1
|
Liu Q, Jia R, Gao X, Huang B, Li G, Guo Z. Micro-mechanism of the size effect on the deformation homogeneity of Sb 2Te 3 semiconductors. Dalton Trans 2025; 54:7272-7280. [PMID: 40200801 DOI: 10.1039/d5dt00343a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2025]
Abstract
Sb2Te3 based semiconductors are state-of-the-art commercial thermoelectric (TE) materials at room temperature. To improve the performance stability of Sb2Te3 TE semiconductors and relevant applications in wearable devices, it is necessary to enhance their deformability. Although Sb2Te3 easily fractures along the weakly bonded Van der Waals (VdW) layers, the dislocation slip process on these layers can be facilitated by modulating the weak but reversible VdW bonds, implying the potential for improvement of the plastic deformation capacity. Here, taking structural homogeneity as the characteristic evaluation criterion of the whole deformation process, the size effect of Sb2Te3 nanocrystals on the evolution of lattice defects and plastic deformation capacity is investigated by shear deformation in molecular dynamics. The results show that the influence of lattice distortion at the boundaries is weakened with the increasing structural size, which promotes the ordered breaking-reforming process of VdW bonds and alternating dislocation slips on VdW-coupled atomic layers. It reveals a close relationship between VdW bonds and defects during structural evolution, and therefore a microscale manner of energy dissipation and deformation coordination that is conducive to strain delocalization and fracture strain enhancement. This simulation work provides new insights into the plastic deformation mechanism of inorganic semiconductors given the effect of surface and crystal size, which will improve the defect engineering strategy for designing advanced TE semiconductors.
Collapse
Affiliation(s)
- Qianqiu Liu
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.
| | - Runxi Jia
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.
| | - Xinlei Gao
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.
| | - Ben Huang
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.
| | - Guodong Li
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China.
| | - Zhiguang Guo
- Ministry of Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei University, Wuhan 430062, China.
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
2
|
Zhang S, Qu D, Luo B, Wang L, Li H, Wang H. Regulation of Osteogenic Differentiation of hBMSCs by the Overlay Angles of Bone Lamellae-like Matrices. ACS APPLIED MATERIALS & INTERFACES 2024; 16:56801-56814. [PMID: 39389937 DOI: 10.1021/acsami.4c12847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Oriented fibers in bone lamellae are recognized for their contribution to the anisotropic mechanical performance of the cortical bone. While increasing evidence highlights that such oriented fibers also exhibit osteogenic induction to preosteoblasts, little is known about the effect of the overlay angle between lamellae on the osteogenic differentiation of bone marrow-derived mesenchymal stem cells (BMSCs). In this study, bone lamellae-like fibrous matrices composed of aligned core-shell [core: polycaprolactone (PCL)/type I collagen (Col I) + shell: Col I] nanofibers were seeded with human BMSCs (hBMSCs) and then laid over on each other layer-by-layer (L-b-L) at selected angles (0 or 45°) to form three-dimensional (3D) constructs. Upon culture for 7 and 14 days, osteogenic differentiation of hBMSCs and mineralization within the lamellae assembly (LA) were characterized by real-time PCR, Western blot, immunofluorescent staining for osteogenic markers, and alizarin red staining for calcium deposition. Compared to those of random nanofibers (LA-RF) or aligned fibers with the overlay angle of 45° (LA-AF-45), the LA of aligned fibers at a 0° overlay angle (LA-AF-0) exhibited a noticeably higher osteogenic differentiation of hBMSCs, i.e., elevated gene expression of OPN, OCN, and RUNX2 and protein levels of ALP and RUNX2, while promoting mineral deposition as indicated by alizarin red staining and mechanical testing. Further analyses of hBMSCs within LA-AF-0 revealed an increase in both total and phosphorylated integrin β1, which subsequently increased total focal adhesion kinase (FAK), phosphorylated FAK (p-FAK), and phosphorylated extracellular signal kinase ERK1/2 (p-ERK1/2). Inhibition of integrin β1 and ERK1/2 activity effectively reduced the LA-AF-0-induced upregulation of p-FAK and osteogenic markers (OPN, OCN, and RUNX2), confirming the involvement of integrin β1-FAK-ERK1/2 signaling. Altogether, the overlay angle of aligned core-shell nanofiber membranes regulates the osteogenic differentiation of hBMSCs via integrin β1-FAK-ERK1/2 signaling, unveiling the effects of anisotropic fibers on bone tissue formation.
