulations are summarized and their drawbacks and challenges are discussed for future clinical applications.
Collapse
Affiliation(s)
- Sofia Torres Quintas
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Ana Canha-Borges
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Maria José Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, Rua Jorge de Viterbo Ferreira 228, Porto, 4050-313, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- IUCS-CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal
| | - Flávia Castro
- i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, Universidade do Porto, Rua Alfredo Allen 208, Porto, 4200-135, Portugal
| |
Collapse
|
8
|
Bourang S, Noruzpour M, Jahanbakhsh Godekahriz S, Ebrahimi HAC, Amani A, Asghari Zakaria R, Yaghoubi H. Application of nanoparticles in breast cancer treatment: a systematic review. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:6459-6505. [PMID: 38700795 DOI: 10.1007/s00210-024-03082-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/02/2024] [Indexed: 09/25/2024]
Abstract
It is estimated that cancer is the second leading cause of death worldwide. The primary or secondary cause of cancer-related mortality for women is breast cancer. The main treatment method for different types of cancer is chemotherapy with drugs. Because of less water solubility of chemotherapy drugs or their inability to pass through membranes, their body absorbs them inadequately, which lowers the treatment's effectiveness. Drug specificity and pharmacokinetics can be changed by nanotechnology using nanoparticles. Instead, targeted drug delivery allows medications to be delivered to the targeted sites. In this review, we focused on nanoparticles as carriers in targeted drug delivery, their characteristics, structure, and the previous studies related to breast cancer. It was shown that nanoparticles could reduce the negative effects of chemotherapy drugs while increasing their effectiveness. Lipid-based nanocarriers demonstrated notable results in this instance, and some products that are undergoing various stages of clinical trials are among the examples. Nanoparticles based on metal or polymers demonstrated a comparable level of efficacy. With the number of cancer cases rising globally, many researchers are now looking into novel treatment approaches, particularly the use of nanotechnology and nanoparticles in the treatment of cancer. In order to help clinicians, this article aimed to gather more information about various areas of nanoparticle application in breast cancer therapy, such as modifying their synthesis and physicochemical characterization. It also sought to gain a deeper understanding of the mechanisms underlying the interactions between nanoparticles and biologically normal or infected tissues.
Collapse
Affiliation(s)
- Shima Bourang
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Mehran Noruzpour
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Sodabeh Jahanbakhsh Godekahriz
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hossein Ali Ca Ebrahimi
- Department of Pharmaceutics, School of Pharmacy, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Amin Amani
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Rasool Asghari Zakaria
- Department of Agronomy and Plant Breeding, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Hashem Yaghoubi
- Department of Biology, Ardabil Branch, Islamic Azad University, Ardabil, Iran
| |
Collapse
|
9
|
Mazahir F, Yadav AK. Recent progress in engineered extracellular vesicles and their biomedical applications. Life Sci 2024; 350:122747. [PMID: 38797364 DOI: 10.1016/j.lfs.2024.122747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/14/2024] [Accepted: 05/23/2024] [Indexed: 05/29/2024]
Abstract
AIMS To present the recent update on the isolation, engineering techniques for extracellular vesicles, limitations associated with different isolation techniques, different biomedical applications, and challenges of engineered extracellular vesicles for the benefit of researchers from academic, industry, etc. MATERIALS AND METHODS: Peer-reviewed articles from most recognized journals were collected, and presented information was analyzed to discuss collection, chemical, electroporation, cellular, and membrane surface engineering to design extracellular vesicles for various therapeutic applications. In addition, we present the applications and limitations of techniques for the collection of extracellular vesicles. KEY FINDINGS There is a need for isolation techniques with the gold standard. However, advanced extracellular vesicle isolation techniques showed improved recovery, and purity of extracellular vesicles. Tumor therapy is a major part of the therapy section that illustrates the role of engineered extracellular vesicles in synergetic therapy such as phototherapy, theragnostic, and delivery of genetic materials. In addition, extracellular vesicles have shown their potential in the treatment of retinal disorders, neurodegenerative disease, tuberculosis, osteoporosis, inflammatory bowel disease, vaccine production, and wound healing. SIGNIFICANCE Engineered extracellular vesicles can deliver cargo to the specific cells, elicit an immune response and could be used for the development of the vaccines in the future. However, the progress is at the initial stage. Overall, this review will provide a comprehensive understanding and could serve as a reference for researchers in the clinical translation of engineered extracellular vesicles in different biomedical fields.
Collapse
Affiliation(s)
- Farhan Mazahir
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India
| | - Awesh K Yadav
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research Raebareli, A Transit Campus, Bijnor-Sisendi Road, Bijnor, Lucknow-226002, India.
| |
Collapse
|
10
|
Liu T, Sun L, Ji Y, Zhu W. Extracellular vesicles in cancer therapy: Roles, potential application, and challenges. Biochim Biophys Acta Rev Cancer 2024; 1879:189101. [PMID: 38608963 DOI: 10.1016/j.bbcan.2024.189101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/25/2024] [Accepted: 04/05/2024] [Indexed: 04/14/2024]
Abstract
Extracellular vesicles (EVs) have emerged as a novel cell-free strategy for the treatment of many diseases including cancer as they play important roles in cancer development and progression. Considering their natural capacity to facilitate cell-to-cell communication as well as their high physiochemical stability and biocompatibility, EVs serve as superior delivery systems for a wide range of therapeutic agents, including medicines, nanomaterials, nucleic acids, and proteins. Therefore, EVs-based cancer therapy is of greater interest to researchers. Mounting studies indicate that EVs can be improved in efficiency, specificity, and safety for cancer therapy. However, their heterogeneity of physicochemical properties and functions is not fully understood, hindering the achievement of bioactive EVs with high yield and purity. Herein, we paid more attention to the EVs applications and their significance in cancer therapy.
Collapse
Affiliation(s)
- Ting Liu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Li Sun
- Department of Clinical Laboratory, Affiliated Kunshan Hospital of Jiangsu University, Suzhou, Jiangsu Province, China
| | - Yong Ji
- Department of Surgery, Jingjiang People's Hospital, Jingjiang, Jiangsu 214500, China.
| | - Wei Zhu
- School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
11
|
Salehi M, Negahdari B, Mehryab F, Shekari F. Milk-Derived Extracellular Vesicles: Biomedical Applications, Current Challenges, and Future Perspectives. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:8304-8331. [PMID: 38587896 DOI: 10.1021/acs.jafc.3c07899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Extracellular vesicles (EVs) are nano to-micrometer-sized sacs that are released by almost all animal and plant cells and act as intercellular communicators by transferring their cargos between the source and target cells. As a safe and scalable alternative to conditioned medium-derived EVs, milk-derived EVs (miEVs) have recently gained a great deal of popularity. Numerous studies have shown that miEVs have intrinsic therapeutic actions that can treat diseases and enhance human health. Additionally, they can be used as natural drug carriers and novel classes of biomarkers. However, due to the complexity of the milk, the successful translation of miEVs from benchtop to bedside still faces several unfilled gaps, especially a lack of standardized protocols for the isolation of high-purity miEVs. In this work, by comprehensively reviewing the bovine miEVs studies, we provide an overview of current knowledge and research on miEVs while highlighting their challenges and enormous promise as a novel class of theranostics. It is hoped that this study will pave the way for clinical applications of miEVs by addressing their challenges and opportunities.
