1
|
Chen YL, Sun X, He JW, Xin MK, Liu D, Li CY. Light-Driven and Metal-Organic Framework Synergetic Loaded DNA Tetrahedral Amplifier for Exonuclease III-Powered All-in-One Biosensing and Chemotherapy in Live Biosystems. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37410886 DOI: 10.1021/acsami.3c06626] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
As a result of inaccurate biosensing and difficult synergetic loading, it is challenging to further impel DNA amplifiers to perform therapeutic application. Herein, we introduce some innovative solutions. First, a smart light-driven biosensing concept based on embedding nucleic acid modules with a simple photocleavage-linker is proposed. In this system, the target identification component is exposed on irradiation with ultraviolet light, thus avoiding an always-on biosensing response during biological delivery. Further, in addition to providing controlled spatiotemporal behavior and precise biosensing information, a metal-organic framework is used for the synergetic loading of doxorubicin in the internal pores, whereafter a rigid DNA tetrahedron-sustained exonuclease III-powered biosensing system is attached to prevent drug leakage and enhance resistance to enzymatic degradation. By selecting a next-generation breast cancer correlative noncoding microRNA biomarker (miRNA-21) as a model low-abundance analyte, a highly sensitive in vitro detection ability even allowing to distinguish single-base mismatching is demonstrated. Moreover, the all-in-one DNA amplifier shows excellent bioimaging competence and good chemotherapy efficacy in live biosystems. These findings will drive research into the use of DNA amplifiers in diagnosis and therapy integrated fields.
Collapse
Affiliation(s)
- Ya-Ling Chen
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Xiaoming Sun
- School of Basic Medical Sciences, Biomedical Research Institute, Hubei University of Medicine, Shiyan 442000, P. R. China
| | - Jing-Wei He
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Meng-Kun Xin
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| | - Da Liu
- College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
| | - Cheng-Yu Li
- Hubei Province Key Laboratory of Occupational Hazard Identification and Control, School of Public Health, Wuhan University of Science and Technology, Wuhan 430065, P. R. China
| |
Collapse
|
2
|
Jin B, Du Z, Ji J, Bai Y, Tang D, Qiao L, Lou J, Hu J, Li Z. Regulation of probe density on upconversion nanoparticles enabling high-performance lateral flow assays. Talanta 2023; 256:124327. [PMID: 36758506 DOI: 10.1016/j.talanta.2023.124327] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Revised: 01/17/2023] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Upconversion nanoparticles (UCNPs)-based fluorescence probes have shown great potential in point-of-care testing (POCT) applications, due to UCNPs' features of high photostability and background-free fluorescence. Ceaseless improvements of UCNPs-probes have been carried out to increase detection sensitivity and to broaden detection range of UCNPs-based POCT. In this paper, we optimized UCNPs-probes by regulating probe density. The optimization was verified by a traditional lateral flow assay (LFA) platform for C-reactive protein (CRP) detection. Further, the optimized UCNPs-LFA integrating with a home-made benchtop fluorescence analyzer holds the capability to achieve high-performance POCT. Finally, nearly a 20 times sensitivity enhancement with a limit of detection of 0.046 ng/mL and a broad detection range of 0.2-300 ng/mL for CRP detection was obtained. Moreover, the optimized UCNPs-LFA was applied to detecting CRP in clinical serum samples and the detection results were consistent with the clinical test, validating its clinical practicability. The proposed optimization method is also expected to optimize other nanoparticles-based bio-probes for wider POCT application.
Collapse
Affiliation(s)
- Birui Jin
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Zhiguo Du
- School of Materials and Chemical Engineering, Xi'an Technological University, Xi'an, 710021, China
| | - Jingcheng Ji
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Yuemeng Bai
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China
| | - Deding Tang
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China; Maanshan Teachers College, Ma Anshan, 243041, China
| | - Lihua Qiao
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Jiatao Lou
- Department of Laboratory Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University, Shanghai, 200030, China; Department of Laboratory Medicine, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200080, China
| | - Jie Hu
- Suzhou DiYinAn Biotech Co., Ltd., Suzhou Innovation Center for Life Science and Technology, Suzhou, 215129, China.
| | - Zedong Li
- The Key Laboratory of Biomedical Information Engineering of Ministry of Education, Xi'an Jiaotong University, Xi'an, 710049, China; Bioinspired Engineering and Biomechanics Center (BEBC), Xi'an Jiaotong University, Xi'an, 710049, China.
