1
|
Wei L, Lin G, Liu J, Lv N, Jiang W, Dong C, Shang S. Conductive Structural Colored Cotton Fabrics with Nonangle-Dependent Colors and Dynamic Thermal Management. ACS APPLIED MATERIALS & INTERFACES 2025; 17:21985-21995. [PMID: 40145830 DOI: 10.1021/acsami.5c00109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
Textile dyeing based on structural colors has attracted great attention due to its environmental friendliness and long-lasting color fastness. However, most studies on structural colored fabrics focus on only improving the color and stability of the fabric, neglecting the increasing demand for multifunctional textiles in daily life. Herein, a simple and effective method was used for preparing conductive structural colored cotton fabrics with nonangle-dependent colors and dynamic thermal management. To prepare structural color nanospheres with higher color rendering, PMMA nanospheres were coated with black PDA. The conductive structural colored fabric was obtained by self-assembling PMMA@PDA nanospheres onto MXene-modified cotton fabric through a simple blade coating method. The prepared conductive structural colored textile retains its softness and demonstrates good electrothermal performance and durable color fastness through washing, friction, and durability tests. This work provides a novel approach for creating bifunctional structural colored textiles that are suitable for electrothermal applications.
Collapse
Affiliation(s)
- Luyao Wei
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| | - Guizhen Lin
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Jie Liu
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Ning Lv
- Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China
| | - Wei Jiang
- Haima Carpet Group Co., Ltd, Weihai, Shandong 264200, China
| | - Chaohong Dong
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
| | - Shenglong Shang
- College of Textiles and Clothing, Institute of Functional Textiles and Advanced Materials, State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao 266071, China
- Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing 312000, China
| |
Collapse
|
2
|
Xie W, Dhinojwala A, Gianneschi NC, Shawkey MD. Interactions of Melanin with Electromagnetic Radiation: From Fundamentals to Applications. Chem Rev 2024; 124:7165-7213. [PMID: 38758918 DOI: 10.1021/acs.chemrev.3c00858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/19/2024]
Abstract
Melanin, especially integumentary melanin, interacts in numerous ways with electromagnetic radiation, leading to a set of critical functions, including radiation protection, UV-protection, pigmentary and structural color productions, and thermoregulation. By harnessing these functions, melanin and melanin-like materials can be widely applied to diverse applications with extraordinary performance. Here we provide a unified overview of the melanin family (all melanin and melanin-like materials) and their interactions with the complete electromagnetic radiation spectrum (X-ray, Gamma-ray, UV, visible, near-infrared), which until now has been absent from the literature and is needed to establish a solid fundamental base to facilitate their future investigation and development. We begin by discussing the chemistries and morphologies of both natural and artificial melanin, then the fundamentals of melanin-radiation interactions, and finally the exciting new developments in high-performance melanin-based functional materials that exploit these interactions. This Review provides both a comprehensive overview and a discussion of future perspectives for each subfield of melanin that will help direct the future development of melanin from both fundamental and applied perspectives.
