1
|
Liu W, Cheong N, He Z, Zhang T. Application of Hydroxyapatite Composites in Bone Tissue Engineering: A Review. J Funct Biomater 2025; 16:127. [PMID: 40278235 PMCID: PMC12028222 DOI: 10.3390/jfb16040127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/26/2025] Open
Abstract
The treatment of bone defects is complicated by clinical conditions, such as trauma, tumor resection, and infection, which result in defects and impair the bone's regenerative capacity. Hydroxyapatite (HAp), the primary inorganic component of bone, possesses good biocompatibility and osteoconductivity. However, it has poor mechanical properties, a slow degradation rate, and limited functionality, necessitating combination with other materials to broaden its application scope. This paper summarizes the importance and properties of HAp composites and provides a categorized review of current research on HAp composites in bone tissue engineering. These composite scaffolds not only offer excellent mechanical support for cell growth and tissue regeneration but also facilitate new bone formation and vascularization. Additionally, the challenges faced by HAp composites, such as material property optimization and improvement of preparation techniques, are discussed. The paper also summarizes the applications of HAp composites in bone defect repair, dental implants, spinal fusion, and other fields.
Collapse
Affiliation(s)
- Weijie Liu
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Nalini Cheong
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Zhuling He
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| | - Tonghan Zhang
- Zhongshan Stomatological Hospital, Guangzhou 528400, China; (W.L.); (N.C.); (Z.H.)
- School of Stomatology, Jinan University, Guangzhou 510632, China
| |
Collapse
|
2
|
Asadian E, Abbaszadeh S, Ghorbani-Bidkorpeh F, Rezaei S, Xiao B, Santos HA, Shahbazi MA. Hijacking plant skeletons for biomedical applications: from regenerative medicine and drug delivery to biosensing. Biomater Sci 2024; 13:9-92. [PMID: 39534968 DOI: 10.1039/d4bm00982g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The field of biomedical engineering continually seeks innovative technologies to address complex healthcare challenges, ranging from tissue regeneration to drug delivery and biosensing. Plant skeletons offer promising opportunities for these applications due to their unique hierarchical structures, desirable porosity, inherent biocompatibility, and adjustable mechanical properties. This review comprehensively discusses chemical principles underlying the utilization of plant-based scaffolds in biomedical engineering. Highlighting their structural integrity, tunable properties, and possibility of chemical modification, the review explores diverse preparation strategies to tailor plant skeleton properties for bone, neural, cardiovascular, skeletal muscle, and tendon tissue engineering. Such applications stem from the cellulosic three-dimensional structure of different parts of plants, which can mimic the complexity of native tissues and extracellular matrices, providing an ideal environment for cell adhesion, proliferation, and differentiation. We also discuss the application of plant skeletons as carriers for drug delivery due to their structural diversity and versatility in encapsulating and releasing therapeutic agents with controlled kinetics. Furthermore, we present the emerging role played by plant-derived materials in biosensor development for diagnostic and monitoring purposes. Challenges and future directions in the field are also discussed, offering insights into the opportunities for future translation of sustainable plant-based technologies to address critical healthcare needs.
Collapse
Affiliation(s)
- Elham Asadian
- Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
- Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, 19689-17313, Tehran, Iran
| | - Samin Abbaszadeh
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Fatemeh Ghorbani-Bidkorpeh
- Department of Pharmaceutics and Pharmaceutical Nanotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Saman Rezaei
- Department of Pharmacology and Toxicology, School of Pharmacy, Urmia University of Medical Sciences, Urmia, Iran
| | - Bo Xiao
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 610072, China.
| | - Hélder A Santos
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, University of Helsinki, Helsinki FI-00014, Finland.
| | - Mohammad-Ali Shahbazi
- Department of Biomaterials and Biomedical Technology, The Personalized Medicine Research Institute (PRECISION), University Medical Center Groningen, University of Groningen, Antonius Deusinglaan 1, 9713 AV Groningen, Netherlands.