Collapse
Affiliation(s)
- Shuyun Zhang
- Guangdong Police College, Guangzhou 510440, Guangdong, China
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Dengjian Qu
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
| | - Bowen Luo
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Lichen Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| | - Hong Li
- College of Chemistry and Materials Science, Jinan University, 601 West Huangpu Avenue, Guangzhou 510632, Guangdong, China
| | - Hongjun Wang
- Department of Biomedical Engineering, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Semcer Center for Healthcare Innovation, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
- Department of Chemistry and Chemical Biology, Stevens Institute of Technology, 1 Castle Point on the Hudson, Hoboken, New Jersey 07030, United States
| |
Collapse
|
3
|
Alijani H, Vaughan TJ. Exploring the hierarchical structure of lamellar bone and its impact on fracture behaviour: A computational study using a phase field damage model. J Mech Behav Biomed Mater 2024; 153:106471. [PMID: 38458079 DOI: 10.1016/j.jmbbm.2024.106471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/02/2024] [Accepted: 02/16/2024] [Indexed: 03/10/2024]
Abstract
Bone is a naturally occurring composite material composed of a stiff mineral phase and a compliant organic matrix of collagen and non-collagenous proteins (NCP). While diverse mineral morphologies such as platelets and grains have been documented, the precise role of individual constituents, and their morphology, remains poorly understood. To understand the role of constituent morphology on the fracture behaviour of lamellar bone, a damage based representative volume element (RVE) was developed, which considered various mineral morphologies and mineralised collagen fibril (MCF) configurations. This model framework incorporated a novel phase-field damage model to predict the onset and evolution of damage at mineral-mineral and mineral-MCF interfaces. It was found that platelet-based mineral morphologies had superior mechanical performance over their granular counterparts, owing to their higher load-bearing capacity, resulting from a higher aspect ratio. It was also found that MCFs had a remarkable capacity for energy dissipation under axial loading, with these fibrillar structures acting as barriers to crack propagation, thereby enhancing overall elongation and toughness. Interestingly, the presence of extrafibrillar platelet-based minerals also provided an additional toughening through a similar mechanism, whereby these structures also inhibited crack propagation. These findings demonstrate that the two primary constituent materials of lamellar bone play a key role in its toughening behaviour, with combined effect by both mineral and MCFs to inhibit crack propagation at this scale. These results have provided novel insight into the fracture behaviour of lamellar bone, enhancing our understanding of microstructure-property relationships at the sub-tissue level.
Collapse
Affiliation(s)
- Hamid Alijani
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland
| | - Ted J Vaughan
- Biomechanics Research Centre (BioMEC), Biomedical Engineering, School of Engineering, College of Science and Engineering, University of Galway, Ireland.
| |
Collapse
|
4
|
Xu Z, Yang C, Wu F, Tan X, Guo Y, Zhang H, Wang H, Sui X, Xu Z, Zhao M, Jiang S, Dai Z, Li Y. Triple-gene deletion for osteocalcin significantly impairs the alignment of hydroxyapatite crystals and collagen in mice. Front Physiol 2023; 14:1136561. [PMID: 37057181 PMCID: PMC10089303 DOI: 10.3389/fphys.2023.1136561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
Osteocalcin (Ocn), also known as bone Gla protein, is synthesized by osteoblasts and thought to regulate energy metabolism, testosterone synthesis and brain development. However, its function in bone is not fully understood. Mice have three Ocn genes: Bglap, Bglap2 and Bglap3. Due to the long span of these genes in the mouse genome and the low expression of Bglap3 in bone, researchers commonly use Bglap and Bglap2 knockout mice to investigate the function of Ocn. However, it is unclear whether Bglap3 has any compensatory mechanisms when Bglap and Bglap2 are knocked out. Considering the controversy surrounding the role of Ocn in bone, we constructed an Ocn-deficient mouse model by knocking out all three genes (Ocn−/−) and analyzed bone quality by Raman spectroscopy (RS), Scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR) and MicroCT (μCT). The RS test showed that the alignment of hydroxyapatite crystals and collagen fibers was significantly poorer in Ocn−/− mice than in wild-type (WT) mice. Ocn deficiency resulted in a looser surface structure of bone particles and a larger gap area proportion. FTIR analysis showed few differences in bone mineral index between WT and Ocn−/− mice, while μCT analysis showed no significant difference in cortical and trabecular regions. However, under tail-suspension simulating bone loss condition, the disorder of hydroxyapatite and collagen fiber alignment in Ocn−/− mice led to more obvious changes in bone mineral composition. Collectively, our results revealed that Ocn is necessary for regulating the alignment of minerals parallel to collagen fibrils.
