1
|
Mamidi N, Franco De Silva F, Orash Mahmoudsalehi A. Advanced disease therapeutics using engineered living drug delivery systems. NANOSCALE 2025; 17:7673-7696. [PMID: 40040419 DOI: 10.1039/d4nr05298f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Biological barriers significantly impede the delivery of nanotherapeutics to diseased tissues, diminishing therapeutic efficacy across pathologies such as cancer and inflammatory disorders. Although conventional strategies integrate multifunctional designs and molecular components into nanomaterials (NMs), many approaches remain insufficient to overcome these barriers. Key challenges, including inadequate drug accumulation at target sites and nonspecific biodistribution, persist in nanotherapeutic development. NMs, which harness the ability to precisely modulate drug delivery spatiotemporally and control release kinetics, represent a transformative platform for targeted cancer therapy. In this review, we highlight the biological obstacles limiting effective cancer treatment and evaluate how stimuli-responsive NMs address these constraints. By leveraging exogenous and endogenous stimuli, such NMs improve therapeutic specificity, reduce off-target effects, and amplify drug activity within pathological microenvironments. We systematically analyze the rational design and synthesis of stimuli-responsive NMs, driven by advances in oncology, biomaterials science, and nanoscale engineering. Furthermore, we highlight advances across NM classes-including polymeric, lipid-based, inorganic, and hybrid systems and explore functionalization approaches using targeting ligands, antibodies, and biomimetic coatings. Diverse delivery strategies are evaluated, such as small-molecule prodrug activation, peptide- and protein-based targeting, nucleic acid payloads, and engineered cell-mediated transport. Despite the promise of stimuli-responsive NMs, challenges such as biocompatibility, scalable fabrication, and clinical translation barriers must be addressed. By elucidating structure-function relationships and refining stimulus-triggered mechanisms, these NMs pave the way for transformative precision oncology strategies, enabling patient-specific therapies with enhanced efficacy and safety. This synthesis of interdisciplinary insights aims to catalyze innovation in next-generation nanomedicine for cancer treatment.
Collapse
Affiliation(s)
- Narsimha Mamidi
- Wisconsin Center for Nanobiosystems, School of Pharmacy, University of Wisconsin-Madison, Wisconsin-53705, USA.
| | - Fátima Franco De Silva
- Department of Food Engineering, Tecnologico de Monterrey, Monterrey, Nuevo Leon-64849, Mexico
| | - Amin Orash Mahmoudsalehi
- Tecnologico de Monterrey, Escuela de Ingeniería y Ciencias, Av. Eugenio Garza Sada 2501 Sur, Monterrey, Nuevo Leon-64849, Mexico
| |
Collapse
|
2
|
Chandra Joshi D, Gavhane UA, Jayakannan M. Melt Polycondensation Strategy to Access Unexplored l-Amino Acid and Sugar Copolymers. Biomacromolecules 2024; 25:7311-7322. [PMID: 39433287 DOI: 10.1021/acs.biomac.4c00993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Biodegradable polymers from bioresources are highly in demand for the development of sustainable polymer platforms for commodity plastics and in the biomedical field. Here, an elegant one-pot synthetic strategy is developed, for the first time, to access unexplored hybrid polymers from two naturally abundant resources: carbohydrates (sugars) and l-amino acids. A bottleneck in the synthetic strategy is overcome by tailor-making d-mannitol-based six- and five-membered bicyclic acetalized diols, and their structures are confirmed by single-crystal X-ray diffraction and 2D NMR spectroscopy. l-Amino acids are converted into ester-urethane functional monomers, and they are polymerized with sugar-diols under solvent-free melt polycondensation to yield biodegradable poly(ester-urethane)s. Acid-catalyzed deprotection yielded amphiphilic polymers having exclusively alternating residues of sugar and l-amino acid in the polymer backbone. The polymer is self-assembled into 200 ± 10 nm sized nanoparticles that can encapsulate fluorescent dyes, are nontoxic to cells up to 250 μg/mL, and are readily endocytosed for lysosomal enzymatic biodegradation at the cellular level.
