1
|
Yu L, Ma Z, He Q. Dynamic DNA Nanostructures for Cell Manipulation. ACS Biomater Sci Eng 2023; 9:562-576. [PMID: 36592368 DOI: 10.1021/acsbiomaterials.2c01204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Dynamic DNA nanostructures are DNA nanostructures with reconfigurable elements that can undergo structural transformations in response to specific stimuli. Thus, anchoring dynamic DNA nanostructures on cell membranes is an attractive and promising strategy for well-controlled cell manipulation. Here, we review the latest progress in dynamic DNA nanostructures for cell manipulation. Commonly used mechanisms for dynamic DNA nanostructures are first introduced. Subsequently, we summarize the anchoring strategies for dynamic DNA nanostructures on cell membranes and list possible applications (including programming cell membrane receptors, controlling ligand activity and drug delivery, capturing and releasing cells, and assembling cells into clusters). Finally, insights into the remaining challenges are presented.
Collapse
Affiliation(s)
- Lu Yu
- Department of Endocrinology and Metabolism, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Zongrui Ma
- Department of Ophthalmology, The First People's Hospital of Changde City, Renmin Middle Road 818, Changde, Hunan 415000, P. R. China
| | - Qunye He
- School of Pharmacy, Shanghai Jiao Tong University, Dongchuan Road 800, Shanghai 200000, P. R. China
| |
Collapse
|
2
|
Muzzio N, Eduardo Martinez-Cartagena M, Romero G. Soft nano and microstructures for the photomodulation of cellular signaling and behavior. Adv Drug Deliv Rev 2022; 190:114554. [PMID: 36181993 PMCID: PMC11610523 DOI: 10.1016/j.addr.2022.114554] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 08/25/2022] [Accepted: 09/23/2022] [Indexed: 01/24/2023]
Abstract
Photoresponsive soft materials are everywhere in the nature, from human's retina tissues to plants, and have been the inspiration for engineers in the development of modern biomedical materials. Light as an external stimulus is particularly attractive because it is relatively cheap, noninvasive to superficial biological tissues, can be delivered contactless and offers high spatiotemporal control. In the biomedical field, soft materials that respond to long wavelength or that incorporate a photon upconversion mechanism are desired to overcome the limited UV-visible light penetration into biological tissues. Upon light exposure, photosensitive soft materials respond through mechanisms of isomerization, crosslinking or cleavage, hyperthermia, photoreactions, electrical current generation, among others. In this review, we discuss the most recent applications of photosensitive soft materials in the modulation of cellular behavior, for tissue engineering and regenerative medicine, in drug delivery and for phototherapies.
Collapse
Affiliation(s)
- Nicolas Muzzio
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| | | | - Gabriela Romero
- Department of Biomedical Engineering and Chemical Engineering, The University of Texas at San Antonio, San Antonio, TX 78249, USA.
| |
Collapse
|
3
|
Keyvan Rad J, Balzade Z, Mahdavian AR. Spiropyran-based advanced photoswitchable materials: A fascinating pathway to the future stimuli-responsive devices. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY C: PHOTOCHEMISTRY REVIEWS 2022. [DOI: 10.1016/j.jphotochemrev.2022.100487] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
4
|
Meares A, Susumu K, Mathur D, Lee SH, Mass OA, Lee J, Pensack RD, Yurke B, Knowlton WB, Melinger JS, Medintz IL. Synthesis of Substituted Cy5 Phosphoramidite Derivatives and Their Incorporation into Oligonucleotides Using Automated DNA Synthesis. ACS OMEGA 2022; 7:11002-11016. [PMID: 35415341 PMCID: PMC8991898 DOI: 10.1021/acsomega.1c06921] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Accepted: 02/14/2022] [Indexed: 05/03/2023]
Abstract
Cyanine dyes represent a family of organic fluorophores with widespread utility in biological-based applications ranging from real-time PCR probes to protein labeling. One burgeoning use currently being explored with indodicarbocyanine (Cy5) in particular is that of accessing exciton delocalization in designer DNA dye aggregate structures for potential development of light-harvesting devices and room-temperature quantum computers. Tuning the hydrophilicity/hydrophobicity of Cy5 dyes in such DNA structures should influence the strength of their excitonic coupling; however, the requisite commercial Cy5 derivatives available for direct incorporation into DNA are nonexistent. Here, we prepare a series of Cy5 derivatives that possess different 5,5'-substituents and detail their incorporation into a set of DNA sequences. In addition to varying dye hydrophobicity/hydrophilicity, the 5,5'-substituents, including hexyloxy, triethyleneglycol monomethyl ether, tert-butyl, and chloro groups were chosen so as to vary the inherent electron-donating/withdrawing character while also tuning their resulting absorption and emission properties. Following the synthesis of parent dyes, one of their pendant alkyl chains was functionalized with a monomethoxytrityl protective group with the remaining hydroxyl-terminated N-propyl linker permitting rapid, same-day phosphoramidite conversion and direct internal DNA incorporation into nascent oligonucleotides with moderate to good yields using a 1 μmole scale automated DNA synthesis. Labeled sequences were cleaved from the controlled pore glass matrix, purified by HPLC, and their photophysical properties were characterized. The DNA-labeled Cy5 derivatives displayed spectroscopic properties that paralleled the parent dyes, with either no change or an increase in fluorescence quantum yield depending upon sequence.
