1
|
Lu Y, Qiao Y, Bao H, Chen K, Wei Y, Zhao Q, Leon GK, Zhang H, Ling XY, Cai W. Machine Learning-Driven Surface Plasmon-Enhanced Dual Spectroscopies Improve Recognition and Real-Time Monitoring of Hazardous Chemicals. Anal Chem 2025; 97:8537-8544. [PMID: 40214208 DOI: 10.1021/acs.analchem.5c00545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2025]
Abstract
To address the challenges of precise identification and real-time monitoring of hazardous chemicals, this work proposes and develops surface-plasmon-enhanced dual spectroscopies (SPEDS). This technique combines highly recognizable surface-enhanced Raman spectroscopy (SERS) with real-time plasmon-mediated differential ultraviolet-visible spectroscopy (P-DUS). The feasibility of this technique is demonstrated by successfully acquiring SPEDS signals of thiourea with a plasmonic gold colloidal system. By combining SPEDS with machine learning algorithms, we achieve accurate identification and precise quantification of chemicals, with accuracies of 98.2 and 98.6%, respectively, significantly outperforming single P-DUS (63.2 and 95.1%) and SERS (80.3 and 86.5%). Additionally, we demonstrate the universality and expandability of SPEDS through other plasmonic nanostructures of various shapes and surface modifications. Using a CuS-coated Au nanoarray, we demonstrate multiple 8-h monitoring sessions of Hg2+ with good anti-interference and robust quantification, thereby highlighting the practical potential of SPEDS in real-world applications. These results position SPEDS as a cutting-edge and multifunctional chemical sensing platform, unlocking transformative possibilities for advancing environmental monitoring, industrial safety, and public health.
Collapse
Affiliation(s)
- Yanyan Lu
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yu Qiao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Haoming Bao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Kang Chen
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| | - Yi Wei
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Qian Zhao
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Guo Kang Leon
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Hongwen Zhang
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
| | - Xing Yi Ling
- School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University, 21 Nanyang Link, Singapore 637371, Singapore
| | - Weiping Cai
- Key Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology, Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P.R. China
- University of Science and Technology of China, Hefei 230026, P.R. China
| |
Collapse
|
2
|
Zheng M, Cheng Y, Zhang X, Liu H, Xu H, Dai X, Shi G, Rao Y, Gu L, Wang MS, Li C, Li K. Atomic Ru Species Driven SnO 2-Based Sensor for Highly Sensitive and Selective Detection of H 2S in the ppb-Level. ACS Sens 2025; 10:1093-1104. [PMID: 39937667 DOI: 10.1021/acssensors.4c02935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/14/2025]
Abstract
Timely and accurate detection of H2S is crucial for preventing serious health issues in both humans and livestock upon exposure. However, metal-oxide-based H2S sensors often suffer from mediocre sensitivity, poor selectivity, or long response/recovery time. Here, an atomic Ru species-driven SnO2-based sensor is fabricated to realize highly sensitive and selective detection of H2S at the parts per billion level as low as 100 ppb. The sensor shows a high sensing response (Rair/Rgas = 310.1) and an ultrafast response time (less than 1 s) to 20 ppm H2S at an operating temperature of 160 °C. Operando SR-FTIR spectroscopic characterizations and DFT calculations prove that the superior sensing properties can be mainly attributed to the driven effect of atomic Ru species on the formation of surface-adsorbed oxygen species on the surface of SnO2, which provides more active sites and enhances the sensing performance of SnO2 for H2S. Furthermore, a lab-made wireless portable H2S monitoring system is developed to rapidly detect the H2S for early warning, suggesting the potential application of the fabricated H2S sensor and monitoring system. This work provides a novel approach for fabricating a highly sensitive and selective gas sensor driven by atomic metal species loaded on metal-oxide semiconductors.
Collapse
Affiliation(s)
- Mingjia Zheng
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Youde Cheng
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiuli Zhang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Haonan Liu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Haiyan Xu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Xiangsu Dai
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Guolong Shi
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Province Agricultural Information Perception and Intelligent Computing Engineering Research Center, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Yuan Rao
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Province Agricultural Information Perception and Intelligent Computing Engineering Research Center, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Lichuan Gu
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Province Agricultural Information Perception and Intelligent Computing Engineering Research Center, Anhui Agricultural University, Hefei, Anhui 230036, China
| | - Ming-Sheng Wang
- State Key Lab of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen 361005, China
| | - Chao Li
- National Engineering Research Center of Marine Facilities Aquaculture, Zhejiang Ocean University, Zhoushan, 316004, China
| | - Ke Li
- School of Information and Artificial Intelligence, Anhui Agricultural University, Hefei, Anhui 230036, China
- Key Laboratory of Agricultural Sensors, Ministry of Agriculture and Rural Affairs, Anhui Province Key Laboratory of Smart Agricultural Technology and Equipment, Anhui Province Agricultural Information Perception and Intelligent Computing Engineering Research Center, Anhui Agricultural University, Hefei, Anhui 230036, China
| |
Collapse
|
3
|
Wang C, Cheng Y, Yin X, Wu Q, Ma J, Zhang Q, Zhao L, Wang J, Zhang D. "Three-in-One": Ultrasensitive Lateral Flow Immunoassay Driven by Magnetic Enrichment and Photothermal Signal Amplification. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:18171-18180. [PMID: 39092884 DOI: 10.1021/acs.jafc.4c04261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Conventional lateral flow immunoassay (LFIA) usually suffers from poor antimatrix interference, unsatisfactory sensitivity, and lack of quantitative ability for target analyte detection in food matrices. In response to these limits, here, multifunctional nanomaterial ZnFe2O4 nanoparticles (ZFOs) were developed and integrated into LFIA for powerful magnetic separation/enrichment and colorimetric/photothermal target sensing. Under optimum conditions, the detection for clenbuterol (CL) with magnetic enrichment achieves 9-fold higher sensitivity compared to that without enrichment and 162-fold higher sensitivity compared to that based on traditional colloidal golds. Attributing the improved performances of ZFOs, CL can be detected at ultralow levels in pork and milk with 10 min of immunoreaction time. The vLODs were 0.01 μg kg-1 for two modes, and the cutoff values of CL were about 5 and 3 μg kg-1, respectively. More importantly, the enrichment ZFO-mediated LFIA (ZE-LFIA) exhibits a similar limit of detection (LOD) in both buffer solution and food matrix, demonstrating a universal resistance to the food matrix. The multitudinous performance merits of this ZE-LFIA with high sensitivity, matrix tolerance, accuracy, and specificity have ensured a broad application potential for target detection of clenbuterol and can serve as an experience for other veterinary drug residues' detection.