Collapse
Affiliation(s)
- Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
3
|
Khuddus M, Gavhane UA, Jayakannan M. Structural Engineering of l-Aspartic Amphiphilic Polyesters for Enzyme-Responsive Drug Delivery and Bioimaging in Cancer Cells. ACS POLYMERS AU 2024; 4:392-404. [PMID: 39399886 PMCID: PMC11468698 DOI: 10.1021/acspolymersau.4c00013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Revised: 07/10/2024] [Accepted: 07/10/2024] [Indexed: 10/15/2024]
Abstract
Design and development of amphiphilic polyesters based on bioresources are very important to cater to the ever-growing need for biodegradable polymers in biomedical applications. Here, we report structural engineering of enzyme-responsive amphiphilic polyesters based on l-amino acid bioresources and study their drug delivery aspects in the cancer cell line. For this purpose, an l-aspartic acid-based polyester platform is chosen, and two noncovalent forces such as hydrogen bonding and side-chain hydrophobic interactions are introduced to study their effect on the aqueous self-assembly of nanoparticles. The synthetic strategy involves the development of l-aspartic acid-based dimethyl ester monomers with acetal and stearate side chains and subjecting them to solvent-free melt polycondensation reactions to produce side-chain-functionalized polyesters in the entire composition range. Postpolymerization acid catalyst deprotection of acetal yielded hydroxyl-functionalized polyesters. Amphiphilicity of the polymer is carefully fine-tuned by varying the composition of the stearate and hydroxyl units in the polymer chains to produce self-assembly in water. Various drugs such as camptothecin (CPT), curcumin (CUR), and doxorubicin (DOX) and biomarkers like 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt (HPTS), rose bengal (RB), and Nile red (NR) are successfully encapsulated in the polymer nanoparticles. Cytotoxicity of biodegradable polymer nanoparticles is tested in normal and breast cancer cell lines. The polymer nanoparticles are found to be highly biocompatible and delivered the anticancer drugs in the intracellular compartments of the cells.
Collapse
Affiliation(s)
- Mohammed Khuddus
- Department of Chemistry, Indian Institute of Science Education and Research
(IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research
(IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research
(IISER Pune), Dr. Homi Bhabha Road, Pune, Maharashtra 411008, India
| |
Collapse
|
4
|
Gavhane UA, Joshi DC, Jayakannan M. Size- and Shape-controlled Biodegradable Polymer Brushes Based on l-Amino Acid for Intracellular Drug Delivery and Deep-Tissue Penetration. Biomacromolecules 2024; 25:3756-3774. [PMID: 38713492 DOI: 10.1021/acs.biomac.4c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
We report size- and shape-controlled polymer brushes based on l-amino acid bioresource and study the role of polymer topology on the enzymatic biodegradation and deep-tissue penetration under in vitro and in vivo. For this purpose, l-tyrosine-based propargyl-functionalized monomer is tailor-made and polymerized via solvent-free melt polycondensation strategy to yield hydrophobic and clickable biodegradable poly(ester-urethane)s. Postpolymerization click chemistry strategy is applied to make well-defined amphiphilic one-dimensional rodlike and three-dimensional spherical polymer brushes by merely varying the lengths of PEG-azides in the reaction. These core-shell polymer brushes are found to be nontoxic and nonhemolytic and capable of loading clinical anticancer drug doxorubicin and deep-tissue penetrable near-infrared biomarker IR-780. In vitro enzymatic drug-release kinetics and lysotracker-assisted real-time live-cell confocal bioimaging revealed that the rodlike polymer brush is superior than its spherical counterparts for faster cellular uptake and enzymatic biodegradation at the endolysosomal compartments to release DOX at the nucleus. Further, in vivo live-animal bioimaging by IVIS technique established that the IR-780-loaded rodlike polymer brush exhibited efficient deep-tissue penetration ability and emphasized the importance of polymer brush topology control for biological activity. Polymer brushes exhibit good stability in the blood plasma for more than 72 h, they predominately accumulate in the digestive organs like liver and kidney, and they are less toxic to heart and brain tissues. IVIS imaging of cryotome tissue slices of organs confirmed the deep-penetrating ability of the polymer brushes. The present investigation opens opportunity for bioderived and biodegradable polymer brushes as next-generation smart drug-delivery scaffolds.
