1
|
Mukherjee S, Chakravarty S, Haldar J. Revitalizing Antibiotics with Macromolecular Engineering: Tackling Gram-Negative Superbugs and Mixed Species Bacterial Biofilm Infections In Vivo. Biomacromolecules 2025; 26:2211-2226. [PMID: 40040432 DOI: 10.1021/acs.biomac.4c01520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
The escalating prevalence of multidrug-resistant Gram-negative pathogens, coupled with dwindling antibiotic development, has created a critical void in the clinical pipeline. This alarming issue is exacerbated by the formation of biofilms by these superbugs and their frequent coexistence in mixed-species biofilms, conferring extreme antibiotic tolerance. Herein, we present an amphiphilic cationic macromolecule, ACM-AHex, as an innovative antibiotic adjuvant to rejuvenate and repurpose resistant antibiotics, for instance, rifampicin, fusidic acid, erythromycin, and chloramphenicol. ACM-AHex mildly perturbs the bacterial membrane, enhancing antibiotic permeability, hampers efflux machinery, and produces reactive oxygen species, resulting in a remarkable 64-1024-fold potentiation in antibacterial activity. The macromolecule reduces bacterial virulence and macromolecule-drug cocktail significantly eradicate both mono- and multispecies bacterial biofilms, achieving >99.9% bacterial reduction in the murine biofilm infection model. Demonstrating potent biocompatibility across multiple administration routes, ACM-AHex offers a promising strategy to restore obsolete antibiotics and combat recalcitrant Gram-negative biofilm-associated infections, advocating for further clinical evaluation as a next-generation macromolecular antibiotic adjuvant.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Sayan Chakravarty
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
- School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka 560064, India
| |
Collapse
|
2
|
Barman S, Kurnaz LB, Leighton R, Hossain MW, Decho AW, Tang C. Intrinsic antimicrobial resistance: Molecular biomaterials to combat microbial biofilms and bacterial persisters. Biomaterials 2024; 311:122690. [PMID: 38976935 PMCID: PMC11298303 DOI: 10.1016/j.biomaterials.2024.122690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 05/13/2024] [Accepted: 06/26/2024] [Indexed: 07/10/2024]
Abstract
The escalating rise in antimicrobial resistance (AMR) coupled with a declining arsenal of new antibiotics is imposing serious threats to global public health. A pervasive aspect of many acquired AMR infections is that the pathogenic microorganisms exist as biofilms, which are equipped with superior survival strategies. In addition, persistent and recalcitrant infections are seeded with bacterial persister cells at infection sites. Together, conventional antibiotic therapeutics often fail in the complete treatment of infections associated with bacterial persisters and biofilms. Novel therapeutics have been attempted to tackle AMR, biofilms, and persister-associated complex infections. This review focuses on the progress in designing molecular biomaterials and therapeutics to address acquired and intrinsic AMR, and the fundamental microbiology behind biofilms and persisters. Starting with a brief introduction of AMR basics and approaches to tackling acquired AMR, the emphasis is placed on various biomaterial approaches to combating intrinsic AMR, including (1) semi-synthetic antibiotics; (2) macromolecular or polymeric biomaterials mimicking antimicrobial peptides; (3) adjuvant effects in synergy; (4) nano-therapeutics; (5) nitric oxide-releasing antimicrobials; (6) antimicrobial hydrogels; (7) antimicrobial coatings. Particularly, the structure-activity relationship is elucidated in each category of these biomaterials. Finally, illuminating perspectives are provided for the future design of molecular biomaterials to bypass AMR and cure chronic multi-drug resistant (MDR) infections.
Collapse
Affiliation(s)
- Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States; Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Ryan Leighton
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States
| | - Md Waliullah Hossain
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Alan W Decho
- Department of Environmental Health Sciences, University of South Carolina, Columbia, SC, 29208, United States.