Collapse
Affiliation(s)
- Chaoying Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Yuanyuan Cheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xuechi Yin
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qiaoying Wu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Jiaqi Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qingzhe Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Lei Zhao
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
- Bio-Nanotechnology Research Institute, Ludong University, Yantai, Shandong 264025, China
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Daohong Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, China
- Yantai Key Laboratory of Nanoscience and Technology for Prepared Food, Yantai Engineering Research Center of Green Food Processing and Quality Control, College of Food Engineering, Ludong University, Yantai, Shandong 264025, China
| |
Collapse
|
4
|
Yang J, Qin M, Pan Y, Yang L, Wei J, Yan C, Zhang G, Cao S, Huang Q. Au- ZnFe 2O 4 hollow microspheres based gas sensor for detecting the mustard gas simulant 2-chloroethyl ethyl sulfide. ANAL SCI 2024; 40:1409-1419. [PMID: 38687414 PMCID: PMC11637041 DOI: 10.1007/s44211-024-00573-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 04/02/2024] [Indexed: 05/02/2024]
Abstract
Mustard gas, a representative of blister agents, poses a severe threat to human health. Although the structure of 2-chloroethyl ethyl sulfide (2-CEES) is similar to mustard gas, 2-CEES is non-toxic, rendering it a commonly employed simulant in related research. ZnFe2O4-based semiconductor gas sensors exhibit numerous advantages, including structural stability, high sensitivities, and easy miniaturization. However, they exhibit insufficient sensitivity at low concentrations and require high operating temperatures. Owing to the effect of electronic and chemical sensitization, the gas-sensing performance of a sensor may be remarkably enhanced via the sensitization method of noble metal loading. In this study, based on the morphologies of ZnFe2O4 hollow microspheres, a solvothermal method was adopted to realize different levels of Au loading. Toward 1 ppm of 2-CEES, the gas sensor based on 2 wt.% Au-loaded ZnFe2O4 hollow microspheres exhibited a response sensitivity twice that of the gas sensor based on pure ZnFe2O4; furthermore, the response/recovery times decreased. Additionally, the sensor displayed excellent linear response to low concentrations of 2-CEES, outstanding selectivity in the presence of several common volatile organic compounds, and good repeatability, as well as long-term stability. The Au-loaded ZnFe2O4-based sensor has considerable potential for use in detecting toxic chemical agents and their simulants.
Collapse
Affiliation(s)
- Junchao Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China.
| | - Molin Qin
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China
| | - Yong Pan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China
| | - Liu Yang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China
| | - Jianan Wei
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China
| | - CanCan Yan
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China
| | - Genwei Zhang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China
| | - Shuya Cao
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China.
| | - Qibin Huang
- State Key Laboratory of NBC Protection for Civilian, Beijing, 100000, China.
| |
Collapse
|
5
|
Wang Q, Li L, Lu J, Chai Y, Shen J, Liang J. Construction of Co 1-xZn xFe 2xGa 2-2xO 4 (0<x≤0.6) Solid Solutions for Improving Solar Fuels Production in Photocatalytic CO 2 Reduction by H 2O Vapour. Chemistry 2024; 30:e202304148. [PMID: 38564294 DOI: 10.1002/chem.202304148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/26/2024] [Accepted: 04/02/2024] [Indexed: 04/04/2024]
Abstract
Solid solutions are garnering substantial attention in the realm of solar energy utilization due to their tunable electronic properties, encompassing band edge positions and charge-carrier mobilities. In this study, we designed and synthesized Co1-xZnxFe2xGa2-2xO4 (0
Collapse
Affiliation(s)
- Qiang Wang
- State Key Laboratory of High-efficiency, Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Li Li
- State Key Laboratory of High-efficiency, Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jiaxue Lu
- State Key Laboratory of High-efficiency, Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Yao Chai
- State Key Laboratory of High-efficiency, Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Jinni Shen
- State Key Lab of Photocatalysis on Energy and Environment, College of Chemistry, Fuzhou University, Fuzhou, 350116, P. R. China
| | - Jun Liang
- State Key Laboratory of High-efficiency, Utilization of Coal and Green Chemical Engineering, College of Chemistry and Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
6
|
Zhao H, Li J, She X, Chen Y, Wang M, Wang Y, Du A, Tang C, Zou C, Zhou Y. Oxygen Vacancy-Rich Bimetallic Au@Pt Core-Shell Nanosphere-Functionalized Electrospun ZnFe 2O 4 Nanofibers for Chemiresistive Breath Acetone Detection. ACS Sens 2024; 9:2183-2193. [PMID: 38588327 DOI: 10.1021/acssensors.4c00382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Sensitive and selective acetone detection is of great significance in the fields of environmental protection, industrial production, and individual health monitoring from exhaled breath. To achieve this goal, bimetallic Au@Pt core-shell nanospheres (BNSs) functionalized-electrospun ZnFe2O4 nanofibers (ZFO NFs) are prepared in this work. Compared to pure NFs-650 analogue, the ZFO NFs/BNSs-2 sensor exhibits a stronger mean response (3.32 vs 1.84), quicker response/recovery speeds (33 s/28 s vs 54 s/42 s), and lower operating temperature (188 vs 273 °C) toward 0.5 ppm acetone. Note that an experimental detection limit of 30 ppb is achieved, which ranks among the best cases reported thus far. Besides the demonstrated excellent repeatability, humidity-enhanced response, and long-term stability, the selectivity toward acetone is remarkably improved after BNSs functionalization. Through material characterizations and DFT calculations, all these improvements could be attributed to the boosted oxygen vacancies and abundant Schottky junctions between ZFO NFs and BNSs, and the synergistic catalytic effect of BNSs. This work offers an alternative strategy to realize selective subppm acetone under high-humidity conditions catering for the future requirements of noninvasive breath diabetes diagnosis in the field of individual healthcare.