Collapse
Affiliation(s)
- Utreshwar Arjun Gavhane
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
5
|
Mohammed-Sadhakathullah AHM, Paulo-Mirasol S, Torras J, Armelin E. Advances in Functionalization of Bioresorbable Nanomembranes and Nanoparticles for Their Use in Biomedicine. Int J Mol Sci 2023; 24:10312. [PMID: 37373461 PMCID: PMC10299464 DOI: 10.3390/ijms241210312] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Bioresorbable nanomembranes (NMs) and nanoparticles (NPs) are powerful polymeric materials playing an important role in biomedicine, as they can effectively reduce infections and inflammatory clinical patient conditions due to their high biocompatibility, ability to physically interact with biomolecules, large surface area, and low toxicity. In this review, the most common bioabsorbable materials such as those belonging to natural polymers and proteins for the manufacture of NMs and NPs are reviewed. In addition to biocompatibility and bioresorption, current methodology on surface functionalization is also revisited and the most recent applications are highlighted. Considering the most recent use in the field of biosensors, tethered lipid bilayers, drug delivery, wound dressing, skin regeneration, targeted chemotherapy and imaging/diagnostics, functionalized NMs and NPs have become one of the main pillars of modern biomedical applications.
Collapse
Affiliation(s)
- Ahammed H. M. Mohammed-Sadhakathullah
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Sofia Paulo-Mirasol
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Juan Torras
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| | - Elaine Armelin
- Departament d’Enginyeria Química, EEBE, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.2, 08019 Barcelona, Spain; (A.H.M.M.-S.); (S.P.-M.)
- Barcelona Research Center for Multiscale Science and Engineering, Universitat Politècnica de Catalunya, C/Eduard Maristany, 10-14, Ed. I.S, 08019 Barcelona, Spain
| |
Collapse
|
6
|
Khuddus M, Jayakannan M. Melt Polycondensation Strategy for Amide-Functionalized l-Aspartic Acid Amphiphilic Polyester Nano-assemblies and Enzyme-Responsive Drug Delivery in Cancer Cells. Biomacromolecules 2023. [PMID: 37186892 DOI: 10.1021/acs.biomac.3c00127] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Aliphatic polyesters are intrinsically enzymatic-biodegradable, and there is ever-increasing demand for safe and smart next-generation biomaterials including drug delivery nano-vectors in cancer research. Using bioresource-based biodegradable polyesters is one of the elegant strategies to meet this requirement; here, we report an l-amino acid-based amide-functionalized polyester platform and explore their lysosomal enzymatic biodegradation aspects to administrate anticancer drugs in cancer cells. l-Aspartic acid was chosen and different amide-side chain-functionalized di-ester monomers were tailor-made having aromatic, aliphatic, and bio-source pendant units. Under solvent-free melt polycondensation methodology; these monomers underwent polymerization to yield high molecular weight polyesters with tunable thermal properties. PEGylated l-aspartic monomer was designed to make thermo-responsive amphiphilic polyesters. This amphiphilic polyester was self-assembled into a 140 ± 10 nm-sized spherical nanoparticle in aqueous medium, which exhibited lower critical solution temperature at 40-42 °C. The polyester nano-assemblies showed excellent encapsulation capabilities for anticancer drug doxorubicin (DOX), anti-inflammatory drug curcumin, biomarkers such as rose bengal (RB), and 8-hydroxypyrene-1,3,6-trisulfonic acid trisodium salt. The amphiphilic polyester NP was found to be very stable under extracellular conditions and underwent degradation upon exposure to horse liver esterase enzyme in phosphate-buffered saline at 37 °C to release 90% of the loaded cargoes. Cytotoxicity studies in breast cancer MCF 7 and wild-type mouse embryonic fibroblasts cell lines revealed that the amphiphilic polyester was non-toxic to cell lines up to 100 μg/mL, while their drug-loaded polyester nanoparticles were able to inhibit the cancerous cell growth. Temperature-dependent cellular uptake studies further confirmed the energy-dependent endocytosis of polymer NPs across the cellular membranes. Confocal laser scanning microscopy assisted time-dependent cellular uptake analysis directly evident for the endocytosis of DOX loaded polymer NP and their internalization for biodegradation. In a nutshell, the present investigation opens up an avenue for the l-amino acid-based biodegradable polyesters from l-aspartic acids, and the proof of concept is demonstrated for drug delivery in the cancer cell line.