Collapse
Affiliation(s)
- Mahsa Salehi
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| | - Babak Negahdari
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran 14177-55469, Iran
| | - Fatemeh Mehryab
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran 14155-6153, Iran
| | - Faezeh Shekari
- Department of Stem Cells and Developmental Biology, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
- Advanced Therapy Medicinal Product Technology Development Center (ATMP-TDC), Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran 16635-148, Iran
| |
Collapse
|
12
|
Yousafzai NA, El Khalki L, Wang W, Szpendyk J, Sossey-Alaoui K. Advances in 3D Culture Models to Study Exosomes in Triple-Negative Breast Cancer. Cancers (Basel) 2024; 16:883. [PMID: 38473244 PMCID: PMC10931050 DOI: 10.3390/cancers16050883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
Breast cancer, a leading cause of cancer-related deaths globally, exhibits distinct subtypes with varying pathological, genetic, and clinical characteristics. Despite advancements in breast cancer treatments, its histological and molecular heterogeneity pose a significant clinical challenge. Triple-negative breast cancer (TNBC), a highly aggressive subtype lacking targeted therapeutics, adds to the complexity of breast cancer treatment. Recent years have witnessed the development of advanced 3D culture technologies, such as organoids and spheroids, providing more representative models of healthy human tissue and various malignancies. These structures, resembling organs in structure and function, are generated from stem cells or organ-specific progenitor cells via self-organizing processes. Notably, 3D culture systems bridge the gap between 2D cultures and in vivo studies, offering a more accurate representation of in vivo tumors' characteristics. Exosomes, small nano-sized molecules secreted by breast cancer and stromal/cancer-associated fibroblast cells, have garnered significant attention. They play a crucial role in cell-to-cell communication, influencing tumor progression, invasion, and metastasis. The 3D culture environment enhances exosome efficiency compared to traditional 2D cultures, impacting the transfer of specific cargoes and therapeutic effects. Furthermore, 3D exosomes have shown promise in improving therapeutic outcomes, acting as potential vehicles for cancer treatment administration. Studies have demonstrated their role in pro-angiogenesis and their innate therapeutic potential in mimicking cellular therapies without side effects. The 3D exosome model holds potential for addressing challenges associated with drug resistance, offering insights into the mechanisms underlying multidrug resistance and serving as a platform for drug screening. This review seeks to emphasize the crucial role of 3D culture systems in studying breast cancer, especially in understanding the involvement of exosomes in cancer pathology.
Collapse
Affiliation(s)
- Neelum Aziz Yousafzai
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Lamyae El Khalki
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Wei Wang
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| | - Justin Szpendyk
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
| | - Khalid Sossey-Alaoui
- MetroHealth System, Cleveland, OH 44109, USA; (N.A.Y.); (L.E.K.); (W.W.)
- Department of Medicine, Case Western Reserve University, Cleveland, OH 44106-4909, USA
- Case Comprehensive Cancer Center, Cleveland, OH 44106-7285, USA
| |
Collapse
|
13
|
Yazdan M, Naghib SM, Mozafari MR. Polymeric Micelle-Based Nanogels as Emerging Drug Delivery Systems in Breast Cancer Treatment: Promises and Challenges. Curr Drug Targets 2024; 25:649-669. [PMID: 38919076 DOI: 10.2174/0113894501294136240610061328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/27/2024]
Abstract
Breast cancer is a pervasive global health issue that disproportionately impacts the female population. Over the past few years, there has been considerable interest in nanotechnology due to its potential utility in creating drug-delivery systems designed to combat this illness. The primary aim of these devices is to enhance the delivery of targeted medications, optimise the specific cells that receive the drugs, tackle treatment resistance in malignant cells, and introduce novel strategies for preventing and controlling diseases. This research aims to examine the methodologies utilised by various carrier nanoparticles in the context of therapeutic interventions for breast cancer. The main objective is to investigate the potential application of novel delivery technologies to attain timely and efficient diagnosis and treatment. Current cancer research predominantly examines diverse drug delivery methodologies for chemotherapeutic agents. These methodologies encompass the development of hydrogels, micelles, exosomes, and similar compounds. This research aims to analyse the attributes, intricacies, notable advancements, and practical applications of the system in clinical settings. Despite the demonstrated efficacy of these methodologies, an apparent discrepancy can be observed between the progress made in developing innovative therapeutic approaches and their widespread implementation in clinical settings. It is critical to establish a robust correlation between these two variables to enhance the effectiveness of medication delivery systems based on nanotechnology in the context of breast cancer treatment.
Collapse
Affiliation(s)
- M Yazdan
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - S M Naghib
- Nanotechnology Department, School of Advanced Technologies, Iran University of Science and Technology (IUST), Tehran 1684613114, Iran
| | - M R Mozafari
- Australasian Nanoscience and Nanotechnology Initiative (ANNI), Monash University LPO, Clayton, VIC 3168, Australia
| |
Collapse
|
14
|
Liu C, Xia C, Xia C. Biology and function of exosomes in tumor immunotherapy. Biomed Pharmacother 2023; 169:115853. [PMID: 37951023 DOI: 10.1016/j.biopha.2023.115853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/25/2023] [Accepted: 11/05/2023] [Indexed: 11/13/2023] Open
Abstract
Exosomes are nano-scale extracellular vesicles that are found widely in various biological fluids. As messengers, exosomes deliver characteristic biological information from donor cells, facilitating their accumulation and subsequent transfer of information to tumor immune cells. Immunotherapy is a cutting-edge strategy for cancer therapy, but it has not yet reached its full potential owing to severe side effects and limited efficacy. Exosomes possess antigens and immunostimulatory molecules and can serve as cell-free vaccines to induce antitumor immunity. In addition, given their stability, low immunogenicity, and targeting ability, exosomes represent ideal drug delivery systems in tumor immunotherapy by delivering cargoes, including non-coding ribonucleic acids (RNAs), membrane proteins, chemotherapeutic agents, and immune cell death inducers. Exosomes can also be engineered to precisely target tumor cells. However, as a rising star in tumor immunotherapy, exosomes are also impeded by some challenges, including the lack of uniform technical standards for their isolation and purification, the need to improve exosomal cargo loading for efficient exosome delivery, and the expansion of clinical trials, which are currently in their infancy. Long-term, multi-center, and large-scale clinical trials are needed to evaluate the performance of exosomes in the future. Nonetheless, exosomes have demonstrated encouraging performance in tumor immunotherapy. In this review, we summarize the potential and challenges of exosomes in tumor immunotherapy, with the aim to shed light on exosomes as new-era tumor immunotherapy tools.
