1
|
Mohapatra PP, Singh HK, Dobbidi P. Advancements in electromagnetic microwave absorbers: Ferrites and carbonaceous materials. Adv Colloid Interface Sci 2025; 337:103381. [PMID: 39700971 DOI: 10.1016/j.cis.2024.103381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 11/30/2024] [Accepted: 12/10/2024] [Indexed: 12/21/2024]
Abstract
Heightened levels of electromagnetic (EM) radiation emitted by electronic devices, communication equipment, and information processing technologies have become a significant concern recently. So, substantial efforts have been devoted for developing novel materials having high EM absorption properties. This critical review article provides an overview of the advancements in understanding and developing such materials. It delves into the interaction between EM radiation and absorbing materials, focusing on phenomena like multiple reflections, scattering, and polarization. Additionally, the study discusses various types of losses that impact microwave absorber performance, like magnetic loss, and dielectric loss. Each of these losses has distinct implications for microwave absorbers' effectiveness. Furthermore, the review offers detailed insights into different microwave-absorbing materials, such as metal composites, magnetic materials, conducting polymers, and carbonaceous materials (composites with carbon fiber, porous carbon, carbon nanotube, graphene oxide, etc.). Overall, it highlights the progress achieved in microwave-absorbing materials and emphasizes optimizing various loss mechanisms for enhanced performance.
Collapse
Affiliation(s)
- Prajna P Mohapatra
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; College of Materials Science and Engineering, Hunan University, Changsha 410082, China
| | - Hodam Karnajit Singh
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Pamu Dobbidi
- Department of Physics, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India.
| |
Collapse
|
2
|
Han X, Cai H, Wang G, Zhang S, Liu X, Huang Y. Synthesis of Hierarchical CF@Fe 3O 4 Fibers Decorated with MoS 2 Layers Forming Core-Sheath Microstructure toward Tunable and Efficient Electromagnetic Wave Absorption. ACS APPLIED MATERIALS & INTERFACES 2024; 16:4886-4895. [PMID: 38231559 DOI: 10.1021/acsami.3c13623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2024]
Abstract
Hierarchical structural design has been verified as a feasible strategy to fabricate effective electromagnetic wave (EMW) absorbers, so we designed hierarchical core-sheath composites with magnetic particles and dielectric layers. In this work, a hierarchical structure of carbon fiber (CF)@Fe3O4@MoS2 (CPDF7-M) was prepared by introducing Fe3O4 and depositing MoS2 layers on the surface of fibers. Due to the synergistic effects from the CF@Fe3O4 increasing the conductive and magnetic loss and the outer MoS2 layers improving the impedance matching, the optimal reflection loss (RL) value was -63.1 dB at 2.7 mm and the effective absorption bandwidth (EAB) was 9.1 GHz covering the X and Ku band. Moreover, the EAB values were adjusted with a specific MoS2 loading at different thicknesses, which provided the necessary reference for the construction of efficient and flexible absorbers in the EMW absorption fields.
Collapse
Affiliation(s)
- Xiaopeng Han
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Huiwu Cai
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Guangheng Wang
- School of Chemistry and Chemical Engineering, Xi'an University of Science and Technology, Xi'an 710054, PR China
| | - Shuai Zhang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Xudong Liu
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| | - Ying Huang
- School of Chemistry and Chemical Engineering, Northwestern Polytechnical University, Xi'an 710072, PR China
| |
Collapse
|
3
|
Yang Z, Wei N, Xue N, Xu R, Yang E, Wang F, Zhu H, Cui H. Highly efficient MoS 2/MXene aerogel for interfacial solar steam generation and wastewater treatment. J Colloid Interface Sci 2023; 656:189-199. [PMID: 37989052 DOI: 10.1016/j.jcis.2023.11.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/15/2023] [Accepted: 11/17/2023] [Indexed: 11/23/2023]
Abstract
Interfacial solar steam generation using aerogels holds great promise for seawater desalination and wastewater treatment. However, to achieve aerogels with both durable, high-efficiency evaporation performance and excellent salt resistance remains challenging. Here, a molybdenum disulphide (MoS2) and MXene composite aerogel with vertical pore channels is reported, which has outstanding advantages in mechanical properties, water transportation, photothermal conversion, and recycling stability. Benefiting from the plasmon resonance effect of MXene and the excellent photothermal conversion performance of MoS2, the aerogel exhibits excellent light absorption (96.58 %). The aerogel is resistant to deformation and able to rebound after water absorption, because of the support of an ordered vertical structure. Moreover, combined with the low water evaporation enthalpy, low thermal conductivity, and super hydrophilicity, the aerogel achieves an efficient and stable evaporation rate of about 2.75 kg m-2h-1 under one sun and exhibits excellent self-cleaning ability. Notably, the evaporator achieves removal rates of 99.9 % for heavy metal ions and 100 % for organic dyes, which has great potential in applications including seawater desalination and wastewater purification.