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
3
|
Li H, Zhu X, Zhang X, Dong C. Caspofungin enhances the potency of rifampin against Gram-negative bacteria. Front Microbiol 2024; 15:1447485. [PMID: 39211315 PMCID: PMC11358092 DOI: 10.3389/fmicb.2024.1447485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Introduction Developing antibiotic adjuvants is an effective strategy to combat antimicrobial resistance (AMR). The envelope of Gram-negative bacteria (GNB) is a barrier to prevent the entry of antibiotics, making it an attractive target for novel antibiotic and adjuvant development. Methods and Results In this study, we identified Caspofungin acetate (CAS) as an antibiotic adjuvant against GNB in the repurposing screen of 3,158 FDA-approved drugs. Checkerboard assays suggested that CAS could enhance the antimicrobial activity of rifampin or colistin against various GNB strains in vitro, Moreover, Galleria mellonella larvae infection model also indicated that CAS significantly potentiated the efficacy of rifampin against multidrug-resistant Escherichia coli 72 strain in vivo. Most importantly, resistance development assay showed that CAS was less susceptible to accelerating the resistance development of drug-sensitive strain E. coli MG1655. Functional studies and RNA-seq analysis confirmed that the mechanisms by which CAS enhanced the antimicrobial activities of antibiotics were involved in permeabilizing the bacterial cell envelope, disrupting proton motive force and inhibiting bacterial biofilm formation. Additionally, it has been found that PgaC is the CAS target and enzymatic assay has confirmed the inhibition activity. Discussion Our results illustrate the feasibility of CAS as an antibiotic adjuvant against GNB, which is an alternative strategy of anti-infection.
Collapse
Affiliation(s)
- Haotian Li
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xiaojing Zhu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Xing Zhang
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
4
|
Mukherjee S, Shinde SV, Talukdar P, Haldar J. Unveiling the potent activity of a synthetic ion transporter against multidrug-resistant Gram-positive bacteria and biofilms. RSC Med Chem 2024; 15:2127-2137. [PMID: 38911153 PMCID: PMC11187549 DOI: 10.1039/d4md00002a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 04/25/2024] [Indexed: 06/25/2024] Open
Abstract
The increasing prevalence of drug-resistant infections caused by Gram-positive bacteria poses a significant threat to public healthcare. These pathogens exhibit not only smart resistance mechanisms but also form impenetrable biofilms on various surfaces, rendering them resilient to conventional therapies. In this study, we present the potent antibacterial activity of a synthetic ion transporter T against multi-drug resistant (MDR) Gram-positive pathogens, with minimum inhibitory concentration (MIC) values ranging from 0.5 to 2 μg mL-1. The compound demonstrates high selectivity with negligible toxicity towards mammalian cells (HC50 = 810 μg mL-1). It exhibits fast killing kinetics, completely eliminating >5 log bacterial cells within 12 h. Moreover, the compound displays efficacy against both planktonic bacteria and preformed biofilms of methicillin-resistant S. aureus (MRSA), reducing the bacterial burden within the biofilm by 2 log. Mechanistic investigations reveal that the ion transporter depolarizes the bacterial membrane potential and enhances membrane permeability. Additionally, it generates reactive oxygen species, contributing to its bactericidal activity. Notably, MRSA did not exhibit detectable resistance to the ion transporter even after serial passaging for 10 days. Collectively, this novel class of ion transporter holds promise as a therapeutic candidate for combating infections caused by multi-drug resistant Gram-positive bacteria.