Collapse
Affiliation(s)
- Can Liu
- Foshan Maternity and Chlid Healthcare Hospital, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China
| | - Cong Xia
- Department of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Chenglai Xia
- Foshan Maternity and Chlid Healthcare Hospital, Foshan 528000, China; School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 515150, China.
| |
Collapse
|
15
|
Chandler K, Millar J, Ward G, Boyall C, White T, Ready JD, Maani R, Chapple K, Tempest R, Brealey J, Duckett C, Haywood-Small S, Turega S, Peake N. Imaging of Light-Enhanced Extracellular Vesicle-Mediated Delivery of Oxaliplatin to Colorectal Cancer Cells via Laser Ablation, Inductively Coupled Plasma Mass Spectrometry. Cells 2023; 13:24. [PMID: 38201228 PMCID: PMC10778274 DOI: 10.3390/cells13010024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 12/16/2023] [Accepted: 12/19/2023] [Indexed: 01/12/2024] Open
Abstract
Extracellular vesicles (EVs) are lipid bilayer structures released by all cells that mediate cell-to-cell communication via the transfer of bioactive cargo. Because of the natural origin of EVs, their efficient uptake by recipient cells, capacity to stabilize and transport biomolecules and their potential for cell/tissue targeting and preferential uptake by cancer cells, they have enormous potential for bioengineering into improved and targeted drug delivery systems. In this work, we investigated the use of laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) as a tool to measure the loading of platinum-based chemotherapeutic agents. The EV loading of oxaliplatin via co-incubation was demonstrated, and LA-ICP-MS imaging showed greater efficiency of delivery to colorectal cancer cells compared to free oxaliplatin, leading to enhanced cytotoxic effect. Further, the impact of EV co-loading with a porphyrin (C5SHU, known as 'C5') photosensitizer on oxaliplatin delivery was assessed. Fluorescence analysis using nano-flow cytometry showed dose-dependent EV loading as well as a trend towards the loading of larger particles. Exposure of OXA-C5-EV-treated colorectal cancer cells to light indicated that delivery was enhanced by both light exposure and porphyrins, with a synergistic effect on cell viability observed between oxaliplatin, EVs and light exposure after the delivery of the co-loaded EVs. In summary, this work demonstrates the utility of LA-ICP-MS and mass spectrometry imaging in assessing the loading efficiency and cellular delivery of platinum-based therapeutics, which would also be suitable for agents containing other elements, confirms that EVs are more efficient at delivery compared to free drugs, and describes the use of light exposure in optimizing delivery and therapeutic effects of EV-mediated drug delivery both in combination and independently of porphyrin-based photosensitizers.
Collapse
Affiliation(s)
- Kara Chandler
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Josh Millar
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - George Ward
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Christopher Boyall
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Tom White
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Joseph David Ready
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
- PerkinElmer AES (UK) Ltd., Chalfont Road, Seer Green, Beaconsfield HP9 2FX, UK
| | - Rawan Maani
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Keith Chapple
- Department of General Surgery, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield S5 7AU, UK
| | - Robert Tempest
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
- NanoFCM Co., Ltd., Medicity, D6 Thane Road, Nottingham NG60 6BH, UK
| | - Joseph Brealey
- NanoFCM Co., Ltd., Medicity, D6 Thane Road, Nottingham NG60 6BH, UK
| | - Catherine Duckett
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Sarah Haywood-Small
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Simon Turega
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| | - Nick Peake
- Biomolecular Sciences Research Centre, Sheffield Hallam University, Howard Street, Sheffield S1 1WB, UK
| |
Collapse
|
16
|
Cui Z, Amevor FK, Zhao X, Mou C, Pang J, Peng X, Liu A, Lan X, Liu L. Potential therapeutic effects of milk-derived exosomes on intestinal diseases. J Nanobiotechnology 2023; 21:496. [PMID: 38115131 PMCID: PMC10731872 DOI: 10.1186/s12951-023-02176-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/25/2023] [Indexed: 12/21/2023] Open
Abstract
Exosomes are extracellular vesicles with the diameter of 30 ~ 150 nm, and are widely involved in intercellular communication, disease diagnosis and drug delivery carriers for targeted disease therapy. Therapeutic application of exosomes as drug carriers is limited due to the lack of sources and methods for obtaining adequate exosomes. Milk contains abundant exosomes, several studies have shown that milk-derived exosomes play crucial roles in preventing and treating intestinal diseases. In this review, we summarized the biogenesis, secretion and structure, current novel methods used for the extraction and identification of exosomes, as well as discussed the role of milk-derived exosomes in treating intestinal diseases, such as inflammatory bowel disease, necrotizing enterocolitis, colorectal cancer, and intestinal ischemia and reperfusion injury by regulating intestinal immune homeostasis, restoring gut microbiota composition and improving intestinal structure and integrity, alleviating conditions such as oxidative stress, cell apoptosis and inflammation, and reducing mitochondrial reactive oxygen species (ROS) and lysosome accumulation in both humans and animals. In addition, we discussed future prospects for the standardization of milk exosome production platform to obtain higher concentration and purity, and complete exosomes derived from milk. Several in vivo clinical studies are needed to establish milk-derived exosomes as an effective and efficient drug delivery system, and promote its application in the treatment of various diseases in both humans and animals.
Collapse
Affiliation(s)
- Zhifu Cui
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Felix Kwame Amevor
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Sichuan, P. R. China
| | - Xingtao Zhao
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Sichuan, P. R. China
| | - Chunyan Mou
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Jiaman Pang
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xie Peng
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Anfang Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China
| | - Xi Lan
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
| | - Lingbin Liu
- College of Animal Science and Technology, Southwest University, Chongqing, P. R. China.
- College of Animal Science and Technology, Chongqing Key Laboratory of Forage & Herbivore, Chongqing Engineering Research Center for Herbivores Resource Protection and Utilization, Southwest University, Beibei, Chongqing, 400715, P. R. China.
| |
Collapse
|
17
|
Jang H, Kim H, Kim EH, Han G, Jang Y, Kim Y, Lee JW, Shin SC, Kim EE, Kim SH, Yang Y. Post-insertion technique to introduce targeting moieties in milk exosomes for targeted drug delivery. Biomater Res 2023; 27:124. [PMID: 38031117 PMCID: PMC10688116 DOI: 10.1186/s40824-023-00456-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND Recently, increased attention has been given on exosomes as ideal nanocarriers of drugs owing to their intrinsic properties that facilitate the transport of biomolecular cargos. However, large-scale exosome production remains a major challenge in the clinical application of exosome-based drug delivery systems. Considering its biocompatibility and stability, bovine milk is a suitable natural source for large-scale and stable exosome production. Because the active-targeting ability of drug carriers is essential to maximize therapeutic efficacy and minimize side effects, precise membrane functionalization strategies are required to enable tissue-specific delivery of milk exosomes with difficulty in post-isolation modification. METHODS In this study, the membrane functionalization of a milk exosome platform modified using a simple post-insertion method was examined comprehensively. Exosomes were engineered from bovine milk (mExo) with surface-tunable modifications for the delivery of tumor-targeting doxorubicin (Dox). The surface modification of mExo was achieved through the hydrophobic insertion of folate (FA)-conjugated lipids. RESULTS We have confirmed the stable integration of functionalized PE-lipid chains into the mExo membrane through an optimized post-insertion technique, thereby effectively enhancing the surface functionality of mExo. Indeed, the results revealed that FA-modified mExo (mExo-FA) improved cellular uptake in cancer cells via FA receptor (FR)-mediated endocytosis. The designed mExo-FA selectively delivered Dox to FR-positive tumor cells and triggered notable tumor cell death, as confirmed by in vitro and in vivo analyses. CONCLUSIONS This simple and easy method for post-isolation modification of the exosomal surface may be used to develop milk-exosome-based drug delivery systems.