Collapse
Affiliation(s)
- Wanjie Xie
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Nathan C Gianneschi
- Department of Chemistry, Department of Materials Science and Engineering, Department of Biomedical Engineering, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, and International Institute of Nanotechnology, Northwestern University, Evanston, Illinois 60208, United States
| | - Matthew D Shawkey
- Department of Biology, Evolution and Optics of Nanostructure Group, University of Ghent, Gent 9000, Belgium
| |
Collapse
|
3
|
Singla S, Yang Z, Patil A, Guo H, Vanthournout B, Htut KZ, Shawkey MD, Tsige M, Dhinojwala A. Influence of Core Type and Shell Thickness on Avian-Inspired Structural Colors Produced from Melanin Nanoparticle Assemblies. ACS APPLIED MATERIALS & INTERFACES 2023; 15:45229-45238. [PMID: 37699412 DOI: 10.1021/acsami.3c08152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
Hollow melanosomes found in iridescent bird feathers, including violet-backed starlings and wild turkeys, enable the generation of diverse structural colors. It has been postulated that the high refractive index (RI) contrast between melanin (1.74) and air (1.0) results in brighter and more saturated colors. This has led to several studies that have synthesized hollow synthetic melanin nanoparticles and fabricated colloidal nanostructures to produce synthetic structural colors. However, these studies use hollow nanoparticles with thin shells (<20 nm), even though shell thicknesses as high as 100 nm have been observed in natural melanosomes. Here, we combine experimental and computational approaches to examine the influence of the varying polydopamine (PDA, synthetic melanin) shell thickness (0-100 nm) and core material on structural colors. Experimentally, a concomitant change in overall particle size and RI contrast makes it difficult to interpret the effect of a hollow or solid core on color. Thus, we utilize finite-difference time-domain (FDTD) simulations to uncover the effect of shell thickness and core on structural colors. Our FDTD results highlight that hollow particles with thin shells have substantially higher saturation than same-sized solid and core-shell particles. These results would benefit a wide range of applications including paints, coatings, and cosmetics.
Collapse
Affiliation(s)
- Saranshu Singla
- School of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Zepeng Yang
- School of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Anvay Patil
- School of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Hao Guo
- School of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | - K Zin Htut
- School of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| | | | - Mesfin Tsige
- School of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| | - Ali Dhinojwala
- School of Polymer Science and Engineering, The University of Akron, Akron, Ohio 44325, United States
| |
Collapse
|
4
|
Jiang H, Li G, Si L, Guo M, Ma H, Luo W, Guan J. Versatile Double Bandgap Photonic Crystals of High Color Saturation. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:2632. [PMID: 37836273 PMCID: PMC10574206 DOI: 10.3390/nano13192632] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/21/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023]
Abstract
Double bandgap photonic crystals (PCs) exhibit significant potential for applications in various color display-related fields. However, they show low color saturation and inadequate color modulation capabilities. This study presents a viable approach to the fabrication of double bandgap photonic inks diffracting typical secondary colors and other composite colors by simply mixing two photonic nanochains (PNCs) of different primary colors as pigments in an appropriate percentage following the conventional RGB color matching method. In this approach, the PNCs are magnetically responsive and display three primary colors that can be synthesized by combining hydrogen bond-guided and magnetic field (H)-assisted template polymerization. The as-prepared double bandgap photonic inks present high color saturation due to the fixed and narrow full-width at half-maxima of the parent PNCs with a suitable chain length. Furthermore, they can be used to easily produce a flexible double bandgap PC film by embedding the PNCs into a gel, such as polyacrylamide, facilitating fast steady display performance without the requirement of an external magnetic field. This research not only presents the unique advantages of PNCs in constructing multi-bandgap PCs but also establishes the feasibility of utilizing PNCs in practical applications within the fields of anti-counterfeiting and flexible wearable devices.
Collapse
Affiliation(s)
- Hao Jiang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (H.J.); (L.S.); (J.G.)
| | - Gang Li
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.L.); (M.G.)
| | - Luying Si
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (H.J.); (L.S.); (J.G.)
| | - Minghui Guo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.L.); (M.G.)
| | - Huiru Ma
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
- School of Chemistry, Chemical Engineering and Life Science, Wuhan University of Technology, Wuhan 430070, China
| | - Wei Luo
- School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (G.L.); (M.G.)
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| | - Jianguo Guan
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, International School of Materials Science and Engineering, Wuhan University of Technology, Wuhan 430070, China; (H.J.); (L.S.); (J.G.)