Collapse
Affiliation(s)
- Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, JNCASR Jakkur Bangalore-560064 India
| | - Sopan Valiba Shinde
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Pinaki Talukdar
- Department of Chemistry, Indian Institute of Science Education and Research Pune Dr. Homi Bhabha Road, Pashan Pune 411008 Maharashtra India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, JNCASR Jakkur Bangalore-560064 India
- School of Advanced Materials, JNCASR Jakkur Bangalore-560064 India
| |
Collapse
|
5
|
Kurnaz LB, Barman S, Yang X, Fisher C, Outten FW, Nagarkatti P, Nagarkatti M, Tang C. Facial amphiphilic naphthoic acid-derived antimicrobial polymers against multi-drug resistant gram-negative bacteria and biofilms. Biomaterials 2023; 301:122275. [PMID: 37619264 PMCID: PMC10530118 DOI: 10.1016/j.biomaterials.2023.122275] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Revised: 07/19/2023] [Accepted: 08/09/2023] [Indexed: 08/26/2023]
Abstract
Inspired by the facial amphiphilic nature and antimicrobial efficacy of many antimicrobial peptides, this work reported facial amphiphilic bicyclic naphthoic acid derivatives with different ratios of charges to rings that were installed onto side chains of poly(glycidyl methacrylate). Six quaternary ammonium-charged (QAC) polymers were prepared to investigate the structure-activity relationship. These QAC polymers displayed potent antibacterial activity against various multi-drug resistant (MDR) gram-negative pathogens such as Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and Acinetobacter baumannii. Polymers demonstrated low hemolysis and high antimicrobial selectivity. Additionally, they were able to eradicate established biofilms and kill metabolically inactive dormant cells. The membrane permeabilization and depolarization results indicated a mechanism of action through membrane disruption. Two lead polymers showed no resistance from MDR-P. aeruginosa and MDR-K. pneumoniae. These facial amphiphiles are potentially a new class of potent antimicrobial agents to tackle the antimicrobial resistance for both planktonic and biofilm-related infections.
Collapse
Affiliation(s)
- Leman Buzoglu Kurnaz
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Swagatam Barman
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Xiaoming Yang
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Claire Fisher
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - F Wayne Outten
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States
| | - Prakash Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Mitzi Nagarkatti
- Department of Pathology, Microbiology and Immunology, University of South Carolina, School of Medicine, Columbia, SC, 29209, United States
| | - Chuanbing Tang
- Department of Chemistry and Biochemistry, University of South Carolina, Columbia, SC, 29208, United States.
| |
Collapse
|
6
|
Bai W, Hu Y, Zhao J, Shi L, Ge C, Zhu Z, Rao J. Precision Dosing of Antibiotics and Potentiators by Hypoxia-Responsive Nanoparticles for Overcoming Antibiotic Resistance in Gram-Negative Bacteria. ACS Macro Lett 2023; 12:1193-1200. [PMID: 37590266 DOI: 10.1021/acsmacrolett.3c00365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/19/2023]
Abstract
The stalling development of antibiotics, especially against intrinsically resistant Gram-negative pathogens associated with outer membranes, leads to an emerging antibiotic crisis across the globe. To breathe life into existing drugs, we herein report a hypoxia-responsive nanoparticle (NP) that encapsulates a hydrophobic antibiotic, rifampicin, and a cationic potentiator, polysulfonium. The simultaneous release of antibiotics and potentiators can be promoted and inhibited in response to the severity of bacterial-induced hypoxia, leading to antimicrobial dosing in a precision manner. Under the synergism of polysulfoniums with membrane-disruption capability, the NPs can intensively decrease the antibiotic dose by up to 66-95% in eliminating planktonic Gram-negative P. aeruginosa bacteria and achieve an 8-log reduction of bacteria in mature biofilms at rifampicin MIC. The NP formulation demonstrates that precision dosing of antibiotics and potentiators regulated by hypoxia provides a promising strategy to maximize efficacy and minimize toxicity in treating Gram-negative bacterial infection.