Collapse
Affiliation(s)
- Hochung Jang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyosuk Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eun Hye Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Geonhee Han
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Yeongji Jang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Yelee Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Jong Won Lee
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Chul Shin
- Technological Convergence Center, Research Resources Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Eunice EunKyeong Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Sun Hwa Kim
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, 02841, Republic of Korea.
| | - Yoosoo Yang
- Medicinal Materials Research Center, Biomedical Research Institute, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea.
- Division of Bio-Medical Science and Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea.
| |
Collapse
|
18
|
Dailey KM, Small JM, Pullan JE, Winfree S, Vance KE, Orr M, Mallik S, Bayles KW, Hollingsworth MA, Brooks AE. An intravenous pancreatic cancer therapeutic: Characterization of CRISPR/Cas9n-modified Clostridium novyi-Non Toxic. PLoS One 2023; 18:e0289183. [PMID: 37963142 PMCID: PMC10645340 DOI: 10.1371/journal.pone.0289183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 07/12/2023] [Indexed: 11/16/2023] Open
Abstract
Clostridium novyi has demonstrated selective efficacy against solid tumors largely due to the microenvironment contained within dense tumor cores. The core of a solid tumor is typically hypoxic, acidic, and necrotic-impeding the penetration of current therapeutics. C. novyi is attracted to the tumor microenvironment and once there, can both lyse and proliferate while simultaneously re-activating the suppressed immune system. C. novyi systemic toxicity is easily mitigated by knocking out the phage DNA plasmid encoded alpha toxin resulting in C. novyi-NT; but, after intravenous injection spores are quickly cleared by phagocytosis before accomplishing significant tumor localization. C. novyi-NT could be designed to accomplish intravenous delivery with the potential to target all solid tumors and their metastases in a single dose. This study characterizes CRISPR/Cas9 modified C. novyi-NT to insert the gene for RGD, a tumor targeting peptide, expressed within the promoter region of a spore coat protein. Expression of the RGD peptide on the outer spore coat of C. novyi-NT indicates an increased capacity for tumor localization of C. novyi upon intravenous introduction based on the natural binding of RGD with the αvβ3 integrin commonly overexpressed on the epithelial tissue surrounding a tumor, and lead to immune stimulation.
Collapse
Affiliation(s)
- Kaitlin M. Dailey
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
| | - James M. Small
- Department of Pathology and Microbiology, Rocky Vista University, Parker, CO, United States of America
| | - Jessica E. Pullan
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
- Department of Physical Science, Southern Utah University, Cedar City, UT, United States of America
| | - Seth Winfree
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Krysten E. Vance
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Megan Orr
- Department of Statistics, North Dakota State University, Fargo, ND, United States of America
- Center for Diagnostics and Therapeutic Strategies in Pancreatic Cancer Biostatistics Core Facility, North Dakota State University, Fargo, ND, United States of America
| | - Sanku Mallik
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
| | - Kenneth W. Bayles
- Department of Pathology and Microbiology, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Michael A. Hollingsworth
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States of America
| | - Amanda E. Brooks
- Cell and Molecular Biology Program, North Dakota State University, Fargo, ND, United States of America
- Department of Pharmaceutical Sciences, North Dakota State University, Fargo, ND, United States of America
- Department of Research and Scholarly Activity, Rocky Vista University, Ivins, UT, United States of America
| |
Collapse
|
19
|
Kim NH, Kim J, Lee JY, Bae HA, Kim CY. Application of Milk Exosomes for Musculoskeletal Health: Talking Points in Recent Outcomes. Nutrients 2023; 15:4645. [PMID: 37960298 PMCID: PMC10647311 DOI: 10.3390/nu15214645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 10/25/2023] [Accepted: 10/30/2023] [Indexed: 11/15/2023] Open
Abstract
Milk is a nutrient-rich food source, and among the various milks, breast milk is a nutrient source provided by mothers to newborns in many mammals. Exosomes are nano-sized membranous extracellular vesicles that play important roles in cell-to-cell communication. Exosomes originate from endogenous synthesis and dietary sources such as milk. Discovered through electron microscopy as floating vesicles, the existence of exosomes in human milk was confirmed owing to a density between 1.10 and 1.18 g/mL in a sucrose gradient corresponding to the known density of exosomes and detection of MHC classes I and II, CD63, CD81, and CD86 on the vesicles. To date, milk exosomes have been used for treating many diseases, including cancers, and are widely proposed as promising carriers for the delivery of chemotherapeutic agents. However, few studies on milk exosomes focus on geriatric health, especially sarcopenia and osteoporosis related to bone and muscle. Therefore, the present study focused on milk exosomes and their cargoes, which are potential candidates for dietary supplements, and when combined with drugs, they can be effective in treating musculoskeletal diseases. In this review, we introduce the basic concepts, including the definition, various sources, and cargoes of milk exosomes, and exosome isolation and characterization methods. Additionally, we review recent literature on the musculoskeletal system and milk exosomes. Since inflammation and oxidative stress underly musculoskeletal disorders, studies reporting the antioxidant and anti-inflammatory properties of milk exosomes are also summarized. Finally, the therapeutic potential of milk exosomes in targeting muscle and bone health is proposed.
Collapse
Affiliation(s)
- Na-Hyung Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Juhae Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
| | - Joo-Yeon Lee
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Hyeon-A Bae
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| | - Choon Young Kim
- Research Institute of Human Ecology, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea; (N.-H.K.); (J.K.); (J.-Y.L.); (H.-A.B.)
- Department of Food and Nutrition, Yeungnam University, Gyeongsan 38541, Gyeongbuk, Republic of Korea
| |
Collapse
|
20
|
Wen H, Poutiainen P, Batnasan E, Latonen L, Lehto VP, Xu W. Biomimetic Inorganic Nanovectors as Tumor-Targeting Theranostic Platform against Triple-Negative Breast Cancer. Pharmaceutics 2023; 15:2507. [PMID: 37896267 PMCID: PMC10610067 DOI: 10.3390/pharmaceutics15102507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/18/2023] [Accepted: 10/20/2023] [Indexed: 10/29/2023] Open
Abstract
Mesoporous silicon nanoparticles (PSi NPs) are promising platforms of nanomedicine because of their good compatibility, high payload capacities of anticancer drugs, and easy chemical modification. Here, PSi surfaces were functionalized with bisphosphonates (BP) for radiolabeling, loaded with doxorubicin (DOX) for chemotherapy, and the NPs were coated with cancer cell membrane (CCm) for homotypic cancer targeting. To enhance the CCm coating, the NP surfaces were covered with polyethylene glycol prior to the CCm coating. The effects of the BP amount and pH conditions on the radiolabeling efficacy were studied. The maximum BP was (2.27 wt%) on the PSi surfaces, and higher radiochemical yields were obtained for 99mTc (97% ± 2%) and 68Ga (94.6% ± 0.2%) under optimized pH conditions (pH = 5). The biomimetic NPs exhibited a good radiochemical and colloidal stability in phosphate-buffered saline and cell medium. In vitro studies demonstrated that the biomimetic NPs exhibited an enhanced cellular uptake and increased delivery of DOX to cancer cells, resulting in better chemotherapy than free DOX or pure NPs. Altogether, these findings indicate the potential of the developed platform for cancer treatment and diagnosis.