| |
Collapse
|
3
|
Zhan Y, Zhang R, Guo Y, Cao S, Chen G, Tian B. Recent advances in tumor biomarker detection by lanthanide upconversion nanoparticles. J Mater Chem B 2023; 11:755-771. [PMID: 36606393 DOI: 10.1039/d2tb02017c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Early tumor diagnosis could reliably predict the behavior of tumors and significantly reduce their mortality. Due to the response to early cancerous changes at the molecular or cellular level, tumor biomarkers, including small molecules, proteins, nucleic acids, exosomes, and circulating tumor cells, have been employed as powerful tools for early cancer diagnosis. Therefore, exploring new approaches to detect tumor biomarkers has attracted a great deal of research interest. Lanthanide upconversion nanoparticles (UCNPs) provide numerous opportunities for bioanalytical applications. When excited by low-energy near-infrared light, UCNPs exhibit several unique properties, such as large anti-Stoke shifts, sharp emission lines, long luminescence lifetimes, resistance to photobleaching, and the absence of autofluorescence. Based on these excellent properties, UCNPs have demonstrated great sensitivity and selectivity in detecting tumor biomarkers. In this review, an overview of recent advances in tumor biomarker detection using UCNPs has been presented. The key aspects of this review include detection mechanisms, applications in vitro and in vivo, challenges, and perspectives of UCNP-based tumor biomarker detection.
Collapse
Affiliation(s)
- Ying Zhan
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Runchi Zhang
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Yi Guo
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Siyu Cao
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Guifang Chen
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| | - Bo Tian
- Center for Molecular Recognition and Biosensing, School of Life Sciences, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
4
|
Core-satellite nanostructures and their biomedical applications. Mikrochim Acta 2022; 189:470. [DOI: 10.1007/s00604-022-05559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 10/26/2022] [Indexed: 11/27/2022]
|
5
|
Jiang W, Yi J, Li X, He F, Niu N, Chen L. A Comprehensive Review on Upconversion Nanomaterials-Based Fluorescent Sensor for Environment, Biology, Food and Medicine Applications. BIOSENSORS 2022; 12:1036. [PMID: 36421153 PMCID: PMC9688752 DOI: 10.3390/bios12111036] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/07/2022] [Accepted: 11/14/2022] [Indexed: 06/16/2023]
Abstract
Near-infrared-excited upconversion nanoparticles (UCNPs) have multicolor emissions, a low auto-fluorescence background, a high chemical stability, and a long fluorescence lifetime. The fluorescent probes based on UCNPs have achieved great success in the analysis of different samples. Here, we presented the research results of UCNPs probes utilized in analytical applications including environment, biology, food and medicine in the last five years; we also introduced the design and construction of upconversion optical sensing platforms. Future trends and challenges of the UCNPs used in the analytical field have also been discussed with particular emphasis.
Collapse
Affiliation(s)
- Wei Jiang
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Jiaqi Yi
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Xiaoshuang Li
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Na Niu
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, China
| | - Ligang Chen
- College of Chemistry, Chemical Engineering and Resource Utilization, Key Laboratory of Forest Plant Ecology, Northeast Forestry University, 26 Hexing Road, Harbin 150040, China
| |
Collapse
|
6
|
Ma J, Gong L, Cen Y, Feng L, Su Y, Liu X, Chao J, Wan Y, Su S, Wang L. Electrochemical analysis of microRNAs with hybridization chain reaction-based triple signal amplification. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
7
|