Collapse
Affiliation(s)
- Zeyu Yang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Na Wei
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China; Weichai Power Co., Ltd., Weifang 261061, China.
| | - Na Xue
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Ruiqi Xu
- College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Enquan Yang
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | | | - Huiling Zhu
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
| | - Hongzhi Cui
- College of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China; College of Materials Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
4
|
Jiao Z, Hu J, Ma M, Liu Y, Zhao J, Wang X, Luan S, Zhang L. One-dimensional core-shell CoC@CoFe/C@PPy composites for high-efficiency microwave absorption. J Colloid Interface Sci 2023; 650:2014-2023. [PMID: 37531668 DOI: 10.1016/j.jcis.2023.07.072] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 08/04/2023]
Abstract
In recent years, electromagnetic pollution has become more and more serious, and there is an urgent need for microwave absorbing materials with superior performance. Prussian blue analogue (PBA) is a metal organic framework material with the advantages of diverse morphology and tunable composition. Therefore, PBA has attracted a lot of attention in the field of microwave absorption. In this work, PBA was coated on the surface of carbon composites by hydrothermal method, and then PPy was compounded on its surface after carbonization treatment to construct hierarchical core-shell CoC@CoFe/C@PPy fibers. The fibers have Co-doped C composites as the core and CoFe/C decorated with PPy as the shell. This unique hierarchical structure and various microwave absorption mechanisms are described in detail. The microwave absorption performance is optimized by adjusting the filling of the sample. The best microwave absorption performances are achieved at 25 wt% filling of CoC@CoFe/C@PPy. At a thickness of just 1.69 mm, CoC@CoFe/C@PPy fiebrs have a minimum reflection loss (RLmin) of -64.32 dB. When the thickness is 1.88 mm, CoC@CoFe/C@PPy achieves a maximum effective absorption bandwidth (EABmax) of 5.38 GHz. The results indicate that the CoC@CoFe/C@PPy composite fibers have a great potential in the field of microwave absorption.
Collapse
Affiliation(s)
- Zhengguo Jiao
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Jinhu Hu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Mingliang Ma
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China.
| | - Yanyan Liu
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Jindi Zhao
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Xingyue Wang
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Sen Luan
- School of Civil Engineering, Qingdao University of Technology, Qingdao 266520, People's Republic of China
| | - Ling Zhang
- Centre For Engineering Test & Appraise, Qingdao University of Technology, Qingdao 266033, People's Republic of China.
| |
Collapse
|
5
|
Wang YQ, Ding R, Zhang YC, Liu BW, Fu Q, Zhao HB, Wang YZ. Gradient Hierarchical Hollow Heterostructures of Ti 3C 2T x@rGO@MoS 2 for Efficient Microwave Absorption. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37366118 DOI: 10.1021/acsami.3c06860] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2023]
Abstract
Heterostructure engineering has emerged as a promising approach for creating high-performance microwave absorption materials in various applications such as advanced communications, portable devices, and military fields. However, achieving strong electromagnetic wave attenuation, good impedance matching, and low density in a single heterostructure remains a significant challenge. Herein, a unique structural design strategy that employs a hollow structure coupled with gradient hierarchical heterostructures to achieve high-performance microwave absorption is proposed. MoS2 nanosheets are uniformly grown onto the double-layered Ti3C2Tx MXene@rGO hollow microspheres through self-assembly and sacrificial template techniques. Notably, the gradient hierarchical heterostructures, comprising a MoS2 impedance matching layer, a reduced graphene oxide (rGO) lossy layer, and a Ti3C2Tx MXene reflective layer, have demonstrated significant improvements in impedance matching and attenuation capabilities. Additionally, the incorporation of a hollow structure can further improve microwave absorption while reducing the overall composite density. The distinctive gradient hollow heterostructures enable Ti3C2Tx@rGO@MoS2 hollow microspheres with exceptional microwave absorption properties. The reflection loss value reaches as strong as -54.2 dB at a thin thickness of 1.8 mm, and the effective absorption bandwidth covers the whole Ku-band, up to 6.04 GHz. This work provides an exquisite perspective on heterostructure engineering design for developing next-generation microwave absorbers.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Rong Ding
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yu-Chuan Zhang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Qiang Fu
- College of Polymer Science & Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, P. R. China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu 610064, P. R. China
| |
Collapse
|
6
|