Collapse
Affiliation(s)
- Huang Wen
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland;
| | - Pekka Poutiainen
- Kuopio University Hospital, University of Eastern Finland, Puijonlaaksontie 2, 70210 Kuopio, Finland;
| | - Enkhzaya Batnasan
- School of Medicine, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland; (E.B.); (L.L.)
| | - Leena Latonen
- School of Medicine, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland; (E.B.); (L.L.)
| | - Vesa-Pekka Lehto
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland;
| | - Wujun Xu
- Department of Technical Physics, University of Eastern Finland, Yliopistonranta 1F, 70211 Kuopio, Finland;
| |
Collapse
|
21
|
Sanwlani R, Kang T, Gummadi S, Nedeva C, Ang CS, Mathivanan S. Bovine milk-derived extracellular vesicles enhance doxorubicin sensitivity in triple negative breast cancer cells by targeting metabolism and STAT signalling. Proteomics 2023; 23:e2200482. [PMID: 37376799 DOI: 10.1002/pmic.202200482] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 03/29/2023] [Accepted: 06/12/2023] [Indexed: 06/29/2023]
Abstract
Metastatic triple-negative breast cancer (TNBC) has a low 5-year survival rate of below 30% with systemic chemotherapy being the most widely used treatment. Bovine milk-derived extracellular vesicles (MEVs) have been previously demonstrated to have anti-cancer attributes. In this study, we isolated bovine MEVs from commercial milk and characterised them according to MISEV guidelines. Bovine MEVs sensitised TNBC cells to doxorubicin, resulting in reduced metabolic potential and cell-viability. Label-free quantitative proteomics of cells treated with MEVs and/or doxorubicin suggested that combinatorial treatment depleted various pro-tumorigenic interferon-inducible gene products and proteins with metabolic function, previously identified as therapeutic targets in TNBC. Combinatorial treatment also led to reduced abundance of various STAT proteins and their downstream oncogenic targets with roles in cell-cycle and apoptosis. Taken together, this study highlights the ability of bovine MEVs to sensitise TNBC cells to standard-of-care therapeutic drug doxorubicin, paving the way for novel treatment regimens.
Collapse
Affiliation(s)
- Rahul Sanwlani
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Taeyoung Kang
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Sriram Gummadi
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Christina Nedeva
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| | - Ching-Seng Ang
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, Victoria, Australia
| | - Suresh Mathivanan
- Department of Biochemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria, Australia
| |
Collapse
|
22
|
Kumar SK, Sasidhar MV. Recent Trends in the Use of Small Extracellular Vesicles as Optimal Drug Delivery Vehicles in Oncology. Mol Pharm 2023; 20:3829-3842. [PMID: 37410017 DOI: 10.1021/acs.molpharmaceut.3c00363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2023]
Abstract
Small extracellular vesicles (sEVs) are produced by most cells and play an important role in cell-to-cell communication and maintaining cellular homeostasis. Their ability to transfer biological cargo to target cells makes them a promising tool for cancer drug delivery. Advances in sEV engineering, EV mimetics, and ligand-directed targeting have improved the efficacy of anticancer drug delivery and functionality. EV-based RNA interference and hybrid miRNA transfer have also been extensively used in various preclinical cancer models. Despite these developments, gaps still exist in our understanding of using sEVs to treat solid tumor malignancies effectively. This article provides an overview of the last five years of sEV research and its current status for the efficient and targeted elimination of cancer cells, which could advance cancer research and bring sEV formulations into clinical use.
Collapse
Affiliation(s)
- Sarwareddy Kartik Kumar
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Jubilee Hills, Hyderabad 500033, India
| | - Manda Venkata Sasidhar
- Apollo Hospitals Educational and Research Foundation (AHERF), Apollo Hospitals, Jubilee Hills, Hyderabad 500033, India
- Urvogelbio Private Limited, AHERF, Jubilee Hills, Hyderabad 500033, India
| |
Collapse
|
23
|
Kaur S, Nathani A, Singh M. Exosomal delivery of cannabinoids against cancer. Cancer Lett 2023; 566:216243. [PMID: 37257632 PMCID: PMC10426019 DOI: 10.1016/j.canlet.2023.216243] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Revised: 05/11/2023] [Accepted: 05/21/2023] [Indexed: 06/02/2023]
Abstract
Exosomes are extracellular vesicles (EVs) originating from endosomes that play a role in cellular communication. These vesicles which mimic the parental cells that release them are promising candidates for targeted drug delivery and therapeutic applications against cancer because of their favorable biocompatibility, specific targeting, low toxicity, and immunogenicity. Currently, Delta-9-tetrahydrocannabinol (THC), cannabidiol (CBD) and other cannabinoids (e.g., CBG, THCV, CBC), are being explored for their anticancer and anti-proliferative properties. Several mechanisms, including cell cycle arrest, proliferation inhibition, activation of autophagy and apoptosis, inhibition of adhesion, metastasis, and angiogenesis have been proposed for their anticancer activity. EVs could be engineered as cannabinoid delivery systems for tumor-specificity leading to superior anticancer effects. This review discusses current techniques for EV isolation from various sources, characterization and strategies to load them with cannabinoids. More extensively, we culminate information available on different sources of EVs that have anticancer activity, mechanism of action of cannabinoids against various wild type and resistant tumors and role of CBD in histone modifications and cancer epigenetics. We have also enumerated the role of EVs containing cannabinoids against various tumors and in chemotherapy induced neuropathic pain.
Collapse
Affiliation(s)
- Sukhmandeep Kaur
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Aakash Nathani
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA
| | - Mandip Singh
- College of Pharmacy and Pharmaceutical Sciences, Florida A&M University, Tallahassee, FL, 32307, USA.
| |
Collapse
|
24
|
Chen C, Chen C, Li Y, Gu R, Yan X. Characterization of lipid-based nanomedicines at the single-particle level. FUNDAMENTAL RESEARCH 2023; 3:488-504. [PMID: 38933557 PMCID: PMC11197724 DOI: 10.1016/j.fmre.2022.09.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 09/11/2022] [Accepted: 09/23/2022] [Indexed: 11/08/2022] Open
Abstract
Lipid-based nanomedicines (LBNMs), including liposomes, lipid nanoparticles (LNPs) and extracellular vesicles (EVs), are recognized as one of the most clinically acceptable nano-formulations. However, the bench-to-bedside translation efficiency is far from satisfactory, mainly due to the lack of in-depth understanding of their physical and biochemical attributes at the single-particle level. In this review, we first give a brief introduction of LBNMs, highlighting some milestones and related scientific and clinical achievements in the past several decades, as well as the grand challenges in the characterization of LBNMs. Next, we present an overview of each category of LBNMs as well as the core properties that largely dictate their biological characteristics and clinical performance, such as size distribution, particle concentration, morphology, drug encapsulation and surface properties. Then, the recent applications of several analytical techniques including electron microscopy, atomic force microscopy, fluorescence microscopy, Raman microscopy, nanoparticle tracking analysis, tunable resistive pulse sensing and flow cytometry on the single-particle characterization of LBNMs are thoroughly discussed. Particularly, the comparative advantages of the newly developed nano-flow cytometry that enables quantitative analysis of both the physical and biochemical characteristics of LBNMs smaller than 40 nm with high throughput and statistical robustness are emphasized. The overall aim of this review article is to illustrate the importance, challenges and achievements associated with single-particle characterization of LBNMs.