Collapse
Affiliation(s)
- Adam Meares
- Center
for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, Washington, D.C., Virginia 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Kimihiro Susumu
- Optical
Sciences Division Code 5600, U. S. Naval
Research Laboratory, Washington,
D.C., Virginia 20375, United States
- Jacobs
Corporation, Hanover, Maryland 21076, United
States
| | - Divita Mathur
- Center
for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, Washington, D.C., Virginia 20375, United States
- College
of Science, George Mason University, Fairfax, Virginia 22030, United States
| | - Sang Ho Lee
- Optical
Sciences Division Code 5600, U. S. Naval
Research Laboratory, Washington,
D.C., Virginia 20375, United States
- Jacobs
Corporation, Hanover, Maryland 21076, United
States
| | - Olga A. Mass
- Micron School
of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Jeunghoon Lee
- Micron School
of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Chemistry & Biochemistry, Boise State
University, Boise, Idaho 83725, United
States
| | - Ryan D. Pensack
- Micron School
of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Bernard Yurke
- Micron School
of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - William B. Knowlton
- Micron School
of Materials Science & Engineering, Boise State University, Boise, Idaho 83725, United States
- Department
of Electrical & Computer Engineering, Boise State University, Boise, Idaho 83725, United States
| | - Joseph S. Melinger
- Electronics
Science and Technology Division Code 6800, U.S. Naval Research Laboratory, Washington, D.C. 20375, United States
| | - Igor L. Medintz
- Center
for Bio/Molecular Science and Engineering Code 6900, U. S. Naval Research Laboratory, Washington, D.C., Virginia 20375, United States
| |
Collapse
|
5
|
Gao H, Liu G, Cui C, Wang M, Gao J. Preparation and properties of a polyurethane film based on novel photochromic spirooxazine chain extension. NEW J CHEM 2022. [DOI: 10.1039/d2nj00162d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A smart polyurethane material with good photoresponsiveness and reversible surface wettability based on a photoresponsive chain extender (SO–OH).
Collapse
Affiliation(s)
- He Gao
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province, 610065, China
| | - Guojie Liu
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province, 610065, China
| | - Congcong Cui
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province, 610065, China
| | - Min Wang
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province, 610065, China
| | - Jun Gao
- School of Chemical Engineering, Sichuan University, No. 24, South Section of First Ring Road, Wuhou District, Chengdu, Sichuan Province, 610065, China
| |
Collapse
|
6
|
Yamaguchi S, Takasaki Y, Yamahira S, Nagamune T. Photo-Cleavable Peptide-Poly(Ethylene Glycol) Conjugate Surfaces for Light-Guided Control of Cell Adhesion. MICROMACHINES 2020; 11:E762. [PMID: 32784375 PMCID: PMC7465029 DOI: 10.3390/mi11080762] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/31/2020] [Accepted: 08/06/2020] [Indexed: 12/17/2022]
Abstract
Photo-responsive cell attachment surfaces can simplify patterning and recovery of cells in microdevices for medicinal and pharmaceutical research. We developed a photo-responsive surface for controlling the attachment and release of adherent cells on a substrate under light-guidance. The surface comprises a poly(ethylene glycol) (PEG)-based photocleavable material that can conjugate with cell-adhesive peptides. Surface-bound peptides were released by photocleavage in the light-exposed region, where the cell attachment was subsequently suppressed by the exposed PEG. Simultaneously, cells selectively adhered to the peptide surface at the unexposed microscale region. After culture, the adhered and spread cells were released by exposure to a light with nontoxic dose level. Thus, the present surface can easily create both cell-adhesive and non-cell-adhesive regions on the substrate by single irradiation of the light pattern, and the adhered cells were selectively released from the light-exposed region on the cell micropattern without damage. This study shows that the photo-responsive surface can serve as a facile platform for the remote-control of patterning and recovery of adherent cells in microdevices.
Collapse
Affiliation(s)
- Satoshi Yamaguchi
- Research Center for Advanced Science and Technology, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8904, Japan
- Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Hon-cho, Kawaguchi, Saitama 351-0198, Japan
| | - Yumi Takasaki
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shinya Yamahira
- Center for Medical Sciences, St. Luke’s International University, 3-6-2 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Teruyuki Nagamune
- Department of Bioengineering, Graduate School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| |
Collapse
|
7
|
Suzuki M, Shiroguchi K. BSJ 2019 "Single-cell PRESTO" session. Biophys Rev 2020; 12:301-302. [PMID: 32006252 PMCID: PMC7242534 DOI: 10.1007/s12551-020-00624-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Accepted: 01/14/2020] [Indexed: 12/25/2022] Open
Affiliation(s)
- Madoka Suzuki
- Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Katsuyuki Shiroguchi
- Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), 6-2-3 Furuedai, Suita, Osaka, 565-0874, Japan
| |
Collapse
|
8
|
Hespel L, Dupré de Baubigny J, Lalanne P, de Beco S, Coppey M, Villard C, Humblot V, Marie E, Tribet C. Redox-Triggered Control of Cell Adhesion and Deadhesion on Poly(lysine)- g-poly(ethylene oxide) Adlayers. ACS APPLIED BIO MATERIALS 2019; 2:4367-4376. [DOI: 10.1021/acsabm.9b00601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Louise Hespel
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Julien Dupré de Baubigny
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Pierre Lalanne
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Simon de Beco
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Mathieu Coppey
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Catherine Villard
- Laboratoire Physico Chimie, Institut Curie, PSL Université, Sorbonne Université, CNRS UMR168, F-75005 Paris, France
| | - Vincent Humblot
- Laboratoire Réactivité de Surface, Sorbonne Université, CNRS UMR 7197, 4 Place Jussieu, F-75005 Paris, France
| | - Emmanuelle Marie
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| | - Christophe Tribet
- PASTEUR, Département de Chimie, École Normale Supérieure, PSL University, Sorbonne Université, CNRS, 75005 Paris, France
| |
Collapse
|