| |
Collapse
|
3
|
Li M, Wang F, Ouyang S, Liu Y, Hu Z, Wu Y, Qian J, Li Z, Wang L, Ma S. A comprehensive review on preparation and functional application of the wood aerogel with natural cellulose framework. Int J Biol Macromol 2024; 275:133340. [PMID: 38925195 DOI: 10.1016/j.ijbiomac.2024.133340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/28/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
As the traditional aerogel has defects such as poor mechanical properties, complicated preparation process, high energy consumption and non-renewable, wood aerogel as a new generation of aerogel shows unique advantages. With a natural cellulose framework, wood aerogel is a novel nano-porous material exhibiting exceptional properties such as light weight, high porosity, large specific surface area, and low thermal conductivity. Furthermore, its adaptability to further functionalization enables versatile applications across diverse fields. Driven by the imperative for sustainable development, wood aerogel as a renewable and eco-friendly material, has garnered significant attention from researchers. This review introduces preparation methods of wood aerogel based on the top-down strategy and analyzes the factors influencing their key properties intending to obtain wood aerogels with desirable properties. Avenues for realizing its functionality are also explored, and research progress across various domains are surveyed, including oil-water separation, conductivity and energy storage, as well as photothermal conversion. Finally, potential challenges associated with wood aerogel exploitation and utilization are addressed, alongside discussions on future prospects and research directions. The results emphasize the broad research value and future prospects of wood aerogels, which are poised to drive high-value utilization of wood and foster the development of green multifunctional aerogels.
Collapse
Affiliation(s)
- Mengdi Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Feijie Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Shiqiang Ouyang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yichi Liu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zihan Hu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Yiting Wu
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Jing Qian
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Zhihua Li
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China
| | - Liqiang Wang
- Jiangsu Provincial Key Laboratory of Food Advanced Manufacturing Equipment Technology, School of Mechanical Engineering, Jiangnan University, Wuxi 214122, China.
| | - Shufeng Ma
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
4
|
Chen J. Current advances in anisotropic structures for enhanced osteogenesis. Colloids Surf B Biointerfaces 2023; 231:113566. [PMID: 37797464 DOI: 10.1016/j.colsurfb.2023.113566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/07/2023]
Abstract
Bone defects are a challenge to healthcare systems, as the aging population experiences an increase in bone defects. Despite the development of biomaterials for bone fillers and scaffolds, there is still an unmet need for a bone-mimetic material. Cortical bone is highly anisotropic and displays a biological liquid crystalline (LC) arrangement, giving it exceptional mechanical properties and a distinctive microenvironment. However, the biofunctions, cell-tissue interactions, and molecular mechanisms of cortical bone anisotropic structure are not well understood. Incorporating anisotropic structures in bone-facilitated scaffolds has been recognised as essential for better outcomes. Various approaches have been used to create anisotropic micro/nanostructures, but biomimetic bone anisotropic structures are still in the early stages of development. Most scaffolds lack features at the nanoscale, and there is no comprehensive evaluation of molecular mechanisms or characterisation of calcium secretion. This manuscript provides a review of the latest development of anisotropic designs for osteogenesis and discusses current findings on cell-anisotropic structure interactions. It also emphasises the need for further research. Filling knowledge gaps will enable the fabrication of scaffolds for improved and more controllable bone regeneration.
Collapse
Affiliation(s)
- Jishizhan Chen
- UCL Mechanical Engineering, University College London, WC1E 7JE, UK.
| |
Collapse
|
5
|
Koch SM, Goldhahn C, Müller FJ, Yan W, Pilz-Allen C, Bidan CM, Ciabattoni B, Stricker L, Fratzl P, Keplinger T, Burgert I. Anisotropic wood-hydrogel composites: Extending mechanical properties of wood towards soft materials' applications. Mater Today Bio 2023; 22:100772. [PMID: 37674781 PMCID: PMC10477686 DOI: 10.1016/j.mtbio.2023.100772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/28/2023] [Accepted: 08/15/2023] [Indexed: 09/08/2023] Open
Abstract
Delignified wood (DW) offers a versatile platform for the manufacturing of composites, with material properties ranging from stiff to soft and flexible by preserving the preferential fiber directionality of natural wood through a structure-retaining production process. This study presents a facile method for fabricating anisotropic and mechanically tunable DW-hydrogel composites. These composites were produced by infiltrating delignified spruce wood with an aqueous gelatin solution followed by chemical crosslinking. The mechanical properties could be modulated across a broad strength and stiffness range (1.2-18.3 MPa and 170-1455 MPa, respectively) by varying the crosslinking time. The diffusion-led crosslinking further allowed to manufacture mechanically graded structures. The resulting uniaxial, tubular structure of the anisotropic DW-hydrogel composite enabled the alignment of murine fibroblasts in vitro, which could be utilized in future studies on potential applications in tissue engineering.