Collapse
Affiliation(s)
- Zihan Xu
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Chao Yang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Feng Wu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiaowen Tan
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Yaxiu Guo
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hongyu Zhang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Hailong Wang
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Xiukun Sui
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Zi Xu
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
| | - Minbo Zhao
- Department of Pathology and Forensics, Dalian Medical University, Dalian, China
| | - Siyu Jiang
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
| | - Zhongquan Dai
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| | - Yinghui Li
- School of Life Science and Technology, Harbin Institute of Technology, Harbin, China
- State Key Laboratory of Space Medicine Fundamentals and Application, China Astronaut Research and Training Center, Beijing, China
- *Correspondence: Chao Yang, ; Zhongquan Dai, ; Yinghui Li,
| |
Collapse
|
5
|
Huang W, Wu X, Zhao Y, Liu Y, Zhang B, Qiao M, Zhu Z, Zhao Z. Janus-Inspired Core-Shell Structure Hydrogel Programmatically Releases Melatonin for Reconstruction of Postoperative Bone Tumor. ACS APPLIED MATERIALS & INTERFACES 2023; 15:2639-2655. [PMID: 36603840 PMCID: PMC9869893 DOI: 10.1021/acsami.2c18545] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Accepted: 12/26/2022] [Indexed: 06/17/2023]
Abstract
At present, surgery is one of the main treatments for bone tumor. However, the risk of recurrence and the large area of bone defects after surgery pose a great challenge. Therefore, a Janus-inspired core-shell structure bone scaffold was designed to achieve the self-programmed release of melatonin at different concentrations, clearing the residual tumor cells at early stage after resection and promoting bone repair later. The layered differential load designs inspired by Janus laid the foundation for the differential release of melatonin, where sufficient melatonin inhibited tumor growth as low dose promoted osteogenesis. Then, the automatically programmed delivery of melatonin is achieved by the gradient degradation of the core-shell structure. In the material characterization, scanning electron microscopy revealed the core-shell structure. The drug release experiment and in vivo degradation experiment reflected the programmed differential release of melatonin. In the biological experiment part, in vivo and in vitro experiments not only confirmed the significant inhibitory effect of the core-shell hydrogel scaffold on tumor but also confirmed its positive effect on osteogenesis. Our Janus-inspired core-shell hydrogel scaffold provides a safe and efficient means to inhibit tumor recurrence and bone repair after bone tumor, and it also develops a new and efficient tool for differential and programmed release of other drugs.