Collapse
Affiliation(s)
- Weiguang Bai
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Yongjin Hu
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Jinghua Zhao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Liuqi Shi
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| | - Chunhua Ge
- College of Chemistry, Liaoning University, Shenyang 110036, PR China
| | - Zhiyuan Zhu
- Taizhou Research Institute, Southern University of Science and Technology, Taizhou, Zhejiang 318001, PR China
| | - Jingyi Rao
- Hubei Key Laboratory of Material Chemistry and Service Failure, Hubei Engineering Research Center for Biomaterials and Medical Protective Materials, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, PR China
| |
Collapse
|
7
|
Dhanda G, Acharya Y, Haldar J. Antibiotic Adjuvants: A Versatile Approach to Combat Antibiotic Resistance. ACS OMEGA 2023; 8:10757-10783. [PMID: 37008128 PMCID: PMC10061514 DOI: 10.1021/acsomega.3c00312] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Accepted: 02/21/2023] [Indexed: 06/13/2023]
Abstract
The problem of antibiotic resistance is on the rise, with multidrug-resistant strains emerging even to the last resort antibiotics. The drug discovery process is often stalled by stringent cut-offs required for effective drug design. In such a scenario, it is prudent to delve into the varying mechanisms of resistance to existing antibiotics and target them to improve antibiotic efficacy. Nonantibiotic compounds called antibiotic adjuvants which target bacterial resistance can be used in combination with obsolete drugs for an improved therapeutic regime. The field of "antibiotic adjuvants" has gained significant traction in recent years where mechanisms other than β-lactamase inhibition have been explored. This review discusses the multitude of acquired and inherent resistance mechanisms employed by bacteria to resist antibiotic action. The major focus of this review is how to target these resistance mechanisms by the use of antibiotic adjuvants. Different types of direct acting and indirect resistance breakers are discussed including enzyme inhibitors, efflux pump inhibitors, inhibitors of teichoic acid synthesis, and other cellular processes. The multifaceted class of membrane-targeting compounds with poly pharmacological effects and the potential of host immune-modulating compounds have also been reviewed. We conclude with providing insights about the existing challenges preventing clinical translation of different classes of adjuvants, especially membrane-perturbing compounds, and a framework about the possible directions which can be pursued to fill this gap. Antibiotic-adjuvant combinatorial therapy indeed has immense potential to be used as an upcoming orthogonal strategy to conventional antibiotic discovery.
Collapse
Affiliation(s)
- Geetika Dhanda
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Yash Acharya
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| | - Jayanta Haldar
- Antimicrobial
Research Laboratory, New Chemistry Unit and School of Advanced
Materials, Jawaharlal Nehru Centre for Advanced
Scientific Research (JNCASR), Jakkur, Bengaluru 560064, Karnataka, India
| |
Collapse
|
8
|
Wesseling CJ, Martin NI. Synergy by Perturbing the Gram-Negative Outer Membrane: Opening the Door for Gram-Positive Specific Antibiotics. ACS Infect Dis 2022; 8:1731-1757. [PMID: 35946799 PMCID: PMC9469101 DOI: 10.1021/acsinfecdis.2c00193] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
New approaches to target antibacterial agents toward Gram-negative bacteria are key, given the rise of antibiotic resistance. Since the discovery of polymyxin B nonapeptide as a potent Gram-negative outer membrane (OM)-permeabilizing synergist in the early 1980s, a vast amount of literature on such synergists has been published. This Review addresses a range of peptide-based and small organic compounds that disrupt the OM to elicit a synergistic effect with antibiotics that are otherwise inactive toward Gram-negative bacteria, with synergy defined as a fractional inhibitory concentration index (FICI) of <0.5. Another requirement for the inclusion of the synergists here covered is their potentiation of a specific set of clinically used antibiotics: erythromycin, rifampicin, novobiocin, or vancomycin. In addition, we have focused on those synergists with reported activity against Gram-negative members of the ESKAPE family of pathogens namely, Escherichia coli, Pseudomonas aeruginosa, Klebsiella pneumoniae, and/or Acinetobacter baumannii. In cases where the FICI values were not directly reported in the primary literature but could be calculated from the published data, we have done so, allowing for more direct comparison of potency with other synergists. We also address the hemolytic activity of the various OM-disrupting synergists reported in the literature, an effect that is often downplayed but is of key importance in assessing the selectivity of such compounds for Gram-negative bacteria.