Collapse
Affiliation(s)
- Mohammed Khuddus
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
7
|
Ghosh R, Jayakannan M. Theranostic FRET Gate to Visualize and Quantify Bacterial Membrane Breaching. Biomacromolecules 2023; 24:739-755. [PMID: 36598256 DOI: 10.1021/acs.biomac.2c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Designing new antimicrobial-cum-probes to study real-time bacterial membrane breaching and concurrently developing inquisitorial image-based analytical tools is essential for the treatment of infectious diseases. An array of aggregation-induced emission (AIE) polymers (donor) consisting of neutral, anionic, and cationic charges were designed and employed as antimicrobial theranostic gatekeepers for the permeabilization of the peptidoglycan layer-adherable crystal violet (CV, acceptor). An AIE-active tetraphenylethylene (TPE)-tagged polycaprolactone biodegradable platform was chosen, and their self-assembled tiny amphiphilic nanoparticles were employed as a gatekeeper in the construction of bacterial membrane-reinforced fluorescent resonance energy transfer (FRET) probes. Electrostatic adhering of the cationic AIE polymer and subsequent gate opening aided fluorescent FRET probe activation on the membrane of Gram-negative bacteria, Escherichia coli. The selective photoexcitation energy transfer process in confocal microscopy experiments facilitated the building of a visualization-based FRET assay for the quantification of bactericidal activity. Nonantimicrobial AIE polymers (neutral and anionic) did not breach the bacterial membrane, resulting in no FRET signal. Detailed photophysical studies were done to establish the FRET probe mechanism, and a proof of concept was established.
Collapse
Affiliation(s)
- Ruma Ghosh
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
8
|
Balafouti A, Pispas S. Hyperbranched Polyelectrolyte Copolymers as Novel Candidate Delivery Systems for Bio-Relevant Compounds. MATERIALS (BASEL, SWITZERLAND) 2023; 16:1045. [PMID: 36770053 PMCID: PMC9921860 DOI: 10.3390/ma16031045] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 01/18/2023] [Accepted: 01/20/2023] [Indexed: 06/12/2023]
Abstract
In this study, reversible addition-fragmentation chain transfer (RAFT) polymerization is utilized in order to synthesize novel hyperbranched poly(oligoethylene glycol) methyl ether methacrylate-co-tert-butyl methacrylate-co-methacrylic acid) (H-[P(OEGMA-co-tBMA-co-MAA)]) copolymers in combination with selective hydrolysis reactions. The copolymers showing amphiphilicity induced by the polar OEGMA and hydrophobic tBMA monomeric units, and polyelectrolyte character due to MAA units, combined with unique macromolecular architecture were characterized by physicochemical techniques, such as size exclusion chromatography (SEC) and 1H-NMR spectroscopy. The hyperbranched copolymers were investigated in terms of their ability to self-assemble into nanostructures when dissolved in aqueous media. Dynamic light scattering and fluorescence spectroscopy revealed multimolecular aggregates of nanoscale dimensions with low critical aggregation concentration, the size and mass of which depend on copolymer composition and solution conditions, whereas zeta potential measurements indicated pH sensitive features. In addition, aiming to evaluate their potential use as nanocarriers, the copolymers were studied in terms of their drug encapsulation and protein complexation ability utilizing curcumin and lysozyme, as a model hydrophobic drug and a model cationic protein, respectively.