Collapse
Affiliation(s)
- Wei Huang
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Xiaoyue Wu
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Yifan Zhao
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Yanhua Liu
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Bo Zhang
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Mingxin Qiao
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Zhou Zhu
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| | - Zhihe Zhao
- State Key Laboratory of Oral
Diseases & National Clinical Research Center for Oral Diseases,
West China Hospital of Stomatology, Sichuan
University, Chengdu 610041, People’s Republic
of China
| |
Collapse
|
6
|
de Alcântara ACS, Felix LC, Galvão DS, Sollero P, Skaf MS. The Role of the Extrafibrillar Volume on the Mechanical Properties of Molecular Models of Mineralized Bone Microfibrils. ACS Biomater Sci Eng 2023; 9:230-245. [PMID: 36484626 DOI: 10.1021/acsbiomaterials.2c00728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Bones are responsible for body support, structure, motion, and several other functions that enable and facilitate life for many different animal species. They exhibit a complex network of distinct physical structures and mechanical properties, which ultimately depend on the fraction of their primary constituents at the molecular scale. However, the relationship between structure and mechanical properties in bones are still not fully understood. Here, we investigate structural and mechanical properties of all-atom bone molecular models composed of type-I collagen, hydroxyapatite (HA), and water by means of fully atomistic molecular dynamics simulations. Our models encompass an extrafibrillar volume (EFV) and consider mineral content in both the EFV and intrafibrillar volume (IFV), consistent with experimental observations. We investigate solvation structures and elastic properties of bone microfibril models with different degrees of mineralization, ranging from highly mineralized to weakly mineralized and nonmineralized models. We find that the local tetrahedral order of water is lost in similar ways in the EFV and IFV regions for all HA containing models, as calcium and phosphate ions are strongly coordinated with water molecules. We also subject our models to tensile loads and analyze the spatial stress distribution over the nanostructure of the material. Our results show that both mineral and water contents accumulate significantly higher stress levels, most notably in the EFV, thus revealing that this region, which has been only recently incorporated in all-atom molecular models, is fundamental for studying the mechanical properties of bones at the nanoscale. Furthermore, our results corroborate the well-established finding that high mineral content makes bone stiffer.
Collapse
Affiliation(s)
- Amadeus C S de Alcântara
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas, Campinas13083-860, SPBrazil.,Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil
| | - Levi C Felix
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Department of Applied Physics, Gleb Wataghin Institute of Physics, University of Campinas, Campinas13083-859, SPBrazil
| | - Douglas S Galvão
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Department of Applied Physics, Gleb Wataghin Institute of Physics, University of Campinas, Campinas13083-859, SPBrazil
| | - Paulo Sollero
- Department of Computational Mechanics, School of Mechanical Engineering, University of Campinas, Campinas13083-860, SPBrazil.,Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil
| | - Munir S Skaf
- Center for Computing in Engineering & Sciences, CCES, University of Campinas, Campinas13083-861, SPBrazil.,Institute of Chemistry, University of Campinas, Campinas13083-970, SPBrazil
| |
Collapse
|
7
|
Devising Bone Molecular Models at the Nanoscale: From Usual Mineralized Collagen Fibrils to the First Bone Fibers Including Hydroxyapatite in the Extra-Fibrillar Volume. MATERIALS 2022; 15:ma15062274. [PMID: 35329726 PMCID: PMC8955169 DOI: 10.3390/ma15062274] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/08/2022] [Accepted: 03/17/2022] [Indexed: 02/04/2023]
Abstract
At the molecular scale, bone is mainly constituted of type-I collagen, hydroxyapatite, and water. Different fractions of these constituents compose different composite materials that exhibit different mechanical properties at the nanoscale, where the bone is characterized as a fiber, i.e., a bundle of mineralized collagen fibrils surrounded by water and hydroxyapatite in the extra-fibrillar volume. The literature presents only models that resemble mineralized collagen fibrils, including hydroxyapatite in the intra-fibrillar volume only, and lacks a detailed prescription on how to devise such models. Here, we present all-atom bone molecular models at the nanoscale, which, differently from previous bone models, include hydroxyapatite both in the intra-fibrillar volume and in the extra-fibrillar volume, resembling fibers in bones. Our main goal is to provide a detailed prescription on how to devise such models with different fractions of the constituents, and for that reason, we have made step-by-step scripts and files for reproducing these models available. To validate the models, we assessed their elastic properties by performing molecular dynamics simulations that resemble tensile tests, and compared the computed values against the literature (both experimental and computational results). Our results corroborate previous findings, as Young’s Modulus values increase with higher fractions of hydroxyapatite, revealing all-atom bone models that include hydroxyapatite in both the intra-fibrillar volume and in the extra-fibrillar volume as a path towards realistic bone modeling at the nanoscale.