Collapse
Affiliation(s)
- Hongchao Zhao
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Jing Li
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Xiaopeng She
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yi Chen
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Mengqing Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yanjie Wang
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Aijun Du
- School of Chemistry and Physics, Centre of Materials Science, Queensland University of Technology, Brisbane 4001, Australia
| | - Cheng Tang
- School of Chemistry and Physics, Centre of Materials Science, Queensland University of Technology, Brisbane 4001, Australia
| | - Cheng Zou
- Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Innovative Drug Research Center, School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, People's Republic of China
| | - Yong Zhou
- Key Laboratory of Optoelectronic Technology and System of Ministry of Education, College of Optoelectronic Engineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
7
|
Zhang R, Qin C, Bala H, Wang Y, Cao J. Recent Progress in Spinel Ferrite (MFe 2O 4) Chemiresistive Based Gas Sensors. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2188. [PMID: 37570506 PMCID: PMC10421214 DOI: 10.3390/nano13152188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/17/2023] [Accepted: 07/25/2023] [Indexed: 08/13/2023]
Abstract
Gas-sensing technology has gained significant attention in recent years due to the increasing concern for environmental safety and human health caused by reactive gases. In particular, spinel ferrite (MFe2O4), a metal oxide semiconductor with a spinel structure, has emerged as a promising material for gas-sensing applications. This review article aims to provide an overview of the latest developments in spinel-ferrite-based gas sensors. It begins by discussing the gas-sensing mechanism of spinel ferrite sensors, which involves the interaction between the target gas molecules and the surface of the sensor material. The unique properties of spinel ferrite, such as its high surface area, tunable bandgap, and excellent stability, contribute to its gas-sensing capabilities. The article then delves into recent advancements in gas sensors based on spinel ferrite, focusing on various aspects such as microstructures, element doping, and heterostructure materials. The microstructure of spinel ferrite can be tailored to enhance the gas-sensing performance by controlling factors such as the grain size, porosity, and surface area. Element doping, such as incorporating transition metal ions, can further enhance the gas-sensing properties by modifying the electronic structure and surface chemistry of the sensor material. Additionally, the integration of spinel ferrite with other semiconductors in heterostructure configurations has shown potential for improving the selectivity and overall sensing performance. Furthermore, the article suggests that the combination of spinel ferrite and semiconductors can enhance the selectivity, stability, and sensing performance of gas sensors at room or low temperatures. This is particularly important for practical applications where real-time and accurate gas detection is crucial. In conclusion, this review highlights the potential of spinel-ferrite-based gas sensors and provides insights into the latest advancements in this field. The combination of spinel ferrite with other materials and the optimization of sensor parameters offer opportunities for the development of highly efficient and reliable gas-sensing devices for early detection and warning systems.
Collapse
Affiliation(s)
- Run Zhang
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (R.Z.); (H.B.)
| | - Cong Qin
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
| | - Hari Bala
- School of Materials Science and Engineering, Henan Polytechnic University, Jiaozuo 454000, China; (R.Z.); (H.B.)
| | - Yan Wang
- College of Safety Science and Engineering, Henan Polytechnic University, Jiaozuo 454003, China
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454003, China
| | - Jianliang Cao
- College of Chemistry and Chemical Engineering, Henan Polytechnic University, Jiaozuo 454000, China;
- State Collaborative Innovation Center of Coal Work Safety and Clean-Efficiency Utilization, Henan Polytechnic University, Jiaozuo 454003, China
| |
Collapse
|
8
|
Cao S, Zhou T, Xu X, Bing Y, Sui N, Wang J, Li J, Zhang T. Metal-organic frameworks derived inverse/normal bimetallic spinel oxides toward the selective VOCs and H 2S sensing. JOURNAL OF HAZARDOUS MATERIALS 2023; 457:131734. [PMID: 37290357 DOI: 10.1016/j.jhazmat.2023.131734] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Revised: 05/18/2023] [Accepted: 05/28/2023] [Indexed: 06/10/2023]
Abstract
As the typical toxic and hazardous gases, volatile organic compounds (VOCs) and hydrogen sulfide (H2S) pose a threat to the environment and human health. The demand for real-time detection of VOCs and H2S gases is growing in many application to protect human health and air quality. Therefore, it is essential to develop advance sensing materials for the construction of effective and reliable gas sensors. Herein, bimetallic spinel ferrites with different metal ions (MFe2O4, M = Co, Ni, Cu and Zn) were designed by using metal-organic frameworks as templates. The evaluation of cation substitution on crystal structures (inverse/normal spinel structure) and electrical properties (n/p type and band gap) is systematically discussed. The results indicate that p-type NiFe2O4 and n-type CuFe2O4 nanocubes with inverse spinel structure exhibit high response and great selectivity towards acetone (C3H6O) and H2S, respectively. Moreover, the two sensors also display the detection limits as low as 1 ppm (C3H6O) and 0.5 ppm (H2S), which are far below the threshold values of 750 ppm to acetone and 10 ppm to H2S for 8 h exposure set by American Conference of Governmental Industrial Hygienists (ACGIH). The finding provides new possibilities for the design of high-performance chemical sensors, which display tremendous potential for practical applications.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Yu Bing
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China
| | - Juan Wang
- School of Public Health, Jilin University, Changchun 130012, PR China
| | - Juan Li
- School of Public Health, Jilin University, Changchun 130012, PR China.