Collapse
Affiliation(s)
- Chaoxiang Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Chen Chen
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Yurou Li
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| | - Ruilan Gu
- Department of Biological Engineering, College of Ocean Food and Biological Engineering, Jimei University, Xiamen, Fujian 361021, China
| | - Xiaomei Yan
- Department of Chemical Biology, MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, Key Laboratory for Chemical Biology of Fujian Province, Collaborative Innovation Center of Chemistry for Energy Materials, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
25
|
Kakiuchi Y, Kuroda S, Kanaya N, Kagawa S, Tazawa H, Fujiwara T. Exosomes as a drug delivery tool for cancer therapy: a new era for existing drugs and oncolytic viruses. Expert Opin Ther Targets 2023; 27:807-816. [PMID: 37742281 DOI: 10.1080/14728222.2023.2259102] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Accepted: 09/11/2023] [Indexed: 09/26/2023]
Abstract
INTRODUCTION Exosomes are cell-derived nanovesicles involved in cell-to-cell communications. These nanovesicles are generally considered to contain important carriers of information such as DNA and RNA, and show specific tropism. AREAS COVERED The combination of existing therapeutic agents with exosomes enhances therapeutic effects by increasing uptake into the tumor. Induction of immunogenic cell death (ICD) may also be triggered more strongly than with the drug alone. Oncolytic viruses (OVs) are even more effective as a drug in combination with exosomes. Although OVs are more likely to cause immune activity, combination with exosomes can exert synergistic effects. OVs have potent anti-tumor effects, but many limitations, such as being limited to local administration and vulnerability to attack by antibodies. Incorporation into exosomes can overcome these limitations and may allow effects against distant tumors. EXPERT OPINION Novel therapies using exosomes are very attractive in terms of enhancing therapeutic efficacy and reducing side effects. This approach also contains elements overcoming disadvantages in OVs, which have not been used clinically until now, and may usher in a new era of cancer treatments.
Collapse
Affiliation(s)
- Yoshihiko Kakiuchi
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Shinji Kuroda
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Nobuhiko Kanaya
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Shunsuke Kagawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Hiroshi Tazawa
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| | - Toshiyoshi Fujiwara
- Department of Gastroenterological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama City, Okayama, Japan
| |
Collapse
|
26
|
Timofeeva AM, Paramonik AP, Sedykh SS, Nevinsky GA. Milk Exosomes: Next-Generation Agents for Delivery of Anticancer Drugs and Therapeutic Nucleic Acids. Int J Mol Sci 2023; 24:10194. [PMID: 37373342 DOI: 10.3390/ijms241210194] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/05/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
Exosomes are nanovesicles 40-120 nm in diameter secreted by almost all cell types and providing humoral intercellular interactions. Given the natural origin and high biocompatibility, the potential for loading various anticancer molecules and therapeutic nucleic acids inside, and the surface modification possibility for targeted delivery, exosomes are considered to be a promising means of delivery to cell cultures and experimental animal organisms. Milk is a unique natural source of exosomes available in semi-preparative and preparative quantities. Milk exosomes are highly resistant to the harsh conditions of the gastrointestinal tract. In vitro studies have demonstrated that milk exosomes have an affinity to epithelial cells, are digested by cells by endocytosis mechanism, and can be used for oral delivery. With milk exosome membranes containing hydrophilic and hydrophobic components, exosomes can be loaded with hydrophilic and lipophilic drugs. This review covers a number of scalable protocols for isolating and purifying exosomes from human, cow, and horse milk. Additionally, it considers passive and active methods for drug loading into exosomes, as well as methods for modifying and functionalizing the surface of milk exosomes with specific molecules for more efficient and specific delivery to target cells. In addition, the review considers various approaches to visualize exosomes and determine cellular localization and bio-distribution of loaded drug molecules in tissues. In conclusion, we outline new challenges for studying milk exosomes, a new generation of targeted delivery agents.
Collapse
Affiliation(s)
- Anna M Timofeeva
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Anastasia P Paramonik
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Sergey S Sedykh
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| | - Georgy A Nevinsky
- SB RAS Institute of Chemical Biology and Fundamental Medicine, 630090 Novosibirsk, Russia
- Faculty of Natural Sciences, Novosibirsk State University, 630090 Novosibirsk, Russia
| |
Collapse
|
27
|
Zhong Y, Wang X, Zhao X, Shen J, Wu X, Gao P, Yang P, Chen J, An W. Multifunctional Milk-Derived Small Extracellular Vesicles and Their Biomedical Applications. Pharmaceutics 2023; 15:1418. [PMID: 37242660 PMCID: PMC10223436 DOI: 10.3390/pharmaceutics15051418] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/25/2023] [Accepted: 05/03/2023] [Indexed: 05/28/2023] Open
Abstract
In recent years, small extracellular vesicles (sEVs) have been regarded as the next generation of novel delivery systems after lipid nanoparticles because of their advantages and huge prospects in drug delivery. Studies have shown that sEVs are abundant in milk and therefore can be a large and economical source of sEVs. Natural milk-derived small extracellular vesicles (msEVs) have important functions such as immune regulation, anti-bacterial infection, anti-oxidative, etc., and play a beneficial role in human health at multiple levels, including intestinal health, bone/muscle metabolism, and microbiota regulation. In addition, because they can pass the gastrointestinal barrier and have low immunogenicity, good biocompatibility, and stability, msEVs are considered a crucial oral drug delivery vehicle. Moreover, msEVs can be further engineered for targeted delivery to prolong the circulation time or enhance local drug concentrations. However, msEVs separation and purification, complex contents, and quality control hinder their application in drug delivery. This paper provides a comprehensive review of the biogenesis and characteristics, isolation and purification, composition, loading methods, and function of msEVs, based on which their applications in biomedical fields are further explored.