Collapse
|
9
|
Ghosh S, Mukherjee S, Patra D, Haldar J. Polymeric Biomaterials for Prevention and Therapeutic Intervention of Microbial Infections. Biomacromolecules 2022; 23:592-608. [PMID: 35188749 DOI: 10.1021/acs.biomac.1c01528] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The escalating emergence of multidrug-resistant (MDR) pathogens and their ability to colonize into biofilms on a multitude of surfaces have struck global health as a nightmare. The stagnation in the development of antibiotics and the deterioration of clinical pipelines have incited an invigorating search for smart and innovative alternatives in the scientific community. Further, a steep rise in the usage of biomedical devices and implants has resulted in an accelerated occurrence of infections. Toward the goal of mitigation of the aforementioned challenges, antimicrobial polymers have stood out as an astounding option. In this perspective, we highlight our contribution to the field of polymeric biomaterials for tackling antimicrobial resistance (AMR) and infections. Polymers inspired from antimicrobial peptides (AMPs) have been utilized as therapeutic interventions to curb MDR infections and also to rejuvenate obsolete antibiotics. Further, cationic polymers have been used to impart antimicrobial properties to different biomedical surfaces. These cationic polymer-coated surfaces can inactivate pathogens upon contact as well as prevent their biofilm formation. In addition, antimicrobial hydrogels, which are prepared from either inherently antimicrobial polymers or biocide-loaded polymeric hydrogel matrices, have also been engineered. With a brief overview of the progress in the field, detailed elaboration of the polymeric biomaterials for prevention and therapeutic intervention of microbial infections developed by our group is presented. Finally, the challenges in the field of antimicrobial polymers with discussion on the proceedings of polymeric research to alleviate these challenges are discussed.
Collapse
|
10
|
Si Z, Zheng W, Prananty D, Li J, Koh CH, Kang ET, Pethe K, Chan-Park MB. Polymers as advanced antibacterial and antibiofilm agents for direct and combination therapies. Chem Sci 2022; 13:345-364. [PMID: 35126968 PMCID: PMC8729810 DOI: 10.1039/d1sc05835e] [Citation(s) in RCA: 73] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/12/2021] [Indexed: 12/13/2022] Open
Abstract
The growing prevalence of antimicrobial drug resistance in pathogenic bacteria is a critical threat to global health. Conventional antibiotics still play a crucial role in treating bacterial infections, but the emergence and spread of antibiotic-resistant micro-organisms are rapidly eroding their usefulness. Cationic polymers, which target bacterial membranes, are thought to be the last frontier in antibacterial development. This class of molecules possesses several advantages including a low propensity for emergence of resistance and rapid bactericidal effect. This review surveys the structure-activity of advanced antimicrobial cationic polymers, including poly(α-amino acids), β-peptides, polycarbonates, star polymers and main-chain cationic polymers, with low toxicity and high selectivity to potentially become useful for real applications. Their uses as potentiating adjuvants to overcome bacterial membrane-related resistance mechanisms and as antibiofilm agents are also covered. The review is intended to provide valuable information for design and development of cationic polymers as antimicrobial and antibiofilm agents for translational applications.
Collapse
Affiliation(s)
- Zhangyong Si
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Wenbin Zheng
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Dicky Prananty
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Jianghua Li
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - Chong Hui Koh
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
| | - En-Tang Kang
- Department of Chemical & Biomolecular Engineering, National University of Singapore 4 Engineering Drive 4, Kent Ridge Singapore 117585 Singapore
| | - Kevin Pethe
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Biological Sciences, Nanyang Technological University Singapore 637551 Singapore
| | - Mary B Chan-Park
- School of Chemical and Biomedical Engineering, Nanyang Technological University Singapore 637459 Singapore
- Lee Kong Chian School of Medicine, Nanyang Technological University Singapore 636921 Singapore
- School of Physical & Mathematical Sciences, Nanyang Technological University Singapore 637371 Singapore
| |
Collapse
|
11
|
Chaudhary N, Aggarwal B, Saini V, Sharma P, Srinivas P, Srivastava A, Bajaj A. Polyaspartate-derived Synthetic Antimicrobial Polymer Enhances Activity of Rifampicin against Multi-drug Resistant Pseudomonas aeruginosa Infections. Biomater Sci 2022; 10:5158-5171. [DOI: 10.1039/d2bm00524g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Infections caused by multi-drug resistant Pseudomonas aeruginosa (P. aeruginosa) face major challenges for treatment due to acquired, adaptive, and intrinsic resistance developed by bacteria due to accumulation of mutations, ability...