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, PR China.
| |
Collapse
|
9
|
Kumarage GWC, Hakkoum H, Comini E. Recent Advancements in TiO 2 Nanostructures: Sustainable Synthesis and Gas Sensing. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1424. [PMID: 37111009 PMCID: PMC10147078 DOI: 10.3390/nano13081424] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/11/2023] [Accepted: 04/17/2023] [Indexed: 06/19/2023]
Abstract
The search for sustainable technology-driven advancements in material synthesis is a new norm, which ensures a low impact on the environment, production cost, and workers' health. In this context, non-toxic, non-hazardous, and low-cost materials and their synthesis methods are integrated to compete with existing physical and chemical methods. From this perspective, titanium oxide (TiO2) is one of the fascinating materials because of its non-toxicity, biocompatibility, and potential of growing by sustainable methods. Accordingly, TiO2 is extensively used in gas-sensing devices. Yet, many TiO2 nanostructures are still synthesized with a lack of mindfulness of environmental impact and sustainable methods, which results in a serious burden on practical commercialization. This review provides a general outline of the advantages and disadvantages of conventional and sustainable methods of TiO2 preparation. Additionally, a detailed discussion on sustainable growth methods for green synthesis is included. Furthermore, gas-sensing applications and approaches to improve the key functionality of sensors, including response time, recovery time, repeatability, and stability, are discussed in detail in the latter parts of the review. At the end, a concluding discussion is included to provide guidelines for the selection of sustainable synthesis methods and techniques to improve the gas-sensing properties of TiO2.
Collapse
|
10
|
Lau ECHT, Åhlén M, Cheung O, Ganin AY, Smith DGE, Yiu HHP. Gold-iron oxide (Au/Fe3O4) magnetic nanoparticles as the nanoplatform for binding of bioactive molecules through self-assembly. Front Mol Biosci 2023; 10:1143190. [PMID: 37051321 PMCID: PMC10083301 DOI: 10.3389/fmolb.2023.1143190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 03/15/2023] [Indexed: 03/28/2023] Open
Abstract
Nanomedicine plays a crucial role in the development of next-generation therapies. The use of nanoparticles as drug delivery platforms has become a major area of research in nanotechnology. To be effective, these nanoparticles must interact with desired drug molecules and release them at targeted sites. The design of these “nanoplatforms” typically includes a functional core, an organic coating with functional groups for drug binding, and the drugs or bioactive molecules themselves. However, by exploiting the coordination chemistry between organic molecules and transition metal centers, the self-assembly of drugs onto the nanoplatform surfaces can bypass the need for an organic coating, simplifying the materials synthesis process. In this perspective, we use gold-iron oxide nanoplatforms as examples and outline the prospects and challenges of using self-assembly to prepare drug-nanoparticle constructs. Through a case study on the binding of insulin on Au-dotted Fe3O4 nanoparticles, we demonstrate how a self-assembly system can be developed. This method can also be adapted to other combinations of transition metals, with the potential for scaling up. Furthermore, the self-assembly method can also be considered as a greener alternative to traditional methods, reducing the use of chemicals and solvents. In light of the current climate of environmental awareness, this shift towards sustainability in the pharmaceutical industry would be welcomed.
Collapse
Affiliation(s)
- Elizabeth C. H. T. Lau
- Institute of Chemical Science, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- Institute of Quantitative Biology, Biochemistry and Biotechnology, School of Biological Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Michelle Åhlén
- Division of Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, Uppsala, Sweden
| | - Ocean Cheung
- Division of Nanotechnology and Functional Materials, Department of Material Sciences and Engineering, Uppsala University, Uppsala, Sweden
| | - Alexey Y. Ganin
- School of Chemistry, University of Glasgow, Glasgow, United Kingdom
| | - David G. E. Smith
- Institute of Biological Chemistry, Biophysics and Bioengineering, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
| | - Humphrey H. P. Yiu
- Institute of Chemical Science, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh, United Kingdom
- *Correspondence: Humphrey H. P. Yiu,
| |
Collapse
|
11
|
Wang Y, Wang Z, Gao Y, Yuan Y, Liu J, Yan J, Chen Y. A UiO-66 3D photonic crystal optical sensor for highly efficient chlorobenzene vapor detection. RSC Adv 2022; 12:30262-30269. [PMID: 36337976 PMCID: PMC9590246 DOI: 10.1039/d2ra05494a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023] Open
Abstract
Chlorobenzene (C6H5Cl) is a flammable liquid with high vapor activity, which is a severe threat to the environment and human health. Therefore, it is essential to develop a highly efficient sensor to detect C6H5Cl vapor. Herein, we developed a UiO-66 three-dimensional photonic crystal (3D PC) optical sensor and investigated its sensing properties toward the C6H5Cl vapor. The UiO-66 3D PCs optical sensor shows a high sensitivity of C6H5Cl vapor, in the concentrations range of 0-500 ppm, the reflectance intensity response to be 0.06% ppm with a good linear relationship, detection limit can reach 1.64 ppm and the quality factor is 10.8. Additionally, the UiO-66 3D PC optical sensor demonstrated great selectivity with the values of selectivity (S) varying from 2.24 to 10.65 for the C6H5Cl vapor as compared with carbon tetrachloride (CCl4), dichloromethane (CH2Cl2), 1,1,2-trichloroethane (C2H3Cl3), benzene (C6H6), deionized water (H2O), ethanol (C2H5OH) and methyl alcohol (CH3OH) vapors. Moreover, the UiO-66 3D PC optical sensor shows an ultrafast optical response time and recovery times of 0.5 s and 0.45 s with exceptional stability and repeatability to 500 ppm C6H5Cl vapor. These excellent sensing properties are attributed to the efficacy of signal transduction, increased porosity and gas adsorption sites, which are intrinsically endowed by the design of the 3D optical structure. The design and fabrication of this UiO-66 3D PC optical sensor might open up potential applications for the detection of the C6H5Cl vapor.