Collapse
Affiliation(s)
- Youxiu Zhong
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xudong Wang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xian Zhao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Jiuheng Shen
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Xue Wu
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peifen Gao
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Peng Yang
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| | - Junge Chen
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Engineering Medicine & Shenzhen Institute of Beihang University, Beihang University, Beijing 100083, China
| | - Wenlin An
- Wenlin An’s Laboratory, National Vaccine & Serum Institute (NVSI), China National Biotech Group (CNBG), Sinopharm Group, No. 38 Jing Hai Second Road, Beijing 101111, China
| |
Collapse
|
28
|
Wallen M, Aqil F, Spencer W, Gupta RC. Milk/colostrum exosomes: A nanoplatform advancing delivery of cancer therapeutics. Cancer Lett 2023; 561:216141. [PMID: 36963459 PMCID: PMC10155642 DOI: 10.1016/j.canlet.2023.216141] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/09/2023] [Accepted: 03/19/2023] [Indexed: 03/26/2023]
Abstract
Chemotherapeutics continue to play a central role in the treatment of a wide variety of cancers. Conventional chemotherapy involving bolus intravenous doses results in severe side effects - in some cases life threatening - delayed toxicity and compromised quality-of-life. Attempts to deliver small drug molecules using liposomes, polymeric nanoparticles, micelles, lipid nanoparticles, etc. have produced limited nanoformulations for clinical use, presumably due to a lack of biocompatibility of the material, costs, toxicity, scalability, and/or lack of effective administration. Naturally occurring small extracellular vesicles, or exosomes, may offer a solution and a viable system for delivering cancer therapeutics. Combined with their inherent trafficking ability and versatility of cargo capacity, exosomes can be engineered to specifically target cancerous cells, thereby minimizing off-target effects, and increasing the efficacy of cancer therapeutics. Exosomal formulations have mitigated the toxic effects of several drugs in murine cancer models. In this article, we review studies related to exosomal delivery of both small molecules and biologics, including siRNA to inhibit specific gene expression, in the pursuit of effective cancer therapeutics. We focus primarily on bovine milk and colostrum exosomes as the cancer therapeutic delivery vehicles based on their high abundance, cost effectiveness, scalability, high drug loading, functionalization of exosomes for targeted delivery, and lack of toxicity. While bovine milk exosomes may provide a new platform for drug delivery, extensive comparison to other nanoformulations and evaluation of long-term toxicity will be required to fully realize its potential.
Collapse
Affiliation(s)
| | - Farrukh Aqil
- Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Medicine, University of Louisville, Louisville, KY, 40202, USA
| | - Wendy Spencer
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA
| | - Ramesh C Gupta
- 3P Biotechnologies, Inc., Louisville, KY, 40202, USA; Brown Cancer Center, University of Louisville, Louisville, KY, 40202, USA; Department of Pharmacology and Toxicology, University of Louisville, Louisville, KY, 40202, USA.
| |
Collapse
|
29
|
Mohammadi AH, Ghazvinian Z, Bagheri F, Harada M, Baghaei K. Modification of Extracellular Vesicle Surfaces: An Approach for Targeted Drug Delivery. BioDrugs 2023; 37:353-374. [PMID: 37093521 DOI: 10.1007/s40259-023-00595-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2023] [Indexed: 04/25/2023]
Abstract
Extracellular vesicles (EVs) are a promising drug delivery vehicle candidate because of their natural origin and intrinsic function of transporting various molecules between different cells. Several advantages of the EV delivery platform include enhanced permeability and retention effect, efficient interaction with recipient cells, the ability to traverse biological barriers, high biocompatibility, high biodegradability, and low immunogenicity. Furthermore, EV membranes share approximately similar structures and contents to the cell membrane, which allows surface modification of EVs, an approach to enable specific targeting. Enhanced drug accumulation in intended sites and reduced adverse effects of chemotherapeutic drugs are the most prominent effects of targeted drug delivery. In order to improve the targeting ability of EVs, chemical modification and genetic engineering are the most adopted methods to date. Diverse chemical methods are employed to decorate EV surfaces with various ligands such as aptamers, carbohydrates, peptides, vitamins, and antibodies. In this review, we introduce the biogenesis, content, and cellular pathway of natural EVs and further discuss the genetic modification of EVs, and its challenges. Furthermore, we provide a comprehensive deliberation on the various chemical modification methods for improved drug delivery, which are directly related to increasing the therapeutic index.
Collapse
Affiliation(s)
- Amir Hossein Mohammadi
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Zeinab Ghazvinian
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Bagheri
- Department of Biotechnology, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran.
| | - Masako Harada
- Institute for Quantitative Health Science and Engineering (IQ), Michigan State University, East Lansing, MI, USA.
- Department of Biomedical Engineering, Michigan State University, East Lansing, MI, USA.
| | - Kaveh Baghaei
- Basic and Molecular Epidemiology of Gastrointestinal Disorders Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
- Gastroenterology and Liver Diseases Research Center, Research Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
30
|
Loric S, Denis JA, Desbene C, Sabbah M, Conti M. Extracellular Vesicles in Breast Cancer: From Biology and Function to Clinical Diagnosis and Therapeutic Management. Int J Mol Sci 2023; 24:7208. [PMID: 37108371 PMCID: PMC10139222 DOI: 10.3390/ijms24087208] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 04/03/2023] [Accepted: 04/09/2023] [Indexed: 04/29/2023] Open
Abstract
Breast cancer (BC) is the first worldwide most frequent cancer in both sexes and the most commonly diagnosed in females. Although BC mortality has been thoroughly declining over the past decades, there are still considerable differences between women diagnosed with early BC and when metastatic BC is diagnosed. BC treatment choice is widely dependent on precise histological and molecular characterization. However, recurrence or distant metastasis still occurs even with the most recent efficient therapies. Thus, a better understanding of the different factors underlying tumor escape is mainly mandatory. Among the leading candidates is the continuous interplay between tumor cells and their microenvironment, where extracellular vesicles play a significant role. Among extracellular vesicles, smaller ones, also called exosomes, can carry biomolecules, such as lipids, proteins, and nucleic acids, and generate signal transmission through an intercellular transfer of their content. This mechanism allows tumor cells to recruit and modify the adjacent and systemic microenvironment to support further invasion and dissemination. By reciprocity, stromal cells can also use exosomes to profoundly modify tumor cell behavior. This review intends to cover the most recent literature on the role of extracellular vesicle production in normal and cancerous breast tissues. Specific attention is paid to the use of extracellular vesicles for early BC diagnosis, follow-up, and prognosis because exosomes are actually under the spotlight of researchers as a high-potential source of liquid biopsies. Extracellular vesicles in BC treatment as new targets for therapy or efficient nanovectors to drive drug delivery are also summarized.
Collapse
Affiliation(s)
- Sylvain Loric
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | | | - Cédric Desbene
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Michèle Sabbah
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
| | - Marc Conti
- INSERM U538, CRSA, Saint-Antoine University Hospital, 75012 Paris, France; (J.A.D.)
- INTEGRACELL SAS, 91160 Longjumeau, France
| |
Collapse
|
31
|
Raguraman R, Bhavsar D, Kim D, Ren X, Sikavitsas V, Munshi A, Ramesh R. Tumor-targeted exosomes for delivery of anticancer drugs. Cancer Lett 2023; 558:216093. [PMID: 36822543 PMCID: PMC10025995 DOI: 10.1016/j.canlet.2023.216093] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 02/23/2023]
Abstract
Exosomes are small phospholipid bilayer vesicles that are naturally produced by all living cells, both prokaryotes and eukaryotes. The exosomes due to their unique size, reduced immunogenicity, and their ability to mimic synthetic liposomes in carrying various anticancer drugs have been tested as drug delivery vehicles for cancer treatment. An added advantage of developing exosomes as a drug carrier is the ease of manipulating their intraluminal content and their surface modification to achieve tumor-targeted drug delivery. In the past ten-years, there has been an exponential increase in the number of exosome-related studies in cancer. Preclinical studies demonstrate exosomes-mediated delivery of chemotherapeutics, biologicals and natural products produce potent anticancer activity both, in vitro and in vivo. In contrast, the number of exosome-based clinical trials are few due to challenges in the manufacturing and scalability related to large-scale production of exosomes and their storage and stability. Herein, we discuss recent advances in exosome-based drug delivery for cancer treatment in preclinical and clinical studies and conclude with challenges to be overcome for translating a larger number of exosome-based therapies into the clinic.