Collapse
Affiliation(s)
- Sophie Marie Koch
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Duebendorf, Switzerland
| | - Christian Goldhahn
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Florence J. Müller
- Soft Materials Group, Department of Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Wenqing Yan
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Duebendorf, Switzerland
| | - Christine Pilz-Allen
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Cécile M. Bidan
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Beatrice Ciabattoni
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Laura Stricker
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Peter Fratzl
- Department of Biomaterials, Max Planck Institute of Colloids and Interfaces, 14476 Potsdam, Germany
| | - Tobias Keplinger
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
| | - Ingo Burgert
- Wood Materials Science, Institute for Building Materials, ETH Zurich, 8093 Zurich, Switzerland
- WoodTec Group, Cellulose & Wood Materials, Empa, 8600 Duebendorf, Switzerland
| |
Collapse
|
6
|
Chen J, He X, Sun T, Liu K, Chen C, Wen W, Ding S, Liu M, Zhou C, Luo B. Highly Elastic and Anisotropic Wood-Derived Composite Scaffold with Antibacterial and Angiogenic Activities for Bone Repair. Adv Healthc Mater 2023; 12:e2300122. [PMID: 37099026 DOI: 10.1002/adhm.202300122] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 04/04/2023] [Indexed: 04/27/2023]
Abstract
Scaffold-based tissue engineering is a promising strategy to address the rapidly growing demand for bone implants, but developing scaffolds with bone extracellular matrix-like structures, suitable mechanical properties, and multiple biological activities remains a huge challenge. Here, it is aimed to develop a wood-derived composite scaffold with an anisotropic porous structure, high elasticity, and good antibacterial, osteogenic, and angiogenic activities. First, natural wood is treated with an alkaline solution to obtain a wood-derived scaffold with an oriented cellulose skeleton and high elasticity, which can not only simulate collagen fiber skeleton in bone tissue but also greatly improve the convenience of clinical implantation. Subsequently, chitosan quaternary ammonium salt (CQS) and dimethyloxalylglycine (DMOG) are further modified on the wood-derived elastic scaffold through a polydopamine layer. Among them, CQS endows the scaffold with good antibacterial activity, while DMOG significantly improves the scaffold's osteogenic and angiogenic activities. Interestingly, the mechanical characteristics of the scaffolds and the modified DMOG can synergistically enhance the expression of yes-associated protein/transcriptional co-activator with PDZ binding motif signaling pathway, thereby effectively promoting osteogenic differentiation. Therefore, this wood-derived composite scaffold is expected to have potential application in the treatment of bone defects.
Collapse
Affiliation(s)
- Jiaqing Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Xiangheng He
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Tianyi Sun
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Kun Liu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Chunhua Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
| | - Wei Wen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Shan Ding
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Mingxian Liu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Changren Zhou
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| | - Binghong Luo
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou, 510632, P. R. China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou, 510632, P. R. China
| |
Collapse
|
7
|
Huang J, Ma Y, Pang K, Ma X, Zheng Z, Xu D, Xiong K, Yu B, Liao L. Anisotropic Microspheres-Cryogel Composites Loaded with Magnesium l-Threonate Promote Osteogenesis, Angiogenesis, and Neurogenesis for Repairing Bone Defects. Biomacromolecules 2023. [PMID: 37326596 DOI: 10.1021/acs.biomac.3c00243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
To achieve osteogenesis, angiogenesis, and neurogenesis for repairing bone defects, we constructed an anisotropic microspheres-cryogel composite loaded with magnesium l-threonate (MgT). These composites were prepared by the photo-click reaction of norbornene-modified gelatin (GB) in the presence of MgT-loaded microspheres through the bidirectional freezing method. The composites possessed an anisotropic macroporous (around 100 μm) structure and sustained release of bioactive Mg2+, which facilitate vascular ingrowth. These composites could significantly promote osteogenic differentiation of bone marrow mesenchymal stem cells, tubular formation of human umbilical vein vessel endothelial cells, and neuronal differentiation in vitro. Additionally, these composites significantly promoted early vascularization and neurogenesis as well as bone regeneration in the rat femoral condyle defects. In conclusion, owing to the anisotropic macroporous microstructure and bioactive MgT, these composites could simultaneously promote bone, blood vessel, and nerve regeneration, showing great potential for bone tissue engineering.