Collapse
|
12
|
New potentiators of ineffective antibiotics: Targeting the Gram-negative outer membrane to overcome intrinsic resistance. Curr Opin Chem Biol 2021; 66:102099. [PMID: 34808425 DOI: 10.1016/j.cbpa.2021.102099] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 09/30/2021] [Accepted: 10/07/2021] [Indexed: 12/20/2022]
Abstract
Because of the rise in antibiotic resistance and the dwindling pipeline of effective antibiotics, it is imperative to explore avenues that breathe new life into existing drugs. This is particularly important for intrinsically resistant Gram-negative bacteria, which are exceedingly difficult to treat. The Gram-negative outer membrane (OM) prevents the entry of a plethora of antibiotics that are effective against Gram-positive bacteria, despite the presence of the targets of these drugs. Uncovering molecules that increase the permeability of the OM to sensitize Gram-negative bacteria to otherwise ineffective antibiotics is an approach that has recently garnered increased attention in the field. In this review, we survey chemical matter which has been shown to potentiate antibiotics against Gram-negative bacteria by perturbing the OM. These include peptides, nanoparticles, macromolecules, antibiotic conjugates, and small molecules.
Collapse
|
13
|
Dey R, Mukherjee S, Barman S, Haldar J. Macromolecular Nanotherapeutics and Antibiotic Adjuvants to Tackle Bacterial and Fungal Infections. Macromol Biosci 2021; 21:e2100182. [PMID: 34351064 DOI: 10.1002/mabi.202100182] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2021] [Revised: 06/13/2021] [Indexed: 12/19/2022]
Abstract
The escalating rise in the population of multidrug-resistant (MDR) pathogens coupled with their biofilm forming ability has struck the global health as nightmare. Alongwith the threat of aforementioned menace, the sluggish development of new antibiotics and the continuous deterioration of the antibiotic pipeline has stimulated the scientific community toward the search of smart and innovative alternatives. In near future, membrane targeting antimicrobial polymers, inspired from antimicrobial peptides, can stand out significantly to combat against the MDR superbugs. Many of these amphiphilic polymers can form nanoaggregates through self-assembly with superior and selective antimicrobial efficacy. Additionally, these macromolecular nanoaggregrates can be utilized to engineer smart antibiotic-delivery system for on-demand drug-release, exploiting the infection site's micoenvironment. This strategy substantially increases the local concentration of antibiotics and reduces the associated off-target toxicity. Furthermore, amphiphilc macromolecules can be utilized to rejuvinate obsolete antibiotics to tackle the drug-resistant infections. This review article highlights the recent developments in macromolecular architecture to design numerous nanostructures with broad-spectrum antimicrobial activity, their application in fabricating smart drug delivery systems and their efficacy as antibiotic adjuvants to circumvent antimicrobial resistance. Finally, the current challenges and future prospects are briefly discussed for further exploration and their practical application in clinical settings.