Luo Y, Chen Z, Wen S, Han Q, Fu L, Yan L, Jin D, Bünzli JCG, Bao G. Magnetic regulation of the luminescence of hybrid lanthanide-doped nanoparticles. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214653] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Ghafary Z, Salimi A, Hallaj R. Exploring the Role of 2D-Graphdiyne as a Charge Carrier Layer in Field-Effect Transistors for Non-Covalent Biological Immobilization against Human Diseases. ACS Biomater Sci Eng 2022; 8:3986-4001. [PMID: 35939853 DOI: 10.1021/acsbiomaterials.2c00607] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Graphdiyne's (GDY's) outstanding features have made it a novel 2D nanomaterial and a great candidate for electronic gadgets and optoelectronic devices, and it has opened new opportunities for the development of highly sensitive electronic and optical detection methods as well. Here, we testified a non-covalent grafting strategy in which GDY serves as a charge carrier layer and a bioaffinity substrate to immobilize biological receptors on GDY-based field-effect transistor (FET) devices. Firm non-covalent anchoring of biological molecules via pyrene groups and electrostatic interactions in addition to preserved electrical properties of GDY endows it with features of an ultrasensitive and stable detection mechanism. With emerging new forms and extending the subtypes of the already existing fatal diseases, genetic and biological knowledge demands more details. In this regard, we constructed simple yet efficient platforms using GDY-based FET devices in order to detect different kinds of biological molecules that threaten human health. The resulted data showed that the proposed non-covalent bioaffinity assays in GDY-based FET devices could be considered reliable strategies for novel label-free biosensing platforms, which still reach a high on/off ratio of over 104. The limits of detection of the FET devices to detect DNA strands, the CA19-9 antigen, microRNA-155, the CA15-3 antigen, and the COVID-19 antigen were 0.2 aM, 0.04 pU mL-1, 0.11 aM, 0.043 pU mL-1, and 0.003 fg mL-1, respectively, in the linear ranges of 1 aM to 1 pM, 1 pU mL-1 to 0.1 μU mL-1, 1 aM to 1 pM, 1 pU mL-1 to 10 μU mL-1, and 1 fg mL-1 to 10 ng mL-1, respectively. Finally, the extraordinary performance of these label-free FET biosensors with low detection limits, high sensitivity and selectivity, capable of being miniaturized, and implantability for in vivo analysis makes them a great candidate in disease diagnostics and point-of-care testing.
Collapse
Affiliation(s)
- Zhaleh Ghafary
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Abdollah Salimi
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran.,Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| | - Rahman Hallaj
- Department of Chemistry, University of Kurdistan, 66177-15175 Sanandaj, Iran.,Research Center for Nanotechnology, University of Kurdistan, 66177-15175 Sanandaj, Iran
| |
Collapse
|
9
|
Sadighbathi S, Mobed A. Genosensors, a nanomaterial-based platform for microRNA-21 detection, non-invasive methods in early detection of cancer. Clin Chim Acta 2022; 530:27-38. [PMID: 35227654 DOI: 10.1016/j.cca.2022.02.012] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/15/2022] [Indexed: 01/27/2023]
Abstract
MicroRNAs are small non-coding RNAs that are 18-24 nucleotides in length. Among the most widely studied microRNAs, microRNA21 (miR21) is highly expressed in many mammalian cell types. It regulates numerous biological functions such as differentiation, proliferation, apoptosis, and migration. Therefore, sensitive and specific detection of miR-21 is crucial in medical approaches. Several methods such as ISH, northern blotting, RT-PCR, microarray, and next-generation are conventionally used to detect miR-21. Due to the limitations and problems related to routine methods, the development of advanced and modern methods has been one of the investigation goals of researchers in recent years. Nanotechnology-based methods have been among the most critical methods in the last two decades. Biosensors are one of the primary modern methods that largely overcome the limitations of routine procedures. The present study introduces and discusses routine methods for the detection of miR-21and the related up-to-date biosensors developed in recent years (2019-2021).
Collapse
Affiliation(s)
- Sepideh Sadighbathi
- Department of Comparative Biomedicine and Nutrition, Università degli Studi di Padova Padova, Italy
| | - Ahmad Mobed
- Aging Research Institute, Faculty of Medicine, Tabriz University of Medical Sciences, Iran.