Collapse
Affiliation(s)
- Junhai Huang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Yuan Ma
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Kaiteng Pang
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Xiaochen Ma
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Zhiyu Zheng
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Daorong Xu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Ke Xiong
- Department of Ophthalmology, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Bin Yu
- Division of Orthopaedic Surgery, Department of Orthopaedics, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
- Guangdong Provincial Key Laboratory of Bone and Cartilage Regenerative Medicine, Nanfang Hospital, Southern Medical University, Guangzhou 510515, Guangdong, China
| | - Liqiong Liao
- Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou 510515, Guangdong, China
| |
Collapse
|
8
|
Chen J, Chen J, Zhu Z, Sun T, Liu M, Lu L, Zhou C, Luo B. Drug-Loaded and Anisotropic Wood-Derived Hydrogel Periosteum with Super Antibacterial, Anti-Inflammatory, and Osteogenic Activities. ACS APPLIED MATERIALS & INTERFACES 2022; 14:50485-50498. [PMID: 36331130 DOI: 10.1021/acsami.2c12147] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Current artificial periostea mainly focus on osteogenic activity but overlook structural and mechanical anisotropy, as well as the importance of antibacterial and anti-inflammatory properties. Here, inspired by the anisotropic structure of wood, the delignified wood (named white wood, WW) with a porous and highly oriented cellulose fiber skeleton was obtained, which was further filled with polyvinyl alcohol (PVA) hydrogel loaded with curcumin (Cur) and phytic acid (PA). The prepared wood-derived hydrogel composite membranes can not only exhibit an obvious anisotropic structure and good mechanical properties but also sustainably release loaded drugs to obtain long-term biological activities. Creatively, PA can effectively improve the bioavailability of Cur; more importantly, Cur and PA play an obvious synergistic effect in antibacterial, anti-inflammatory, and osteogenic activities. Compared with the wood-derived hydrogel composite membranes without drug loading, as well as loaded with Cur or PA only, these loaded with Cur and PA are significantly more conducive to inhibiting the growth of bacteria and inflammatory response and facilitating the adhesion, proliferation, and osteogenic differentiation of bone marrow mesenchymal stem cells. This kind of anisotropic wood-derived hydrogel composite membrane with fantastic antibacterial, anti-inflammatory, and osteogenic activities is expected to be ideal artificial periostea.
Collapse
Affiliation(s)
- Jiaqing Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Jingsheng Chen
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Zelin Zhu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Tianyi Sun
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
| | - Mingxian Liu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Lu Lu
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Changren Zhou
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| | - Binghong Luo
- Biomaterial research laboratory, Department of Material Science and Engineering, College of Chemistry and Materials, Jinan University, Guangzhou510632, PR China
- Engineering Research center of Artificial Organs and Materials, Ministry of Education, Guangzhou510632, PR China
| |
Collapse
|
9
|
Evaluation of Human Bone Marrow Mesenchymal Stromal Cell (MSC) Functions on a Biomorphic Rattan-Wood-Derived Scaffold: A Comparison between Cultured and Uncultured MSCs. Bioengineering (Basel) 2021; 9:bioengineering9010001. [PMID: 35049710 PMCID: PMC8773042 DOI: 10.3390/bioengineering9010001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/15/2021] [Accepted: 12/18/2021] [Indexed: 11/16/2022] Open
Abstract
The reconstruction of large bone defects requires the use of biocompatible osteoconductive scaffolds. These scaffolds are often loaded with the patient’s own bone marrow (BM) cells to facilitate osteoinductivity and biological potency. Scaffolds that are naturally sourced and fabricated through biomorphic transitions of rattan wood (B-HA scaffolds) offer a unique advantage of higher mechanical strength and bioactivity. In this study, we investigated the ability of a biomorphic B-HA scaffold (B-HA) to support the attachment, survival and gene expression profile of human uncultured BM-derived mesenchymal stromal cells (BMSCs, n = 6) and culture expanded MSCs (cMSCs, n = 7) in comparison to a sintered, porous HA scaffold (S-HA). B-HA scaffolds supported BMSC attachment (average 98%) and their survival up to 4 weeks in culture. Flow cytometry confirmed the phenotype of cMSCs on the scaffolds. Gene expression indicated clear segregation between cMSCs and BMSCs with MSC osteogenesis- and adipogenesis-related genes including RUNX2, PPARγ, ALP and FABP4 being higher expressed in BMSCs. These data indicated a unique transcriptional signature of BMSCs that was distinct from that of cMSCs regardless of the type of scaffold or time in culture. There was no statistical difference in the expression of osteogenic genes in BMSCs or cMSCs in B-HA compared to S-HA. VEGF release from cMSCs co-cultured with human endothelial cells (n = 4) on B-HA scaffolds suggested significantly higher supernatant concentration with endothelial cells on day 14. This indicated a potential mechanism for providing vasculature to the repair area when such scaffolds are used for treating large bone defects.