Collapse
Affiliation(s)
| | - Stergios Pispas
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Ave., 11635 Athens, Greece
| |
Collapse
|
9
|
Chandra Joshi D, Ashokan A, Jayakannan M. l-Amino Acid Based Phenol- and Catechol-Functionalized Poly(ester-urethane)s for Aromatic π-Interaction Driven Drug Stabilization and Their Enzyme-Responsive Delivery in Cancer Cells. ACS APPLIED BIO MATERIALS 2022; 5:5432-5444. [PMID: 36318654 DOI: 10.1021/acsabm.2c00775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Exploiting aromatic π-interaction for the stabilization of polyaromatic anticancer drugs at the core of the polymer nanoassemblies is an elegant approach for drug delivery in cancer research. To demonstrate this concept, here we report one of the first attempts on enzyme-responsive polymers from aryl-unit containing amino acid bioresources such as l-tyrosine and 3,4-dihydroxy-l-phenylalanine (l-DOPA). A silyl ether protection strategy was adopted to make melt polymerizable monomers, which were subjected to solvent free melt polycondensation to produce silyl-protected poly(ester-urethane)s. Postpolymerization deprotection yielded phenol- and catechol-functionalized poly(ester-urethane)s with appropriate amphiphilicity and produced 100 ± 10 nm size nanoparticles in an aqueous solution. The aromatic π-core in the nanoparticle turns out to be the main driving force for the successful encapsulation of anticancer drugs such as doxorubicin (DOX) and topotecan (TPT). The electron-rich catechol aromatic unit in l-DOPA was found to be unique in stabilizing the DOX and TPT, whereas its l-tyrosine counterpart was found to exhibit limited success. Aromatic π-interactions between l-DOPA and anticancer drug molecules were established by probing the fluorescence characteristics of the drug-polymer chain interactions. Lysosomal enzymatic biodegradation of the poly(ester-urethane) backbone disassembled the nanoparticles and released the loaded drugs at the cellular level. The nascent polymer was nontoxic in breast cancer (MCF7) and WT-MEF cell lines, whereas its DOX and TPT loaded nanoparticles showed remarkable cell growth inhibition. A LysoTracker-assisted confocal microscopic imaging study directly evidenced the polymer nanoparticles' biodegradation at the intracellular level. The present investigation gives an opportunity to design aromatic π-interaction driven drug stabilization in l-amino acid based polymer nanocarriers for drug delivery applications.
Collapse
Affiliation(s)
- Dheeraj Chandra Joshi
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Akash Ashokan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER Pune), Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|
10
|
Muthwill MS, Kong P, Dinu IA, Necula D, John C, Palivan CG. Tailoring Polymer-Based Nanoassemblies for Stimuli-Responsive Theranostic Applications. Macromol Biosci 2022; 22:e2200270. [PMID: 36100461 DOI: 10.1002/mabi.202200270] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/28/2022] [Indexed: 12/25/2022]
Abstract
Polymer assemblies on the nanoscale represent a powerful toolbox for the design of theranostic systems when combined with both therapeutic compounds and diagnostic reporting ones. Here, recent advances in the design of theranostic systems for various diseases, containing-in their architecture-either polymers or polymer assemblies as one of the building blocks are presented. This review encompasses the general principles of polymer self-assembly, from the production of adequate copolymers up to supramolecular assemblies with theranostic functionality. Such polymer nanoassemblies can be further tailored through the incorporation of inorganic nanoparticles to endow them with multifunctional therapeutic and/or diagnostic features. Systems that change their architecture or properties in the presence of stimuli are selected, as responsivity to changes in the environment is a key factor for enhancing efficiency. Such theranostic systems are based on the intrinsic properties of copolymers or one of the other components. In addition, systems with a more complex architecture, such as multicompartments, are presented. Selected systems indicate the advantages of such theranostic approaches and provide a basis for further developments in the field.
