1
|
Nath P, Liversage AR, Mortensen LJ, Ray A. Perovskites as Multiphoton Fluorescence Contrast Agents for In Vivo Imaging. ACS APPLIED MATERIALS & INTERFACES 2024; 16:46035-46043. [PMID: 39167710 DOI: 10.1021/acsami.4c08672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2024]
Abstract
Multiphoton fluorescence microscopy is a powerful tool for imaging and exploring biological tissue at subcellular spatial resolution while minimizing photobleaching and autofluorescence. For optimal performance in multiphoton microscopy, materials exhibiting a large multiphoton absorption cross section (σn) and fluorescence quantum yield are desired. Notably, perovskite nanocrystals (CsPbX3, PNCs) exhibit exceptionally large two-, three-, up to five photon absorption cross section (σ2 ∼ 106 GM, σ3 ∼ 10-73 cm6s2 photon-2, σ5 ∼ 10-136 cm10s4 photon-4), along with near unity fluorescence quantum yield, making them desirable for deep tissue applications. Here, we employed PNCs as contrast agents to image mesenchymal stromal cells in a living mouse. The PNCs were stabilized by encapsulating them in a SiO2 matrix (∼60-70 nm in diameter), offering versatility for subsequent surface modification to target specific biological entities for both diagnostic and therapeutic applications. Multiphoton imaging of PNCs offers substantial benefits for dynamic tracking of cells in deep tissue, such as in understanding immune cell migration and other biological processes in both healthy and diseased tissues.
Collapse
Affiliation(s)
- Peuli Nath
- Department of Physics & Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| | - Adrian Ross Liversage
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
| | - Luke J Mortensen
- School of Chemical, Materials and Biomedical Engineering, University of Georgia, Athens, Georgia 30602, United States
- Regenerative Bioscience Center, Rhodes Center for ADS, University of Georgia, Athens, Georgia 30602, United States
| | - Aniruddha Ray
- Department of Physics & Astronomy, University of Toledo, Toledo, Ohio 43606, United States
| |
Collapse
|
2
|
Kudryavtseva V, Sukhorukov GB. Features of Anisotropic Drug Delivery Systems. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307675. [PMID: 38158786 DOI: 10.1002/adma.202307675] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Natural materials are anisotropic. Delivery systems occurring in nature, such as viruses, blood cells, pollen, and many others, do have anisotropy, while delivery systems made artificially are mostly isotropic. There is apparent complexity in engineering anisotropic particles or capsules with micron and submicron sizes. Nevertheless, some promising examples of how to fabricate particles with anisotropic shapes or having anisotropic chemical and/or physical properties are developed. Anisotropy of particles, once they face biological systems, influences their behavior. Internalization by the cells, flow in the bloodstream, biodistribution over organs and tissues, directed release, and toxicity of particles regardless of the same chemistry are all reported to be factors of anisotropy of delivery systems. Here, the current methods are reviewed to introduce anisotropy to particles or capsules, including loading with various therapeutic cargo, variable physical properties primarily by anisotropic magnetic properties, controlling directional motion, and making Janus particles. The advantages of combining different anisotropy in one entity for delivery and common problems and limitations for fabrication are under discussion.