Collapse
|
10
|
Liu J, Wang D, Li Y, Zhou Z, Zhang D, Li J, Chu H. Overall Structure Construction of an Intervertebral Disk Based on Highly Anisotropic Wood Hydrogel Composite Materials with Mechanical Matching and Buckling Buffering. ACS APPLIED MATERIALS & INTERFACES 2021; 13:15709-15719. [PMID: 33755430 DOI: 10.1021/acsami.1c02487] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Natural intervertebral disks (IVDs) exhibit distinctive anisotropic mechanical support and dissipation performances due to their well-developed special microstructures. As the intact IVD structure degrades, the absence of function will lead to severe backache. However, the complete simulation for the characteristic structure and function of native IVD is unattainable using current methods. In this work, by overall construction of the two-phase structure of native IVD (extraction of the naturally aligned cellulose framework and in situ polymerization of the nanocomposite hydrogel), a complete wood framework IVD (WF-IVD) is manufactured containing elastic nanocomposite hydrogel-based nucleus pulposus (NP) and anisotropic wood cellulose hydrogel-based annulus fibrosus (AF). In addition to the imitation and construction of the natural structure, WF-IVD also achieves favorable mechanical matching and good biocompatibility and possesses unique mechanical buckling buffer characteristics owing to the aligned fiber bundles. This study offers a promising strategy for the mimicking and construction of complex native tissues.
Collapse
Affiliation(s)
- Jinming Liu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dingqian Wang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Yanyan Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Ziqi Zhou
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Dongyue Zhang
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Jianshu Li
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| | - Hetao Chu
- College of Polymer Science and Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
11
|
Tovani CB, Oliveira TM, Soares MPR, Nassif N, Fukada SY, Ciancaglini P, Gloter A, Ramos AP. Strontium Calcium Phosphate Nanotubes as Bioinspired Building Blocks for Bone Regeneration. ACS APPLIED MATERIALS & INTERFACES 2020; 12:43422-43434. [PMID: 32876428 DOI: 10.1021/acsami.0c12434] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Calcium phosphate (CaP)-based ceramics are the most investigated materials for bone repairing and regeneration. However, the clinical performance of commercial ceramics is still far from that of the native tissue, which remains as the gold standard. Thus, reproducing the structural architecture and composition of bone matrix should trigger biomimetic response in synthetic materials. Here, we propose an innovative strategy based on the use of track-etched membranes as physical confinement to produce collagen-free strontium-substituted CaP nanotubes that tend to mimic the building block of bone, i.e., the mineralized collagen fibrils. A combination of high-resolution microscopic and spectroscopic techniques revealed the underlying mechanisms driving the nanotube formation. Under confinement, poorly crystalline apatite platelets assembled into tubes that resembled the mineralized collagen fibrils in terms of diameter and structure of bioapatite. Furthermore, the synergetic effect of Sr2+ and confinement gave rise to the stabilization of amorphous strontium CaP nanotubes. The nanotubes were tested in long-term culture of osteoblasts, supporting their maturation and mineralization without eliciting any cytotoxicity. Sr2+ released from the particles reduced the differentiation and activity of osteoclasts in a Sr2+ concentration-dependent manner. Their bioactivity was evaluated in a serum-like solution, showing that the particles spatially guided the biomimetic remineralization. Further, these effects were achieved at strikingly low concentrations of Sr2+ that is crucial to avoid side effects. Overall, these results open simple and promising pathways to develop a new generation of CaP multifunctional ceramics that are active in tissue regeneration and able to simultaneously induce biomimetic remineralization and control the imbalanced osteoclast activity responsible for bone density loss.
Collapse
Affiliation(s)
- Camila B Tovani
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Tamires M Oliveira
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Mariana P R Soares
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Nadine Nassif
- Sorbonne Université, CNRS, Collège de France, Laboratoire de Chimie de la Matière Condensée de Paris, 4 Place Jussieu, F-75005 Paris, France
| | - Sandra Y Fukada
- Departamento de Ciências Biomoleculares, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Pietro Ciancaglini
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| | - Alexandre Gloter
- Laboratoire de Physique des Solides, Université Paris-Saclay, 91405 Orsay, France
| | - Ana P Ramos
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP 14040-901, Brazil
| |
Collapse
|