Geng H, Guo Y, Zhang X, Zhang Y, Wang X, Zhao P, Wang G, Liao J, Dong L. Combination strategy of large interlayer spacing and active basal planes for regulating the microwave absorption performance of MoS 2/MWCNT composites at thin absorber level. J Colloid Interface Sci 2023; 648:12-24. [PMID: 37295364 DOI: 10.1016/j.jcis.2023.05.199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 05/25/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023]
Abstract
Recently, molybdenum disulfide (MoS2)/carbon has become a promising candidate for efficient microwave absorption. However, it is still challenging to simultaneously optimize the synergy of impedance matching and loss capability at the level of a thin absorber. Here, a new adjustment strategy is proposed by changing the concentration of precursor l-cysteine for MoS2/multi-walled carbon nanotubes (MWCNT) composites to unlock the basal plane of MoS2 and expand the interlayer spacing from 0.62 nm to 0.99 nm, leading to improved packing of MoS2 nanosheets and more active sites. Therefore, the tailored MoS2 nanosheets exhibit abundant sulfur-vacancies, lattice-oxygen, more metallic 1T-phase, and higher surface area. Such sulfur-vacancies and lattice-oxygen promote the electronic asymmetric distribution at the solid-air interface of MoS2 crystals and induce stronger microwave attenuation through interface/dipole polarization, which is further verified by first-principles calculations. In addition, the expansion of the interlayer spacing induces more MoS2 to deposit on the MWCNT surface and increases the roughness, improving the impedance matching and multiple scattering. Overall, the advantage of this adjustment method is that while optimizing impedance matching at the thin absorber level, composite still maintains a high attenuation capacity, which means enhancing the attenuation performance of MoS2 itself offsets the weakening of the composite's attenuation ability caused by the decrease in the relative content of MWCNT components. Most importantly, adjusting impedance matching and attenuation ability can be easily implemented by separate control of l-cysteine content. As a result, the MoS2/MWCNT composites achieve a minimum reflection loss value of -49.38 dB and an effective absorption bandwidth of 4.64 GHz at a thickness of only 1.7 mm. This work provides a new vision for the fabrication of thin MoS2-carbon absorbers.
Collapse
Affiliation(s)
- Haoran Geng
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Yi Guo
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Xuan Zhang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Yang Zhang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Xuelin Wang
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China
| | - Pengfei Zhao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang 524001, China
| | - Guizhen Wang
- School of Materials Science and Engineering, Hainan University, Haikou 570208, China
| | - Jianhe Liao
- School of Materials Science and Engineering, Hainan University, Haikou 570208, China
| | - Lijie Dong
- Hainan Institute, Wuhan University of Technology, Sanya 572000, China.
| |
Collapse
|
7
|
Li SL, He JH, Li Z, Lu JH, Liu BW, Fu T, Zhao HB, Wang YZ. A sponge heated by electromagnetic induction and solar energy for quick, efficient, and safe cleanup of high-viscosity crude oil spills. JOURNAL OF HAZARDOUS MATERIALS 2022; 436:129272. [PMID: 35739787 DOI: 10.1016/j.jhazmat.2022.129272] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Frequent oil spills have caused severe environmental and ecological damage. Effective cleanup has become a complex challenge owing to the poor flowability of viscous crude oils. The current method of solar heating to reduce the viscosity of heavy oil is only suitable during sunny days, while the use of Joule heating is limited by the risk of direct exposure to high-voltage electricity. Herein, we demonstrate a noncontact electromagnetic induction and solar dual-heating sponge for the quick, safe, and energy-saving cleanup of ultrahigh-viscosity heavy oil. The resulting sponge with magnetic, conductive, and hydrophobic properties can be rapidly heated to absorb heavy oil under alternating magnetic fields, solar irradiation, or both of these conditions. By constructing theoretical models and fitting the actual data, an in-depth analysis of induction and solar heating processes is carried out. The sponge has excellent resilience and stability, indicating its reusability, fast and continuous adsorption (16.17 g in 10 s), and large capacity (75-81 g/g, the highest value ever) for soft asphalt (a highly viscous crude oil). This work provides a new noncontact dual-heating strategy for heavy oil cleanup, in which absorbents use induction heating during an emergency and then switch to partial or full solar heating to save energy in sunny conditions. ENVIRONMENTAL IMPLICATION: Heavy oils stranded on the beach or floating on water can kill underwater plants by blocking sunlight, or trap water birds and other animals. Heavy oil also contains aromatic substances that are toxic to aquatic organisms. Although oil spills near shallow water cannot be cleaned up by fences or other machinery, an oil adsorbent can deal with this problem. However, common adsorbents cannot effectively absorb high-viscosity oils, such as heavy oil. In this paper, an induction and solar dual-heating sponge is developed for the effective cleanup of high-viscosity oil.