Collapse
Affiliation(s)
- Valeriya Kudryavtseva
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
| | - Gleb B Sukhorukov
- School of Engineering and Materials Science, Queen Mary University of London, London, E1 4NS, UK
- Skolkovo Institute of Science and Technology, Moscow, 121205, Russia
| |
Collapse
|
3
|
Ding X, He R, Zhang T, Mei L, Zhu S, Wang C, Liao Y, Wang D, Wang H, Guo J, Chen L, Gu Z, Hu H. Lung Toxicity and Molecular Mechanisms of Lead-Based Perovskite Nanoparticles in the Respiratory System. ACS APPLIED MATERIALS & INTERFACES 2023; 15:42139-42152. [PMID: 37650305 DOI: 10.1021/acsami.3c04255] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Lead-based perovskite nanoparticles (Pb-PNPs) have found extensive applications across diverse fields. However, because of poor stability and relatively strong water solubility, the potential toxicity of Pb-PNPs released into the environment during their manufacture, usage, and disposal has attracted significant attention. Inhalation is a primary route through which human exposure to Pb-PNPs occurs. Herein, the toxic effects and underlying molecular mechanisms of Pb-PNPs in the respiratory system are investigated. The in vitro cytotoxicity of CsPbBr3 nanoparticles in BEAS-2B cells is studied using multiple bioassays and electron microscopy. CsPbBr3 nanoparticles of different concentrations induce excessive oxidative stress and cell apoptosis. Furthermore, CsPbBr3 nanoparticles specifically recruit the TGF-β1, which subsequently induces epithelial-mesenchymal transition. In addition, the biodistribution and lung toxicity of representative CsPbBr3 nanoparticles in ICR mice are investigated following intranasal administration. These findings indicate that CsPbBr3 nanoparticles significantly induce pulmonary inflammation and epithelial-mesenchymal transition and can even lead to pulmonary fibrosis in mouse models. Above findings expose the adverse effects and molecular mechanisms of Pb-PNPs in the lung, which broadens the safety data of Pb-PNPs.
Collapse
Affiliation(s)
- Xuefeng Ding
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Rendong He
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Clinical Laboratory, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Tingjun Zhang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Infectious Diseases, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Linqiang Mei
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shuang Zhu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
- CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology of China, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Chengyan Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - You Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongmei Wang
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hao Wang
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Junsong Guo
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Li Chen
- Department of Critical Care Medicine, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| | - Zhanjun Gu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, P. R. China
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Optoelectronic Technology, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Houxiang Hu
- Academician Workstation, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
- Department of Cardiology, Affiliated Hospital of North Sichuan Medical College, Nanchong 637000, P. R. China
| |
Collapse
|
4
|
Liu X, Lee EC. Advancements in Perovskite Nanocrystal Stability Enhancement: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:nano13111707. [PMID: 37299610 DOI: 10.3390/nano13111707] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 06/12/2023]
Abstract
Over the past decade, perovskite technology has been increasingly applied in solar cells, nanocrystals, and light-emitting diodes (LEDs). Perovskite nanocrystals (PNCs) have attracted significant interest in the field of optoelectronics owing to their exceptional optoelectronic properties. Compared with other common nanocrystal materials, perovskite nanomaterials have many advantages, such as high absorption coefficients and tunable bandgaps. Owing to their rapid development in efficiency and huge potential, perovskite materials are considered the future of photovoltaics. Among different types of PNCs, CsPbBr3 perovskites exhibit several advantages. CsPbBr3 nanocrystals offer a combination of enhanced stability, high photoluminescence quantum yield, narrow emission bandwidth, tunable bandgap, and ease of synthesis, which distinguish them from other PNCs, and make them suitable for various applications in optoelectronics and photonics. However, PNCs also have some shortcomings: they are highly susceptible to degradation caused by environmental factors, such as moisture, oxygen, and light, which limits their long-term performance and hinders their practical applications. Recently, researchers have focused on improving the stability of PNCs, starting with the synthesis of nanocrystals and optimizing (i) the external encapsulation of crystals, (ii) ligands used for the separation and purification of nanocrystals, and (iii) initial synthesis methods or material doping. In this review, we discuss in detail the factors leading to instability in PNCs, introduce stability enhancement methods for mainly inorganic PNCs mentioned above, and provide a summary of these approaches.