Collapse
Affiliation(s)
- Yaru Wang
- School of Physical Science and Engineering, Beijing Jiaotong University Beijing 100044 China
| | - Zhaolong Wang
- School of Physical Science and Engineering, Beijing Jiaotong University Beijing 100044 China
| | - Yangfan Gao
- School of Physical Science and Engineering, Beijing Jiaotong University Beijing 100044 China
| | - Yi Yuan
- School of Physical Science and Engineering, Beijing Jiaotong University Beijing 100044 China
| | - Jianfei Liu
- School of Physical Science and Engineering, Beijing Jiaotong University Beijing 100044 China
| | - Jun Yan
- School of Physical Science and Engineering, Beijing Jiaotong University Beijing 100044 China
| | - Yunlin Chen
- School of Physical Science and Engineering, Beijing Jiaotong University Beijing 100044 China
| |
Collapse
|
12
|
Cao S, Xu Y, Yu Z, Zhang P, Xu X, Sui N, Zhou T, Zhang T. A Dual Sensing Platform for Human Exhaled Breath Enabled by Fe-MIL-101-NH 2 Metal-Organic Frameworks and its Derived Co/Ni/Fe Trimetallic Oxides. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2203715. [PMID: 36058648 DOI: 10.1002/smll.202203715] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/24/2022] [Indexed: 06/15/2023]
Abstract
Limited by the insufficient active sites and the interference from breath humidity, designing reliable gas sensing materials with high activity and moisture resistance remains a challenge to analyze human exhaled breath for the translational application of medical diagnostics. Herein, the dual sensing and cooperative diagnosis is achieved by utilizing metal-organic frameworks (MOFs) and its derivative. The Fe-MIL-101-NH2 serves as the quartz crystal microbalance humidity sensing layer, which exhibits high selectivity and rapid response time (16 s/15 s) to water vapor. Then, the Co2+ and Ni2+ cations are further co-doped into Fe-MIL-101-NH2 host to obtain the derived Co/Ni/Fe trimetallic oxides (CoNiFe-MOS-n). The chemiresistive CoNiFe-MOS-n sensor displays the high sensitivity (560) and good selectivity to acetone, together with a lower original resistance compared with Fe2 O3 and NiFe2 O4 . Moreover, as a proof-of-concept application, synergistic integration of Fe-MIL-101-NH2 and derived CoNiFe-MOS-n is carried out. The Fe-MIL-101-NH2 is applied as moisture sorbent materials, which realize a sensitivity compensation of CoNiFe-MOS-n sensors for the detection of acetone (biomarker gas of diabetes). The findings provide an insight for effective utilization of MOFs and the derived materials to achieve a trace gas detection in exhaled breath analysis.
Collapse
Affiliation(s)
- Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Yifeng Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Zhongzheng Yu
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore, 637459, Singapore
| | - Peng Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Xiaoyi Xu
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
13
|
Sui N, Wei X, Cao S, Zhang P, Zhou T, Zhang T. Nanoscale Bimetallic AuPt-Functionalized Metal Oxide Chemiresistors: Ppb-Level and Selective Detection for Ozone and Acetone. ACS Sens 2022; 7:2178-2187. [PMID: 35901277 DOI: 10.1021/acssensors.2c00214] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
As the most widely used gas sensors, metal oxide semiconductor (MOS)-based chemiresistors have been facing great challenges in achieving ppb-level and selective detection of the target gas. The rational design and employment of bimetallic nanocatalysts (NCs) are expected to address this issue. In this work, the well-shaped and monodispersed AuPt NCs (diameter ≈ 9 nm) were functionalized on one-dimensional (1D) In2O3 nanofibers (NFs) to construct efficient gas sensors. The sensor demonstrated dual-selective and ppb-level detection for ozone (O3) and acetone (C3H6O) at different optimal working temperatures. For the possible application exploitation, a circuit was designed to monitor O3 concentration and provide warnings when the concentration safety limit (50 ppb) was exceeded. Moreover, simulated exhaled breath measurements were also carried out to diagnose diabetes through C3H6O concentration. The selective detection for O3 and C3H6O was further analyzed by principal component analysis (PCA). The drastically enhanced sensing performances were attributed to the synergistic catalytic effect of AuPt NCs. Both the "spillover effect" and the Schottky barrier at the interfaces of AuPt NCs and In2O3 NFs promoted the sensing processes of O3 and C3H6O.