Collapse
Affiliation(s)
- Rajib Dey
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Sudip Mukherjee
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Swagatam Barman
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| | - Jayanta Haldar
- Antimicrobial Research Laboratory, New Chemistry Unit, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India.,Antimicrobial Research Laboratory, School of Advanced Materials, Jawaharlal Nehru Centre for Advanced Scientific Research, Jakkur, Bengaluru, Karnataka, 560064, India
| |
Collapse
|
14
|
Blackman LD, Qu Y, Cass P, Locock KES. Approaches for the inhibition and elimination of microbial biofilms using macromolecular agents. Chem Soc Rev 2021; 50:1587-1616. [PMID: 33403373 DOI: 10.1039/d0cs00986e] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Biofilms are complex three-dimensional structures formed at interfaces by the vast majority of bacteria and fungi. These robust communities have an important detrimental impact on a wide range of industries and other facets of our daily lives, yet their removal is challenging owing to the high tolerance of biofilms towards conventional antimicrobial agents. This key issue has driven an urgent search for new innovative antibiofilm materials. Amongst these emerging approaches are highly promising materials that employ aqueous-soluble macromolecules, including peptides, proteins, synthetic polymers, and nanomaterials thereof, which exhibit a range of functionalities that can inhibit biofilm formation or detach and destroy organisms residing within established biofilms. In this Review, we outline the progress made in inhibiting and removing biofilms using macromolecular approaches, including a spotlight on cutting-edge materials that respond to environmental stimuli for "on-demand" antibiofilm activity, as well as synergistic multi-action antibiofilm materials. We also highlight materials that imitate and harness naturally derived species to achieve new and improved biomimetic and biohybrid antibiofilm materials. Finally, we share some speculative insights into possible future directions for this exciting and highly significant field of research.
Collapse
Affiliation(s)
- Lewis D Blackman
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | - Yue Qu
- Infection and Immunity Program, Department of Microbiology, Monash Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia and Department of Infectious Diseases, The Alfred Hospital and Central Clinical School, Monash University, Melbourne, VIC 3004, Australia
| | - Peter Cass
- CSIRO Manufacturing, Research Way, Clayton, VIC 3168, Australia.
| | | |
Collapse
|
15
|
Tantisuwanno C, Dang F, Bender K, Spencer JD, Jennings ME, Barton HA, Joy A. Synergism between Rifampicin and Cationic Polyurethanes Overcomes Intrinsic Resistance of Escherichia coli. Biomacromolecules 2021; 22:2910-2920. [PMID: 34085824 DOI: 10.1021/acs.biomac.1c00306] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Antibiotic-resistant Gram-negative bacteria are emergent pathogens, causing millions of infections worldwide. While there are several classes of antibiotics that are effective against Gram-positive bacteria, the outer membrane (OM) of Gram-negative bacteria excludes high-molecular-weight hydrophobic antibiotics, making these species intrinsically resistant to several classes of antibiotics, including polyketides, aminocoumarins, and macrolides. The overuse of antibiotics such as β-lactams has also promoted the spread of resistance genes throughout Gram-negative bacteria, including the production of extended spectrum β-lactamases (ESBLs). The combination of innate and acquired resistance makes it extremely challenging to identify antibiotics that are effective against Gram-negative bacteria. In this study, we have demonstrated the synergistic effect of outer membrane-permeable cationic polyurethanes with rifampicin, a polyketide that would otherwise be excluded by the OM, on different strains of E. coli, including a clinically isolated uropathogenic multidrug-resistant (MDR) E. coli. Rifampicin combined with a low-dose treatment of a cationic polyurethane reduced the MIC in E. coli of rifampicin by up to 64-fold. The compositions of cationic polyurethanes were designed to have low hemolysis and low cell cytotoxicity while maintaining high antibacterial activity. Our results demonstrate the potential to rescue the large number of available OM-excluded antibiotics to target normally resistant Gram-negative bacteria via synergistic action with these cationic polyurethanes, acting as a novel antibiotic adjuvant class.
Collapse
Affiliation(s)
| | - Francis Dang
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| | - Kristin Bender
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43215, United States
| | - John D Spencer
- Center for Clinical and Translational Research, The Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, Ohio 43215, United States
| | - Matthew E Jennings
- Biology Department, Centenary College of Louisiana, Shreveport, Louisiana 71104, United States
| | - Hazel A Barton
- Department of Biology, The University of Akron, Akron, Ohio 44325, United States
| | - Abraham Joy
- Department of Polymer Science, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|