- Wuhan Institute of Photochemistry and Technology, 7 North Bingang Road, Wuhan 430083, China
| |
Collapse
|
5
|
Heil CM, Patil A, Vanthournout B, Singla S, Bleuel M, Song JJ, Hu Z, Gianneschi NC, Shawkey MD, Sinha SK, Jayaraman A, Dhinojwala A. Mechanism of structural colors in binary mixtures of nanoparticle-based supraballs. SCIENCE ADVANCES 2023; 9:eadf2859. [PMID: 37235651 DOI: 10.1126/sciadv.adf2859] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Inspired by structural colors in avian species, various synthetic strategies have been developed to produce noniridescent, saturated colors using nanoparticle assemblies. Nanoparticle mixtures varying in particle chemistry and size have additional emergent properties that affect the color produced. For complex multicomponent systems, understanding the assembled structure and a robust optical modeling tool can empower scientists to identify structure-color relationships and fabricate designer materials with tailored color. Here, we demonstrate how we can reconstruct the assembled structure from small-angle scattering measurements using the computational reverse-engineering analysis for scattering experiments method and use the reconstructed structure in finite-difference time-domain calculations to predict color. We successfully, quantitatively predict experimentally observed color in mixtures containing strongly absorbing nanoparticles and demonstrate the influence of a single layer of segregated nanoparticles on color produced. The versatile computational approach that we present is useful for engineering synthetic materials with desired colors without laborious trial-and-error experiments.
Collapse
Affiliation(s)
- Christian M Heil
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
| | - Anvay Patil
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| | - Bram Vanthournout
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Saranshu Singla
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| | - Markus Bleuel
- NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, MD 20878, USA
- Department of Materials Science and Engineering, University of Maryland, 4418 Stadium Dr., College Park, MD 20742, USA
| | - Jing-Jin Song
- Department of Materials Science & Engineering, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Ziying Hu
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
| | - Nathan C Gianneschi
- Department of Chemistry, Northwestern University, Evanston, IL 60208, USA
- Department of Materials Science and Engineering, Department of Biomedical Engineering, Department of Pharmacology, International Institute of Nanotechnology, Simpson-Querrey Institute, Chemistry of Life Processes Institute, Lurie Cancer Center, Northwestern University, Evanston, IL 60208, USA
| | - Matthew D Shawkey
- Evolution and Optics of Nanostructures Group, Department of Biology, Ghent University, Ledeganckstraat 35, Ghent 9000, Belgium
| | - Sunil K Sinha
- Department of Physics, University of California San Diego, 9500 Gilman Dr., La Jolla, CA 92093, USA
| | - Arthi Jayaraman
- Department of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy St., Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, 201 DuPont Hall, Newark, DE 19716, USA
| | - Ali Dhinojwala
- School of Polymer Science and Polymer Engineering, The University of Akron, 170 University Ave., Akron, OH 44325, USA
| |
Collapse
|
6
|
Duncan MA, Barney L, Dias MRS, Leite MS. Refractory Metals and Oxides for High-Temperature Structural Color Filters. ACS APPLIED MATERIALS & INTERFACES 2022; 14:55745-55752. [PMID: 36473080 PMCID: PMC9782350 DOI: 10.1021/acsami.2c14613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Accepted: 11/17/2022] [Indexed: 06/17/2023]
Abstract
Refractory metals have recently garnered significant interest as options for photonic applications due to their superior high-temperature stability and versatile optical properties. However, most previous studies only consider their room-temperature optical properties when analyzing these materials' behavior as optical components. Here, we demonstrate structural color pixels based on three refractory metals (Ru, Ta, and W) for high-temperature applications. We quantify their optical behavior in an oxygenated environment and determine their dielectric functions after heating up to 600 °C. We use in situ oxidation, a fundamental chemical reaction, to form nanometer-scale metal oxide thin-film bilayers on each refractory metal. We fully characterize the behavior of the newly formed thin-film interference structures, which exhibit vibrant color changes upon high-temperature treatment. Finally, we present optical simulations showing the full range of hues achievable with a simple two-layer metal oxide/metal reflector structure. All of these materials have melting points >1100 °C, with the Ta-based structure offering high-temperature stability, and the Ru- and W-based options providing an alternative for reversible color filters, at high temperatures in inert or vacuum environments. Our approach is uniquely suitable for high-temperature photonics, where the oxides can be used as conformal coatings to produce a wide variety of colors across a large portion of the color gamut.