| |
Collapse
|
10
|
Jiang Y, Li R, He W, Li Q, Yang X, Li S, Bai W, Li Y. MicroRNA-21 electrochemiluminescence biosensor based on Co-MOF-N-(4-aminobutyl)-N-ethylisoluminol/Ti 3C 2T x composite and duplex-specific nuclease-assisted signal amplification. Mikrochim Acta 2022; 189:129. [PMID: 35237853 DOI: 10.1007/s00604-022-05246-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/22/2022] [Indexed: 11/30/2022]
Abstract
A novel electrochemiluminescence (ECL) biosensor for the determination of microRNA-21 (miRNA-21) was developed, based on a hybrid luminescent Co-MOF-ABEI/Ti3C2Tx composite as an ECL luminophore combined with a duplex-specific nuclease (DSN)-assisted signal amplification strategy. The synthesized Co-MOF-ABEI/Ti3C2Tx composite carrying N-(4-aminobutyl)-N-ethylisoluminol (ABEI) exhibited strong and stable ECL in the presence of reactive oxygen species (ROS). The ECL biosensor was fabricated by adsorbing Co-MOF-ABEI/Ti3C2Tx onto a glassy carbon electrode and covalently coupling the probe DNA onto the surface of the Co-MOF-ABEI/Ti3C2Tx-modified electrode. In the presence of the target miRNA-21, the DSN selectively cleaved the complementary DNA section (S1) to miRNA-21, resulting in the release of the transduction section (S2) and the reuse of miRNA-21 in the subsequent amplification cycle. The interaction of the stem-loop structure of the probe DNA with the Co-MOF-ABEI/Ti3C2Tx-modified glassy carbon electrode with S2 strands led to the opening of the annular part of the probe DNA. Then, the opened guanine (G)-rich sequences of probe DNA were exposed and folded into a hemin/G-quadruplex DNAzyme in the presence of hemin. The catalysis of H2O2 to ROS by the hemin/G-quadruplex DNAzyme significantly enhanced ECL intensity, and this intensity was logarithmically proportional to the concentration of target miRNA-21 between 0.00001 and 10 nM, having a limit of detection of 3.7 fM. The designed ECL biosensor can detect miRNA-21 extracted from HeLa cells, indicating its promising application in clinical diagnosis and disease prognosis analysis.
Collapse
Affiliation(s)
- Yang Jiang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Rong Li
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, People's Republic of China
| | - Wenyu He
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Qian Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Xia Yang
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Sijia Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China
| | - Wanqiao Bai
- Department of Chemistry and Chemical Engineering, Laboratory of New Energy & New Function Materials, Key Laboratory of Analytical Technology and Detection, Yan'an University, Shaanxi, 716000, People's Republic of China.
| | - Yan Li
- Key Laboratory of Synthetic and Natural Functional Molecule Chemistry of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, People's Republic of China.
| |
Collapse
|
11
|
Zhang K, Lu F, Cai Z, Song S, Jiang L, Min Q, Wu X, Zhu JJ. Plasmonic Modulation of the Upconversion Luminescence Based on Gold Nanorods for Designing a New Strategy of Sensing MicroRNAs. Anal Chem 2020; 92:11795-11801. [PMID: 32786465 DOI: 10.1021/acs.analchem.0c01969] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Upconversion nanoparticles (UCNPs) have potential applications in biosensing and bioimaging. However, the UCNPs-based sensors constructed by luminescence resonance energy transfer (LRET) always suffer from low quenching efficiency, hindering their application. Therefore, exploring a new strategy to resolve this issue is highly desirable. Herein, a strategy based on the surface plasmon resonance (SPR) effect of gold nanorods (AuNRs) is presented. The luminescence of UCNPs was modulated by adjusting the SiO2 thickness of AuNRs@SiO2 and the structure of UCNPs; an enhancement factor of ≈50 times was obtained. Based on the results of the SPR effect of AuNRs, we designed two kinds of potential upconversion microRNA sensors using microRNA-21 as a model to resolve the problem of the lower quenching efficiency resulting from a dye as a quencher. Studies revealed that the proposed strategy could be successfully used to construct upconversion microRNA sensors for avoiding the limitation of the low quenching efficiency. The sensitivity was ≈10 000 times higher than that of the upconversion sensor using dyes as quenchers. Importantly, the assay of microRNA-21 was successfully achieved using this sensor in human serum samples and human breast cancer cell (MCF-7) lysates. It provides a new method for designing upconversion microRNA sensors and may have potential for use in biosensing and bioimaging.
Collapse
Affiliation(s)
- Keying Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.,Anhui Key Laboratory of Spin Electron and Nanomaterials, School of Chemistry and Chemical Engineering, Suzhou University, Suzhou, Anhui 234000, China
| | - Feng Lu
- Key Laboratory for Organic Electronics and Information Displays, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Zheng Cai
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Shuting Song
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liping Jiang
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qianhao Min
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xingcai Wu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jun-Jie Zhu
- State Key Laboratory of Analytical Chemistry for Life Science, Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|