Collapse
|
8
|
A multiscale finite element investigation on the role of intra- and extra-fibrillar mineralisation on the elastic properties of bone tissue. J Mech Behav Biomed Mater 2022; 129:105139. [DOI: 10.1016/j.jmbbm.2022.105139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 02/01/2022] [Accepted: 02/19/2022] [Indexed: 11/24/2022]
|
9
|
Tavakol M, Vaughan TJ. Energy dissipation of osteopontin at a HAp mineral interface: Implications for bone biomechanics. Biophys J 2022; 121:228-236. [PMID: 34932955 PMCID: PMC8790188 DOI: 10.1016/j.bpj.2021.12.023] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Revised: 11/04/2021] [Accepted: 12/16/2021] [Indexed: 01/21/2023] Open
Abstract
Osteopontin (OPN) is a one of the most abundant non-collagenous proteins in the bone's organic matrix. OPN is responsible for mediating bonding at mineral interfaces in the extrafibrillar space and recent evidence shows that it is a major contributor to bone's fracture resistance. While several experimental studies have identified an important role for calcium ions in mediating energy dissipation in OPN protein networks, the underlying molecular mechanisms remain largely unknown. In the current study, the role of calcium ions on energy dissipation at OPN interface with hydroxyapatite (HAp) as the main bone mineral was investigated. For the first time, the three-dimensional structure of OPN proteins were predicted, and it was found that calcium ions greatly influenced the final protein configuration and energy dissipation performance. Under small deformation, the compact cOPN structure, resulting from calcium ions presence, facilitated greater energy dissipation through sacrificial bond breaking and mechanisms mediated by the surface-bound calcium. At larger deformation, the compact structure also enabled cOPN to dissipate higher energy. Moreover, it was found that phosphorylation of OPN played an important role in energy dissipation. While previous studies have shown that OPN dissipated energy by forming aggregate networks, this study also showed that network formation is not necessary and that individual OPN proteins can dissipate large amounts of energy at HAp interfaces.
Collapse
Affiliation(s)
- Mahdi Tavakol
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland
| | - Ted J. Vaughan
- Biomedical Engineering and Biomechanics Research Centre (BioMEC), School of Engineering, College of Science and Engineering, National University of Ireland Galway, Galway, Ireland,Corresponding author
| |
Collapse
|
10
|
Abstract
Understanding the properties of bone is of both fundamental and clinical relevance. The basis of bone’s quality and mechanical resilience lies in its nanoscale building blocks (i.e., mineral, collagen, non-collagenous proteins, and water) and their complex interactions across length scales. Although the structure–mechanical property relationship in healthy bone tissue is relatively well characterized, not much is known about the molecular-level origin of impaired mechanics and higher fracture risks in skeletal disorders such as osteoporosis or Paget’s disease. Alterations in the ultrastructure, chemistry, and nano-/micromechanics of bone tissue in such a diverse group of diseased states have only been briefly explored. Recent research is uncovering the effects of several non-collagenous bone matrix proteins, whose deficiencies or mutations are, to some extent, implicated in bone diseases, on bone matrix quality and mechanics. Herein, we review existing studies on ultrastructural imaging—with a focus on electron microscopy—and chemical, mechanical analysis of pathological bone tissues. The nanometric details offered by these reports, from studying knockout mice models to characterizing exact disease phenotypes, can provide key insights into various bone pathologies and facilitate the development of new treatments.