Collapse
Affiliation(s)
- Ning Sui
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Xiao Wei
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Shuang Cao
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Peng Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun 130012, P. R. China
| |
Collapse
|
14
|
Akbarzadeh H, Mehrjouei E, Abbaspour M, Salemi S, Yaghoubi H, Ramezanzadeh S. Boron Nitride- and Graphene-Supported Trimetallic Yolk–Shell and Hollow Nanoparticles. Ind Eng Chem Res 2022. [DOI: 10.1021/acs.iecr.2c00574] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Hamed Akbarzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
- Department of Physical Chemistry, Faculty of Chemistry, Kharazmi University, Tehran 15719-14911, Iran
| | - Esmat Mehrjouei
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Mohsen Abbaspour
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
- Department of Chemistry, Faculty of Basic Sciences, Ferdowsi University of Mashhad, Mashhad 9177948974, Iran
| | - Sirous Salemi
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Hamzeh Yaghoubi
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| | - Samira Ramezanzadeh
- Department of Chemistry, Faculty of Basic Sciences, Hakim Sabzevari University, Sabzevar 96179- 76487, Iran
| |
Collapse
|
15
|
Wang W, Chen C, Ying Y, Lv S, Wang Y, Zhang X, Cai Z, Gu W, Li Z, Jiang G, Gao F. Smart PdH@MnO 2 Yolk-Shell Nanostructures for Spatiotemporally Synchronous Targeted Hydrogen Delivery and Oxygen-Elevated Phototherapy of Melanoma. ACS NANO 2022; 16:5597-5614. [PMID: 35315637 DOI: 10.1021/acsnano.1c10450] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Hydrogen therapy, an emerging therapeutic strategy, has recently attracted much attention in anticancer medicine. Evidence suggests that hydrogen (H2) can selectively reduce intratumoral overexpressed hydroxyl radicals (•OH) to break the redox homeostasis and thereby lead to redox stress and cell damage. However, the inability to achieve stable hydrogen storage and efficient hydrogen delivery hinders the development of hydrogen therapy. Furthermore, oxygen (O2) deficiency in the tumor microenvironment (TME) and the electron-hole separation inefficiency in photosensitizers have severely limited the efficacy of photodynamic therapy (PDT). Herein, a smart PdH@MnO2/Ce6@HA (PHMCH) yolk-shell nanoplatform is designed to surmount these challenges. PdH tetrahedrons combine stable hydrogen storage and high photothermal conversion efficiency of palladium (Pd) nanomaterials with near-infrared-controlled hydrogen release. Subsequently, the narrow bandgap semiconductor manganese dioxide (MnO2) and the photosensitizer chlorin e6 (Ce6) are introduced into the PHMCH nanoplatform. Upon irradiation, the staggered energy band edges in heterogeneous materials composed of MnO2 and Ce6 can efficiently facilitate electron-hole separation for increasing singlet oxygen (1O2). Moreover, MnO2 nanoshells generate O2 in TME for ameliorating hypoxia and further improving O2-dependent PDT. Finally, the hyaluronic acid-modified PHMCH nanoplatform shows negligible cytotoxicity and selectively targets CD44-overexpressing melanoma cells. The synergistic antitumor performance of the H2-mediated gas therapy combined with photothermal and enhanced PDT can explore more possibilities for the design of gas-mediated cancer therapy.
Collapse
Affiliation(s)
- Wandong Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Cheng Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Yu Ying
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Shanrong Lv
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Yun Wang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Xin Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Zhiheng Cai
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Wenxiang Gu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Zheng Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| | - Guan Jiang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
- Department of Dermatology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, People's Republic of China
| | - Fenglei Gao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu 221004, People's Republic of China
| |
Collapse
|
16
|
Shen J, Xu S, Zhao C, Qiao X, Liu H, Zhao Y, Wei J, Zhu Y. Bimetallic Au@Pt Nanocrystal Sensitization Mesoporous α-Fe 2O 3 Hollow Nanocubes for Highly Sensitive and Rapid Detection of Fish Freshness at Low Temperature. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57597-57608. [PMID: 34814684 DOI: 10.1021/acsami.1c17695] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/23/2023]
Abstract
In this work, we present a new metal oxide semiconductor gas sensor for detecting trimethylamine (TMA) by bimetal Au@Pt-modified α-Fe2O3 hollow nanocubes (NCs) as sensing materials. The structure and morphological characteristics of Au@Pt/α-Fe2O3 were evaluated through multiple analyses, and their gas-sensitive performance was investigated. Compared with the pristine α-Fe2O3 NC sensor, the sensor based on Au@Pt/α-Fe2O3 NCs exhibited faster response time (5 s) and higher response (Ra/Rg = 32) toward 100 ppm TMA gas at a lower temperature (150 °C). Furthermore, we also assessed the Au@Pt/α-Fe2O3 NC sensor for detecting the freshness of Larimichthys crocea which have been observed by headspace solid-phase microextraction and gas chromatography-mass spectrometry. The high performance of the Au@Pt/α-Fe2O3 NCs is attributed to the special hollow morphology with a high specific surface area (212.9 m2/g) and the synergistic effect of the Au@Pt bimetal. The Au@Pt/α-Fe2O3 sensor shows promising application prospects in estimating seafood freshness on the spot.