Collapse
Affiliation(s)
- Margaret A Duncan
- Department of Materials Science and Engineering, UC Davis, 1 Shields Ave, Davis, California 95616, United States
| | - Landin Barney
- Department of Physics, University of Richmond, 138 UR Drive, Richmond, Virginia 23173, United States
| | | | - Marina S Leite
- Department of Materials Science and Engineering, UC Davis, 1 Shields Ave, Davis, California 95616, United States
| |
Collapse
|
7
|
Yazhgur P, Muller N, Scheffold F. Inkjet Printing of Structurally Colored Self-Assembled Colloidal Aggregates. ACS PHOTONICS 2022; 9:2809-2816. [PMID: 35996372 PMCID: PMC9389609 DOI: 10.1021/acsphotonics.2c00627] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Indexed: 06/15/2023]
Abstract
Structurally colored materials offer increased stability, high biocompatibility, and a large variety of colors, which can hardly be reached simultaneously using conventional chemical pigments. However, for practical applications, such as inkjet printing, it is vital to compartmentalize these materials in small building blocks (with sizes ideally below 5 μm) and create "ready-to-use" inks. The latter can be achieved by using photonic balls (PB): spherical aggregates of nanoparticles. Here, we demonstrate, for the first time, how photonic ball dispersions can be used as inkjet printing inks. We use solvent drying techniques to manufacture structurally colored colloidal aggregates. The as-fabricated photonic balls are dispersed in pentanol to form ink. A custom-made inkjet printing platform equipped with an industrial printhead and recirculation fluidic system is used to print complex structurally colored patterns. We increase color purity and suppress multiple scattering by introducing carbon black as a broadband light absorber.
Collapse
Affiliation(s)
- Pavel Yazhgur
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| | - Nicolas Muller
- iPrint Institute, HEIA-FR, HES-SO University of Applied Sciences and Arts Western Switzerland, Fribourg CH-1700, Switzerland
| | - Frank Scheffold
- Department of Physics, University of Fribourg, CH-1700 Fribourg, Switzerland
| |
Collapse
|
8
|
Heil C, Patil A, Dhinojwala A, Jayaraman A. Computational Reverse-Engineering Analysis for Scattering Experiments (CREASE) with Machine Learning Enhancement to Determine Structure of Nanoparticle Mixtures and Solutions. ACS CENTRAL SCIENCE 2022; 8:996-1007. [PMID: 35912348 PMCID: PMC9335921 DOI: 10.1021/acscentsci.2c00382] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
We present a new open-source, machine learning (ML) enhanced computational method for experimentalists to quickly analyze high-throughput small-angle scattering results from multicomponent nanoparticle mixtures and solutions at varying compositions and concentrations to obtain reconstructed 3D structures of the sample. This new method is an improvement over our original computational reverse-engineering analysis for scattering experiments (CREASE) method (ACS Materials Au2021, 1 (2 (2), ), 140-156), which takes as input the experimental scattering profiles and outputs a 3D visualization and structural characterization (e.g., real space pair-correlation functions, domain sizes, and extent of mixing in binary nanoparticle mixtures) of the nanoparticle mixtures. The new gene-based CREASE method reduces the computational running time by >95% as compared to the original CREASE and performs better in scenarios where the original CREASE method performed poorly. Furthermore, the ML model linking features of nanoparticle solutions (e.g., concentration, nanoparticles' tendency to aggregate) to a computed scattering profile is generic enough to analyze scattering profiles for nanoparticle solutions at conditions (nanoparticle chemistry and size) beyond those that were used for the ML training. Finally, we demonstrate application of this new gene-based CREASE method for analysis of small-angle X-ray scattering results from a nanoparticle solution with unknown nanoparticle aggregation and small-angle neutron scattering results from a binary nanoparticle assembly with unknown mixing/segregation among the nanoparticles.