Collapse
Affiliation(s)
- Moritz S Muthwill
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| | - Phally Kong
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Ionel Adrian Dinu
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Danut Necula
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Christoph John
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, BPR 1096, Basel, 4058, Switzerland.,NCCR-Molecular Systems Engineering, Mattenstrasse 24a, BPR 1095, Basel, 4058, Switzerland
| |
Collapse
|
11
|
Cook A, Decuzzi P. Harnessing Endogenous Stimuli for Responsive Materials in Theranostics. ACS NANO 2021; 15:2068-2098. [PMID: 33555171 PMCID: PMC7905878 DOI: 10.1021/acsnano.0c09115] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Accepted: 02/02/2021] [Indexed: 05/04/2023]
Abstract
Materials that respond to endogenous stimuli are being leveraged to enhance spatiotemporal control in a range of biomedical applications from drug delivery to diagnostic tools. The design of materials that undergo morphological or chemical changes in response to specific biological cues or pathologies will be an important area of research for improving efficacies of existing therapies and imaging agents, while also being promising for developing personalized theranostic systems. Internal stimuli-responsive systems can be engineered across length scales from nanometers to macroscopic and can respond to endogenous signals such as enzymes, pH, glucose, ATP, hypoxia, redox signals, and nucleic acids by incorporating synthetic bio-inspired moieties or natural building blocks. This Review will summarize response mechanisms and fabrication strategies used in internal stimuli-responsive materials with a focus on drug delivery and imaging for a broad range of pathologies, including cancer, diabetes, vascular disorders, inflammation, and microbial infections. We will also discuss observed challenges, future research directions, and clinical translation aspects of these responsive materials.
Collapse
Affiliation(s)
- Alexander
B. Cook
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| | - Paolo Decuzzi
- Laboratory of Nanotechnology
for Precision Medicine, Istituto Italiano
di Tecnologia, Via Morego
30, 16163 Genova, Italy
| |
Collapse
|
12
|
Insight into Fluorescence Imaging and Bioorthogonal Reactions in Biological Analysis. Top Curr Chem (Cham) 2021; 379:10. [DOI: 10.1007/s41061-020-00323-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 12/22/2020] [Indexed: 02/07/2023]
|
13
|
Deshpande NU, Virmani M, Jayakannan M. An AIE-driven fluorescent polysaccharide polymersome as an enzyme-responsive FRET nanoprobe to study the real-time delivery aspects in live cells. Polym Chem 2021. [DOI: 10.1039/d0py01085e] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
An enzyme-responsive FRET nanoprobe was designed and developed based on AIE-driven fluorescent polysaccharide polymersomes to study the real-time delivery aspects in the intracellular compartments in live cancer cells.