Collapse
Affiliation(s)
- Jiabin Shen
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Shanshan Xu
- State Key Laboratory of Chemical Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
| | - Cheng Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Xiaopeng Qiao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Haiquan Liu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| | - Jing Wei
- Institute of Analytical Chemistry and Instrument for Life Science, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Yongheng Zhu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture, Shanghai 201306, China
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, Shanghai 201306, China
| |
Collapse
|
17
|
Gas sensors based on TiO2 nanostructured materials for the detection of hazardous gases: A review. NANO MATERIALS SCIENCE 2021. [DOI: 10.1016/j.nanoms.2021.05.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
18
|
Enhanced Propanol Response Behavior of ZnFe2O4 NP-Based Active Sensing Layer Induced by Film Thickness Optimization. Processes (Basel) 2021. [DOI: 10.3390/pr9101791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Development of gas sensors displaying improved sensing characteristics including sensitivity, selectivity, and stability is now possible owing to tunable surface chemistry of the sensitive layers as well as favorable transport properties. Herein, zinc ferrite (ZnFe2O4) nanoparticles (NPs) were produced using a microwave-assisted hydrothermal method. ZnFe2O4 NP sensing layer films with different thicknesses deposited on interdigitated alumina substrates were fabricated at volumes of 1.0, 1.5, 2.0, and 2.5 µL using a simple and inexpensive drop-casting technique. Successful deposition of ZnFe2O4 NP-based active sensing layer films onto alumina substrates was confirmed by X-ray diffraction and atomic force microscope analysis. Top view and cross-section observations from the scanning electron microscope revealed inter-agglomerate pores within the sensing layers. The ZnFe2O4 NP sensing layer produced at a volume of 2 μL exhibited a high response of 33 towards 40 ppm of propanol, as well as rapid response and recovery times of 11 and 59 s, respectively, at an operating temperature of 120 °C. Furthermore, all sensors demonstrated a good response towards propanol and the highest response against ethanol, methanol, carbon dioxide, carbon monoxide, and methane. The results indicate that the developed fabrication strategy is an inexpensive way to enhance sensing response without sacrificing other sensing characteristics. The produced ZnFe2O4 NP-based active sensing layers can be used for the detection of volatile organic compounds in alcoholic beverages for quality check in the food sector.
Collapse
|
19
|
Zhou T, Zhang T. Recent Progress of Nanostructured Sensing Materials from 0D to 3D: Overview of Structure-Property-Application Relationship for Gas Sensors. SMALL METHODS 2021; 5:e2100515. [PMID: 34928067 DOI: 10.1002/smtd.202100515] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 06/23/2021] [Indexed: 05/27/2023]
Abstract
Along with the progress of nanoscience and nanotechnology, nanomaterials with attractive structural and functional properties have gained more attention than ever before, especially in the field of electronic sensors. In recent years, the gas sensing devices have made great achievement and also created wide application prospects, which leads to a new wave of research for designing advanced sensing materials. There is no doubt that the characteristics are highly governed by the sensitive layers. For this reason, important advances for the outstanding, novel sensing materials with different dimensional structures including 0D, 1D, 2D, and 3D are reported and summarized systematically. The sensing materials cover noble metals, metal oxide semiconductors, carbon nanomaterials, metal dichalcogenides, g-C3 N4 , MXenes, and complex composites. Discussion is also extended to the relation between sensing performances and their structure, electronic properties, and surface chemistry. In addition, some gas sensing related applications are also highlighted, including environment monitoring, breath analysis, food quality and safety, and flexible wearable electronics, from current situation and the facing challenges to the future research perspectives.
Collapse
Affiliation(s)
- Tingting Zhou
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| | - Tong Zhang
- State Key Laboratory of Integrated Optoelectronics, College of Electronic Science and Engineering, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
20
|
Real-time monitoring of chlorobenzene gas using an electrochemical gas sensor during mediated electrochemical degradation at room temperature. J Electroanal Chem (Lausanne) 2021. [DOI: 10.1016/j.jelechem.2021.115372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Wang Q, Wu H, Wang Y, Li J, Yang Y, Cheng X, Luo Y, An B, Pan X, Xie E. Ex-situ XPS analysis of yolk-shell Sb 2O 3/WO 3 for ultra-fast acetone resistive sensor. JOURNAL OF HAZARDOUS MATERIALS 2021; 412:125175. [PMID: 33516115 DOI: 10.1016/j.jhazmat.2021.125175] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/29/2020] [Accepted: 01/16/2021] [Indexed: 06/12/2023]
Abstract
The preparation of fast, highly responsive and reliable gas sensing devices for the detection of acetone gas is considered to be a key challenge for the development of accurate disease diagnosis systems through exhaled respiratory gases. In the paper, yolk shell Sb2O3/WO3 is synthesized and its gas sensing performance was studied by static test system. Special, the maximum response value of 1:1 Sb2O3/WO3 yolk-shell (WO3-1 YSL) sensor to 100 ppm acetone can reach as high as 50.0 at 200 ℃. And it also exhibits excellent response/recover time (4 s/5 s), low detection limit (2 ppm) and superior selectivity towards acetone. More importantly, in mixed selective gas test, the sensor shows high selectivity towards acetone. And the mechanism is analyzed by ex-situ XPS. The excellent gas-sensing performance can be attributed to unique yolk-shell structure, which facilitates the rapid transport of charge carriers from the surface to the bulk and provides more active sites for gas adsorption and desorption; the heterojunction between of Sb2O3 and WO3, which promotes oxygen pre-adsorption on the surface and increasing the interfacial potential; the increased oxygen vacancies which allowing more chemisorbed oxygen to form.
Collapse
Affiliation(s)
- Qiao Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Hongchang Wu
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Yanrong Wang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China.
| | - Jianpeng Li
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Yifan Yang
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Xu Cheng
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Yibing Luo
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Beixi An
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Xiaojun Pan
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China
| | - Erqing Xie
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, PR China.