Collapse
Affiliation(s)
- Christian
M. Heil
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
| | - Anvay Patil
- School
of Polymer Science and Polymer Engineering, The University of Akron, 170 University Avenue, Akron, Ohio 44325, United
States
| | - Ali Dhinojwala
- School
of Polymer Science and Polymer Engineering, The University of Akron, 170 University Avenue, Akron, Ohio 44325, United
States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont
Hall, Newark, Delaware 19716, United States
| |
Collapse
|
9
|
Heil C, Jayaraman A. Computational Reverse-Engineering Analysis for Scattering Experiments of Assembled Binary Mixture of Nanoparticles. ACS MATERIALS AU 2021; 1:140-156. [PMID: 36855396 PMCID: PMC9888618 DOI: 10.1021/acsmaterialsau.1c00015] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
In this paper, we describe a computational method for analyzing results from scattering experiments on dilute solutions of supraparticles, where each supraparticle is created by the assembly of nanoparticle mixtures. Taking scattering intensity profiles and nanoparticle mixture composition and size distributions in each supraparticle as input, this computational approach called computational reverse engineering analysis for scattering experiments (CREASE) uses a genetic algorithm to output information about the structure of the assembled nanoparticles (e.g., real space pair correlation function, extent of nanoparticle mixing/segregation, sizes of domains) within a supraparticle. We validate this method by taking as input in silico scattering intensity profiles from coarse-grained molecular simulations of a binary mixture of nanoparticles, forming a close-packed structure and testing if our computational method can correctly reproduce the nanoparticle structure observed in those simulations. We test the strengths and limitations of our method using a variety of in silico scattering intensity profiles obtained from simulations of a spherical or a cubic supraparticle comprising binary nanoparticle mixtures with varying chemistries, with and without dispersity in sizes, that exhibit well-mixed to strongly segregated structures. The strengths of the presented method include its capability to analyze scattering intensity profiles even when the wavevector q range is limited, to handily provide all of the pairwise radial distribution functions, and to correctly determine the extent of segregation/mixing of the nanoparticles assembled in complex geometries.
Collapse
Affiliation(s)
- Christian
M. Heil
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
| | - Arthi Jayaraman
- Department
of Chemical and Biomolecular Engineering, University of Delaware, 150 Academy Street, Newark, Delaware 19716, United
States
- Department
of Materials Science and Engineering, University
of Delaware, 201 DuPont Hall, Newark, Delaware 19716, United
States
| |
Collapse
|
10
|
Noniridescent structural color from enhanced electromagnetic resonances of particle aggregations and its applications for reconfigurable patterns. J Colloid Interface Sci 2021; 604:178-187. [PMID: 34265678 DOI: 10.1016/j.jcis.2021.06.148] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 06/25/2021] [Accepted: 06/26/2021] [Indexed: 11/22/2022]
Abstract
HYPOTHESIS The conventional noniridescent structural colors refer to the coherent scattering of visible light by the short-range ordered structures assembled from the small colloids (100-250 nm). Our hypothesis is that noniridescent structural color can be generated by the random aggregations of large silica particles through the enhanced electromagnetic resonances. EXPERIMENTS The random aggregations of large silica particles (350-475 nm) were prepared through the infiltration of silica particles solution with the porous substrate. The mechanism of the structural color is investigated. Reconfigurable patterns are prepared. FINDINGS Dissimilar to the conventional noniridescent colors, the angle-independent colors of silica aggregations originate from the enhanced electromagnetic resonances due to the random aggregation of the particles. The colors (blue, green, and red) and corresponding reflection peak positions of the particle aggregations can be well controlled by simply altering the size of the silica particles. Compared to the traditional prints with permanent patterns, reconfigurable patterns with large-area and multicolor can be fabricated by the repeatedly selective spray of water on the substrate pre-coated with noniridescent colors. This work provides new insight and greenway for the fabrication of noniridescent structural colors and reconfigurable patterns, and will promote their applications in soft display, green printing, and anti-counterfeiting.