Collapse
Affiliation(s)
- Nilesh Umakant Deshpande
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER Pune)
- Pune 411008
- India
| | - Mishika Virmani
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER Pune)
- Pune 411008
- India
| | - Manickam Jayakannan
- Department of Chemistry
- Indian Institute of Science Education and Research (IISER Pune)
- Pune 411008
- India
| |
Collapse
|
14
|
Tutoni G, Becker ML. Underexplored Stereocomplex Polymeric Scaffolds with Improved Thermal and Mechanical Properties. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01468] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Gianna Tutoni
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
| | - Matthew L. Becker
- Department of Chemistry, Duke University, Durham, North Carolina 27708, United States
- Department of Mechanical Engineering and Material Science, Biomedical Engineering, Orthopedic Surgery, Duke University, Durham, North Carolina 27708, United States
| |
Collapse
|
15
|
Yang Y, Zeng W, Huang P, Zeng X, Mei L. Smart materials for drug delivery and cancer therapy. VIEW 2020. [DOI: 10.1002/viw.20200042] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Yao Yang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Weiwei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Ping Huang
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Xiaowei Zeng
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
| | - Lin Mei
- Institute of Pharmaceutics School of Pharmaceutical Sciences (Shenzhen) Sun Yat‐sen University Shenzhen China
- Tianjin Key Laboratory of Biomedical Materials Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy Institute of Biomedical Engineering Chinese Academy of Medical Sciences & Peking Union Medical College Tianjin China
| |
Collapse
|
16
|
A design of fluorescence-based sensor for the detection of dopamine via FRET as well as live cell imaging. Microchem J 2020. [DOI: 10.1016/j.microc.2020.105590] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Veloso SRS, Andrade RGD, Ribeiro BC, Fernandes AVF, Rodrigues ARO, Martins JA, Ferreira PMT, Coutinho PJG, Castanheira EMS. Magnetoliposomes Incorporated in Peptide-Based Hydrogels: Towards Development of Magnetolipogels. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1702. [PMID: 32872453 PMCID: PMC7558371 DOI: 10.3390/nano10091702] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 08/23/2020] [Accepted: 08/27/2020] [Indexed: 12/02/2022]
Abstract
A major problem with magnetogels is the encapsulation of hydrophobic drugs. Magnetoliposomes not only provide these domains but also improve drug stability and avert the aggregation of the magnetic nanoparticles. In this work, two magnetoliposome architectures, solid and aqueous, were combined with supramolecular peptide-based hydrogels, which are of biomedical interest owing to their biocompatibility, easy tunability, and wide array of applications. This proof-of-concept was carried out through combination of magnetoliposomes (loaded with the model drug curcumin and the lipid probe Nile Red) with the hydrogels prior to pH triggered gelation, and fluorescence spectroscopy was used to assess the dynamics of the encapsulated molecules. These systems allow for the encapsulation of a wider array of drugs. Further, the local environment of the encapsulated molecules after gelation is unaffected by the used magnetoliposome architecture. This system design is promising for future developments on drug delivery as it provides a means to independently modify the components and adapt and optimize the design according to the required conditions.
Collapse
Affiliation(s)
- Sérgio R. S. Veloso
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (R.G.D.A.); (B.C.R.); (A.V.F.F.); (A.R.O.R.); (P.J.G.C.)
| | - Raquel G. D. Andrade
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (R.G.D.A.); (B.C.R.); (A.V.F.F.); (A.R.O.R.); (P.J.G.C.)
| | - Beatriz C. Ribeiro
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (R.G.D.A.); (B.C.R.); (A.V.F.F.); (A.R.O.R.); (P.J.G.C.)
| | - André V. F. Fernandes
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (R.G.D.A.); (B.C.R.); (A.V.F.F.); (A.R.O.R.); (P.J.G.C.)
| | - A. Rita O. Rodrigues
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (R.G.D.A.); (B.C.R.); (A.V.F.F.); (A.R.O.R.); (P.J.G.C.)
| | - J. A. Martins
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Paula M. T. Ferreira
- Centre of Chemistry (CQUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (J.A.M.); (P.M.T.F.)
| | - Paulo J. G. Coutinho
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (R.G.D.A.); (B.C.R.); (A.V.F.F.); (A.R.O.R.); (P.J.G.C.)
| | - Elisabete M. S. Castanheira
- Centre of Physics (CFUM), University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal; (S.R.S.V.); (R.G.D.A.); (B.C.R.); (A.V.F.F.); (A.R.O.R.); (P.J.G.C.)
| |
Collapse
|
18
|
Saxena S, Jayakannan M. Development of l-Amino-Acid-Based Hydroxyl Functionalized Biodegradable Amphiphilic Polyesters and Their Drug Delivery Capabilities to Cancer Cells. Biomacromolecules 2019; 21:171-187. [DOI: 10.1021/acs.biomac.9b01124] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Sonashree Saxena
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| | - Manickam Jayakannan
- Department of Chemistry, Indian Institute of Science Education and Research (IISER) Pune, Dr. Homi Bhabha Road, Pune 411008, Maharashtra, India
| |
Collapse
|