Collapse
Affiliation(s)
- Rajeswari Raguraman
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dhaval Bhavsar
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Dongin Kim
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Xiaoyu Ren
- Department of Pharmaceutical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Vassilios Sikavitsas
- School of Chemical, Biological and Material Engineering, The University of Oklahoma, Norman, Oklahoma, 73019, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Anupama Munshi
- Department of Radiation Oncology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Rajagopal Ramesh
- Department of Pathology, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; OU Health Stephenson Cancer Center, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA; Graduate Program in Biomedical Sciences, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
32
|
Mecocci S, Trabalza-Marinucci M, Cappelli K. Extracellular Vesicles from Animal Milk: Great Potentialities and Critical Issues. Animals (Basel) 2022; 12:ani12233231. [PMID: 36496752 PMCID: PMC9740508 DOI: 10.3390/ani12233231] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 10/25/2022] [Accepted: 11/18/2022] [Indexed: 11/24/2022] Open
Abstract
Other than representing the main source of nutrition for newborn mammals, milk delivers a sophisticated signaling system from mother to child that promotes postnatal health. The bioactive components transferred through the milk intake are important for the development of the newborn immune system and include oligosaccharides, lactoferrin, lysozyme, α-La, and immunoglobulins. In the last 15 years, a pivotal role in this mother-to-child exchange has been attributed to extracellular vesicles (EVs). EVs are micro- and nanosized structures enclosed in a phospholipidic double-layer membrane that are produced by all cell types and released in the extracellular environment, reaching both close and distant cells. EVs mediate the intercellular cross-talk from the producing to the receiving cell through the transfer of molecules contained within them such as proteins, antigens, lipids, metabolites, RNAs, and DNA fragments. The complex cargo can induce a wide range of functional modulations in the recipient cell (i.e., anti-inflammatory, immunomodulating, angiogenetic, and pro-regenerative modulations) depending on the type of producing cells and the stimuli that these cells receive. EVs can be recovered from every biological fluid, including blood, urine, bronchoalveolar lavage fluid, saliva, bile, and milk, which is one of the most promising scalable vesicle sources. This review aimed to present the state-of-the-art of animal-milk-derived EV (mEV) studies due to the exponential growth of this field. A focus on the beneficial potentialities for human health and the issues of studying vesicles from milk, particularly for the analytical methodologies applied, is reported.
Collapse
|
33
|
Review: Milk Small Extracellular Vesicles for Use in the Delivery of Therapeutics. Pharm Res 2022; 40:909-915. [PMID: 36198923 DOI: 10.1007/s11095-022-03404-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 09/23/2022] [Indexed: 10/10/2022]
Abstract
Small extracellular vesicles (sEVs, "exosomes") in milk have attracted considerable attention for use in delivering therapeutics to diseased tissues because of the following qualities. The production of milk sEVs is scalable, e.g., more than 1021 sEVs may be obtained annually from a single cow. Milk EVs protect their cargo against degradation in the gastrointestinal tract and during industrial processing. Milk sEVs and their cargo are absorbed following oral administration and they cross barriers such as intestinal mucosa, placenta and the blood-brain barrier in humans, pigs, and mice. Milk sEVs do no alter variables of liver and kidney function, or hematology, and do not elicit immune responses in humans, rats, and mice. Protocols are available for loading milk sEVs with therapeutic cargo, and a cell line is available for assessing effects of milk sEV modifications on drug delivery. Future research will need to assess and optimize sEV shelf-life and storage and effects of milk sEV modifications on the delivery of therapeutic cargo to diseased tissues.
Collapse
|
34
|
Li D, Gong L, Lin H, Yao S, Yin Y, Zhou Z, Shi J, Wu Z, Huang Z. Hyaluronic Acid-Coated Bovine Milk Exosomes for Achieving Tumor-Specific Intracellular Delivery of miRNA-204. Cells 2022; 11:3065. [PMID: 36231028 PMCID: PMC9562169 DOI: 10.3390/cells11193065] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 11/16/2022] Open
Abstract
Cell type-specific drug delivery is a straightforward strategy to achieve targeted cancer therapy and reduce side effects. Hyaluronic acid (HA), an U.S. Food and Drug Administration (FDA)-approved biocompatible carbohydrate polymer, has been extensively employed as a targeting ligand for a drug delivery system due to its natural ability to bind to tumor cells overexpressing cluster of differentiation 44 (CD44) receptors. Here, we report the preparation and antitumor efficacy of HA-coated bovine milk exosomes (HA-mExo) for tumor-specific delivery of microRNA-204-5p mimics (miR-204). The exosome-based delivery formulation was prepared with miR-204 encapsulated inside the lumen and HA displayed outside the membrane. The resultant formulation of HA-mExo-miR204 was able to specifically target CD44-positive cancer cells, with a concomitant increase in the intracellular uptake of miR-204. Compared to the uncoated mExo-miR204 formulation, HA-mExo-miR204 showed significantly increased antitumor efficacy both in vitro and in vivo. Importantly, HA-mExo-miR204 showed excellent biocompatibility and did not cause significant systemic toxicity. Given that both HA and bovine milk exosomes are low-cost and highly accessible biogenic materials with broad biomedical applications, HA-decorated bovine milk exosomes can be proven to be a practical drug delivery system of RNA drugs for targeted cancer therapy.
Collapse
Affiliation(s)
- Dan Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Liang Gong
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Han Lin
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Yuan Yin
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| | - Zhifang Zhou
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Jie Shi
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhimeng Wu
- Key Laboratory of Carbohydrate Chemistry & Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi 214122, China
| |
Collapse
|
35
|
Dhar R, Mukherjee D, Mukerjee N, Devi A, Dey A, Ghosh A. Exosome based theranostic approaches in breast cancer, a new answer of Indian breast cancer-associated health crisis - Correspondence. Int J Surg 2022; 105:106886. [PMID: 36084809 DOI: 10.1016/j.ijsu.2022.106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 09/01/2022] [Indexed: 11/25/2022]
Affiliation(s)
- Rajib Dhar
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Dattatreya Mukherjee
- Raiganj Government Medical College and Hospital, Uttar Dinajpur, West Bengal, India.
| | - Nobendu Mukerjee
- Department of Microbiology, Ramakrishna Mission Vivekananda Centenary College, West Bengal, Kolkata, 700118, India; Department of Health Sciences, Novel Global Community Educational Foundation, Hebarsham, Australia.
| | - Arikketh Devi
- Cancer and Stem Cell Biology Laboratory, Department of Genetic Engineering, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, 700073, India.
| | - Arabinda Ghosh
- Microbiology Division, Department of Botany, Gauhati University, Assam, India.
| |
Collapse
|