Collapse
|
11
|
Huang B, Li G, Duan B, Li W, Zhai P, Goddard WA. Order-Tuned Deformability of Bismuth Telluride Semiconductors: An Energy-Dissipation Strategy for Large Fracture Strain. ACS APPLIED MATERIALS & INTERFACES 2021; 13:57629-57637. [PMID: 34807564 DOI: 10.1021/acsami.1c18583] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In addition to thermoelectric (TE) performance tuning through defect or strain engineering, progress in mechanical research is of increasing importance to wearable applications of bismuth telluride (Bi2Te3) TE semiconductors, which are limited by poor deformability. For improving dislocation-controlled deformability, we clarify an order-tuned energy-dissipation strategy that facilitates large deformation through multilayer alternating slippage and stacking fault destabilization. Given that energy dissipation and dislocation motions are governed by van der Waals sacrificial bond (SB) behavior, molecular dynamics simulation is implemented to reveal the relation between the shear deformability and lattice order changes in Bi2Te3 crystals. Using the disorder parameter (D) that is defined according to the configurational energy distribution, the results of strain rates and initial crack effects show how the proper design of the initial structure and external conditions can suppress strain localization that would cause structural failure from the lack of energy dissipation, resulting in large homogeneous deformation of Bi2Te3 nanocrystals. This study uncovers the essence of the tuning mechanism in which highly deformable Bi2Te3 crystals should become disordered as slowly as possible until fracture. This highlights the role of the substructure evolution of SB-defect synergy that facilitates energy dissipation and performance stability during slipping. The disorder parameter D provides a bridge between micro/local mechanics and fracture strain, hinting at the possible mechanical improvement of Bi2Te3 semiconductors for designing flexible TE devices through order tuning and energy dissipation.
Collapse
Affiliation(s)
- Ben Huang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Guodong Li
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
| | - Bo Duan
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
| | - Wenjuan Li
- Hubei Key Laboratory of Theory and Application of Advanced Materials Mechanics, Wuhan University of Technology, Wuhan 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
| | - Pengcheng Zhai
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Department of Engineering Structure and Mechanics, Wuhan University of Technology, Wuhan 430070, China
| | - William A Goddard
- Materials and Process Simulation Center, California Institute of Technology, Pasadena, California 91125, United States
| |
Collapse
|
12
|
Bailey S, Sroga GE, Hoac B, Katsamenis OL, Wang Z, Bouropoulos N, McKee MD, Sørensen ES, Thurner PJ, Vashishth D. The role of extracellular matrix phosphorylation on energy dissipation in bone. eLife 2020; 9:58184. [PMID: 33295868 PMCID: PMC7746230 DOI: 10.7554/elife.58184] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 12/07/2020] [Indexed: 01/22/2023] Open
Abstract
Protein phosphorylation, critical for cellular regulatory mechanisms, is implicated in various diseases. However, it remains unknown whether heterogeneity in phosphorylation of key structural proteins alters tissue integrity and organ function. Here, osteopontin phosphorylation level declined in hypo- and hyper- phosphatemia mouse models exhibiting skeletal deformities. Phosphorylation increased cohesion between osteopontin polymers, and adhesion of osteopontin to hydroxyapatite, enhancing energy dissipation. Fracture toughness, a measure of bone’s mechanical competence, increased with ex-vivo phosphorylation of wildtype mouse bones and declined with ex-vivo dephosphorylation. In osteopontin-deficient mice, global matrix phosphorylation level was not associated with toughness. Our findings suggest that phosphorylated osteopontin promotes fracture toughness in a dose-dependent manner through increased interfacial bond formation. In the absence of osteopontin, phosphorylation increases electrostatic repulsion, and likely protein alignment and interfilament distance leading to decreased fracture resistance. These mechanisms may be of importance in other connective tissues, and the key to unraveling cell–matrix interactions in diseases.
Collapse
Affiliation(s)
- Stacyann Bailey
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, United States
| | - Grazyna E Sroga
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, United States
| | - Betty Hoac
- Faculty of Dentistry, McGill University, Montreal, Canada
| | - Orestis L Katsamenis
- Faculty of Engineering and Physical Sciences, University of Southampton, Southampton, United Kingdom
| | - Zehai Wang
- Department of Mechanical, Aerospace, and Nuclear Engineering, Rensselaer Polytechnic Institute, Troy, United States
| | | | - Marc D McKee
- Faculty of Dentistry, McGill University, Montreal, Canada.,Department of Anatomy and Cell Biology, Faculty of Medicine, McGill University, Montreal, Canada
| | - Esben S Sørensen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Philipp J Thurner
- Institute of Lightweight Design and Structural Biomechanics, Vienna University of Technology, Vienna, Austria
| | - Deepak Vashishth
- Department of Biomedical Engineering, Center for Biotechnology and Interdisciplinary Studies, Rensselaer Polytechnic Institute, Troy, United States
| |
Collapse
|