Collapse
|
11
|
Larin AO, Dvoretckaia LN, Mozharov AM, Mukhin IS, Cherepakhin AB, Shishkin II, Ageev EI, Zuev DA. Luminescent Erbium-Doped Silicon Thin Films for Advanced Anti-Counterfeit Labels. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005886. [PMID: 33705580 DOI: 10.1002/adma.202005886] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 01/17/2021] [Indexed: 06/12/2023]
Abstract
The never-ending struggle against counterfeit demands the constant development of security labels and their fabrication methods. This study demonstrates a novel type of security label based on downconversion photoluminescence from erbium-doped silicon. For fabrication of these labels, a femtosecond laser is applied to selectively irradiate a double-layered Er/Si thin film, which is accomplished by Er incorporation into a silicon matrix and silicon-layer crystallization. The study of laser-induced heating demonstrates that it creates optically active erbium centers in silicon, providing stable and enhanced photoluminescence at 1530 nm. Such a technique is utilized to create two types of anti-counterfeiting labels. The first type is realized by the single-step direct laser writing of luminescent areas and detected by optical microscopy as holes in the film forming the desired image. The second type, with a higher degree of security, is realized by adding other fabrication steps, including the chemical etching of the Er layer and laser writing of additional non-luminescent holes over an initially recorded image. During laser excitation at 525 nm of luminescent holes of the labels, a photoluminescent picture repeating desired data can be seen. The proposed labels are easily scalable and perspective for labeling of goods, securities, and luxury items.
Collapse
Affiliation(s)
- Artem O Larin
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy av., St. Petersburg, 197101, Russia
| | | | | | - Ivan S Mukhin
- Alferov University, 8 Khlopina st., St. Petersburg, 194021, Russia
- SCAMT Institute, ITMO University, 49 Kronverkskiy av., St. Petersburg, 197101, Russia
| | - Artem B Cherepakhin
- Institute of Automatics and Control Processes, Far Eastern Branch of the Russian Academy of Science, 5 Radio St., Vladivostok, 690041, Russia
- Far Eastern Federal University, 10 Ajax Bay, Russky Island, Vladivostok, 690922, Russia
| | - Ivan I Shishkin
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy av., St. Petersburg, 197101, Russia
| | - Eduard I Ageev
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy av., St. Petersburg, 197101, Russia
| | - Dmitry A Zuev
- Department of Physics and Engineering, ITMO University, 49 Kronverkskiy av., St. Petersburg, 197101, Russia
| |
Collapse
|
12
|
Kohri M. Progress in polydopamine-based melanin mimetic materials for structural color generation. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2021; 21:833-848. [PMID: 33536837 PMCID: PMC7832497 DOI: 10.1080/14686996.2020.1852057] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 11/11/2020] [Accepted: 11/13/2020] [Indexed: 05/04/2023]
Abstract
Structural color is a color derived from optical interaction between light and a microstructure and is often seen in nature. Natural melanin plays an important role in bright structural coloration. For example, the vivid colors of peacock feathers are due to structural colors. The periodic arrangement of melanin granules inside the feathers leads to light interference, and the black granules absorb scattered light well, resulting in bright structural color. In recent years, polydopamine (PDA) has attracted attention as a melanin mimetic material. This review article summarizes recent research on structural coloration using PDA-based artificial melanin materials. It also outlines possible applications using bright structural colors realized by artificial melanin materials and future perspectives.
Collapse
Affiliation(s)
- Michinari Kohri
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, Chiba, Japan
| |
Collapse
|