Collapse
Affiliation(s)
- Xuewen Liu
- Department of Nano Science and Technology, Graduate School, Gachon University, Seongnam-si 13120, Republic of Korea
| | - Eun-Cheol Lee
- Department of Nano Science and Technology, Graduate School, Gachon University, Seongnam-si 13120, Republic of Korea
- Department of Physics, Gachon University, Seongnam-si 13120, Republic of Korea
| |
Collapse
|
5
|
Peltek OO, Talianov PM, Krylova A, Polushkin AS, Anastasova EI, Mikushina DD, Gets D, Zelenkov LE, Khubezhov S, Pushkarev A, Zyuzin MV, Makarov SV. Ligand-free template-assisted synthesis of stable perovskite nanocrystals with near-unity photoluminescence quantum yield within the pores of vaterite spheres. NANOSCALE 2023; 15:7482-7492. [PMID: 37017125 DOI: 10.1039/d3nr00214d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Ligand-free methods for the synthesis of halide perovskite nanocrystals are of great interest because of their excellent performance in optoelectronics and photonics. In addition, template-assisted synthesis methods have become a powerful tool for the fabrication of environmentally stable and bright nanocrystals. Here we develop a novel approach for the facile ligand-free template-assisted fabrication of perovskite nanocrystals with a near-unity absolute quantum yield, which involves CaCO3 vaterite micro- and submicrospheres as templates. We show that the optical properties of the obtained nanocrystals are affected not mainly by the template morphology, but strongly depend on the concentration of precursor solutions, anion and cation ratio, as well as on adding defect-passivating rare-earth dopants. The optimized samples are further tested as infrared radiation visualizers exhibiting promising characteristics comparable to those that are commercially available.
Collapse
Affiliation(s)
- Oleksii O Peltek
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Pavel M Talianov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Anna Krylova
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Artem S Polushkin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Elizaveta I Anastasova
- International Institute "Solution Chemistry of Advanced Materials and Technologies", ITMO University, St. Petersburg, 197101, Russian Federation
| | - Daria D Mikushina
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Dmitri Gets
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Lev E Zelenkov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Soslan Khubezhov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Anatoly Pushkarev
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Mikhail V Zyuzin
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
| | - Sergey V Makarov
- School of Physics and Engineering, ITMO University, Lomonosova 9, St. Petersburg 191002, Russian Federation.
- Qingdao Innovation and Development Center, Harbin Engineering University, Qingdao 266000, Shandong, China
| |
Collapse
|
6
|
Aminzare M, Jiang J, Mandl GA, Mahshid S, Capobianco JA, Dorval Courchesne NM. Biomolecules incorporated in halide perovskite nanocrystals: synthesis, optical properties, and applications. NANOSCALE 2023; 15:2997-3031. [PMID: 36722934 DOI: 10.1039/d2nr05565a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Halide perovskite nanocrystals (HPNCs) have emerged at the forefront of nanomaterials research over the past two decades. The physicochemical and optoelectronic properties of these inorganic semiconductor nanoparticles can be modulated through the introduction of various ligands. The use of biomolecules as ligands has been demonstrated to improve the stability, luminescence, conductivity and biocompatibility of HPNCs. The rapid advancement of this field relies on a strong understanding of how the structure and properties of biomolecules influences their interactions with HPNCs, as well as their potential to extend applications of HPNCs towards biological applications. This review addresses the role of several classes of biomolecules (amino acids, proteins, carbohydrates, nucleotides, etc.) that have shown promise for improving the performance of HPNCs and their potential applications. Specifically, we have reviewed the recent advances on incorporating biomolecules with HP nanomaterials on the formation, physicochemical properties, and stability of HP compounds. We have also shed light on the potential for using HPs in biological and environmental applications by compiling some recent of proof-of-concept demonstrations. Overall, this review aims to guide the field towards incorporating biomolecules into the next-generation of high-performance HPNCs for biological and environmental applications.
Collapse
Affiliation(s)
- Masoud Aminzare
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Jennifer Jiang
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| | - Gabrielle A Mandl
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Sara Mahshid
- Department of Bioengineering, McGill University, 817 Sherbrooke Street West, Macdonald Engineering Building, Room 355, Montréal, QC, H3A 0C3, Canada
| | - John A Capobianco
- Department of Chemistry and Biochemistry and Centre for NanoScience Research, 7141 Rue Sherbrooke Ouest, Concordia University, Montreal, QC, H4B 1R6, Canada
| | - Noémie-Manuelle Dorval Courchesne
- Department of Chemical Engineering, McGill University, 3610 University Street, Wong Building, Room 4180, Montréal, QC, H3A 0C5, Canada.
| |
Collapse
|