| |
Collapse
|
22
|
Wang K, Zhan S, Zhang D, Sun H, Jin X, Wang J. Three-dimensional graphene encapsulated Ag-ZnFe 2O 4 flower-like nanocomposites with enhanced photocatalytic degradation of enrofloxacin. RSC Adv 2021; 11:4723-4739. [PMID: 35424420 PMCID: PMC8694424 DOI: 10.1039/d0ra09582f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 01/19/2021] [Indexed: 11/21/2022] Open
Abstract
Three-dimensional (3D) Ag–ZnFe2O4-reduced graphene oxide (rGO) was successfully synthesized using a hydrothermal and photo-reduction method, and the morphological differences of the materials were observed. Their photocatalytic activity was evaluated by photocatalytic degradation of enrofloxacin (ENR) under visible-light irradiation. The results indicated that Ag–ZnFe2O4–rGO exhibited superior photocatalytic properties and good stability. In this research, the enhancement of photocatalytic performance is mainly attributed to the electron channelization ability of rGO, which traps the photoexcited electrons of ZnFe2O4 on its π framework, and reduces the electron–hole recombination rate. Moreover, the high surface area of 3D pompon mum flower-like ZnFe2O4 provides more reactive sites. In addition, free radical capture and ESR experiments as well as pathway analysis of degradation also confirmed that superoxide radicals (˙O2−) and photo-generated holes from Ag–ZnFe2O4–rGO were the main active species in the degradation progress of ENR. Three-dimensional (3D) Ag–ZnFe2O4-reduced graphene oxide (rGO) was successfully synthesized using a hydrothermal and photo-reduction method, and the morphological differences of the materials were observed.![]()
Collapse
Affiliation(s)
- Kangwang Wang
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Sheng Zhan
- School of Materials Science and Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Danyang Zhang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 P. R. China
| | - Hui Sun
- School of Materials Science and Engineering, Shaanxi Normal University Xi'an 710119 P. R. China
| | - Xiaodong Jin
- School of Chemical and Biological Engineering, Lanzhou Jiaotong University Lanzhou 730070 P. R. China
| | - Juan Wang
- School of Chemistry and Chemical Engineering, Shaanxi Normal University Xi'an 710062 P. R. China .,School of Medicine, Shaanxi Institute of International Trade & Commerce Xi'an 712046 P. R. China
| |
Collapse
|
23
|
Spinel-Type Materials Used for Gas Sensing: A Review. SENSORS 2020; 20:s20185413. [PMID: 32967306 PMCID: PMC7570989 DOI: 10.3390/s20185413] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 09/14/2020] [Accepted: 09/18/2020] [Indexed: 12/14/2022]
Abstract
Demands for the detection of harmful gas in daily life have arisen for a period and a gas nano-sensor acting as a kind of instrument that can directly detect gas has been of wide concern. The spinel-type nanomaterial is suitable for the research of gas sensors because of its unique structure. However, the existing instability, higher detection limit, and operating temperature of the spinel materials limit the extension of the spinel material sensor. This paper reviews the research progress of spinel materials in gas sensor technology in recent years and lists the common morphological structures and material sensitization methods in combination with previous works.
Collapse
|
24
|
Alam MM, Mukhlish MZB, Tazrin A, Jui NA, Asiri AM, Rahman MM, Islam MA, Uddin MT. A novel highly selective electrochemical chlorobenzene sensor based on ternary oxide RuO2/ZnO/TiO2 nanocomposites. RSC Adv 2020; 10:32532-32547. [PMID: 35516515 PMCID: PMC9056640 DOI: 10.1039/d0ra05824f] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2020] [Accepted: 08/10/2020] [Indexed: 12/18/2022] Open
Abstract
A novel electrochemical (EC) chlorobenzene (CBZ) sensor was fabricated using a ternary oxide RuO2/ZnO/TiO2 nanocomposite (NC)-decorated glassy carbon electrode (GCE). The nanoparticles (NPs) were synthesized by a wet-chemical method and characterized by X-ray photoelectron spectroscopy (XPS), powder X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), energy-dispersive X-ray spectroscopy (EDS), and ultraviolet-visible (UV-vis) spectroscopy. The synthesized RuO2/ZnO/TiO2 NC was layered as thin film on a GCE with Nafion (5% suspension in ethanol) adhesive, and the as-prepared sensor was subjected to CBZ analysis using an electrochemical approach. The calibration of the proposed CBZ sensor was executed with a linear relation of current versus concentration of CBZs known as the calibration curve. The sensitivity (32.02 μA μM−1 cm−2) of the CBZ sensor was calculated from the slope of the calibration curve by considering the active surface area of the GCE (0.0316 cm2). The lower detection limit (LD; 98.70 ± 4.90 pM) was also calculated at a signal-to-noise ratio of 3. Besides these, the response current followed a linear relationship with the concentration of chlorobenzene and the linear dynamic range (LDR) was denoted in the range of 0.1 nM to 1.0 μM. Moreover, the CBZ sensor was found to exhibit good reproducibility, reliability, stability, and fast response time. Finally, the sensing mechanism was also discussed with the energy-band theory of ternary doped semiconductor materials. The sensing activity of the proposed sensor was significantly enhanced due to the combined result of depletion layer formation at the heterojunction of RuO2/ZnO/TiO2 NCs as well as the activity of RuO2 NPs as oxidation catalysts. The proposed CBZ sensor probe based on ternary oxide RuO2/ZnO/TiO2 NCs was developed with significant analytical parameters for practical application in monitoring the environmental pollutants of CBZs for the safety of environmental fields on a large scale. A novel electrochemical (EC) chlorobenzene (CBZ) sensor was fabricated using a ternary oxide RuO2/ZnO/TiO2 nanocomposite (NC)-decorated glassy carbon electrode (GCE).![]()
Collapse
Affiliation(s)
- Md. Mahmud Alam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Muhammad Zobayer Bin Mukhlish
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Ayesha Tazrin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Nahida Akter Jui
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Abdullah M. Asiri
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Mohammed M. Rahman
- Department of Chemistry
- King Abdulaziz University
- Faculty of Science
- Jeddah 21589
- Saudi Arabia
| | - Md. Akhtarul Islam
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| | - Md. Tamez Uddin
- Department of Chemical Engineering and Polymer Science
- Shahjalal University of Science and Technology
- Sylhet 3100
- Bangladesh
| |
Collapse
|