Collapse
Affiliation(s)
- Shu-Liang Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie-Hao He
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Zhen Li
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jia-Hui Lu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Bo-Wen Liu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Teng Fu
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| | - Yu-Zhong Wang
- The Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), State Key Laboratory of Polymer Materials Engineering, College of Chemistry, Sichuan University, Chengdu 610064, China.
| |
Collapse
|
8
|
Pan F, Cai L, Shi Y, Dong Y, Zhu X, Cheng J, Jiang H, Wang X, Jiang Y, Lu W. Heterointerface Engineering of β-Chitin/Carbon Nano-Onions/Ni-P Composites with Boosted Maxwell-Wagner-Sillars Effect for Highly Efficient Electromagnetic Wave Response and Thermal Management. NANO-MICRO LETTERS 2022; 14:85. [PMID: 35352181 PMCID: PMC8964898 DOI: 10.1007/s40820-022-00804-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2021] [Accepted: 01/05/2022] [Indexed: 05/11/2023]
Abstract
The rational construction of microstructure and composition with enhanced Maxwell-Wagner-Sillars effect (MWSE) is still a challenging direction for reinforcing electromagnetic wave (EMW) absorption performance, and the related EMW attenuation mechanism has rarely been elucidated. Herein, MWSE boosted β-chitin/carbon nano-onions/Ni-P composites is prepared according to the heterointerface engineering strategy via facile layer-by-layer electrostatic assembly and electroless plating techniques. The heterogeneous interface is reinforced from the aspect of porous skeleton, nanomaterials and multilayer construction. The composites exhibit competitive EMW response mechanism between the conductive loss and the polarization/magnetic loss, as describing like the story of "The Hare and the Tortoise". As a result, the composites not only achieve a minimum reflection loss (RLmin) of - 50.83 dB and an effective bandwidth of 6.8 GHz, but also present remarkable EMW interference shielding effectiveness of 66.66 dB. In addition, diverse functions such as good thermal insulation, infrared shielding and photothermal performance were also achieved in the hybrid composites as a result of intrinsic morphology and chemicophysics properties. Therefore, we believe that the boosted MWSE open up a novel orientation toward developing multifunctional composites with high-efficient EMW response and thermal management.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Lei Cai
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yuyang Shi
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanyan Dong
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaojie Zhu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Jie Cheng
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Haojie Jiang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiao Wang
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yifeng Jiang
- School of Materials Science and Engineering, University of New South Wales, Sydney, 2052, Australia
| | - Wei Lu
- Shanghai Key Laboratory of D&A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|
9
|
Wang YQ, Zhao HB, Cheng JB, Liu BW, Fu Q, Wang YZ. Hierarchical Ti 3C 2T x@ZnO Hollow Spheres with Excellent Microwave Absorption Inspired by the Visual Phenomenon of Eyeless Urchins. NANO-MICRO LETTERS 2022; 14:76. [PMID: 35312846 PMCID: PMC8938554 DOI: 10.1007/s40820-022-00817-5] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Accepted: 02/09/2022] [Indexed: 05/19/2023]
Abstract
Ingenious microstructure design and rational composition selection are effective approaches to realize high-performance microwave absorbers, and the advancement of biomimetic manufacturing provides a new strategy. In nature, urchins are the animals without eyes but can "see", because their special structure composed of regular spines and spherical photosensitive bodies "amplifies" the light-receiving ability. Herein, inspired by the above phenomenon, the biomimetic urchin-like Ti3C2Tx@ZnO hollow microspheres are rationally designed and fabricated, in which ZnO nanoarrays (length: ~ 2.3 μm, diameter: ~ 100 nm) as the urchin spines are evenly grafted onto the surface of the Ti3C2Tx hollow spheres (diameter: ~ 4.2 μm) as the urchin spherical photosensitive bodies. The construction of gradient impedance and hierarchical heterostructures enhance the attenuation of incident electromagnetic waves. And the EMW loss behavior is further revealed by limited integral simulation calculations, which fully highlights the advantages of the urchin-like architecture. As a result, the Ti3C2Tx@ZnO hollow spheres deliver a strong reflection loss of - 57.4 dB and broad effective absorption bandwidth of 6.56 GHz, superior to similar absorbents. This work provides a new biomimetic strategy for the design and manufacturing of advanced microwave absorbers.
Collapse
Affiliation(s)
- Yan-Qin Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Hai-Bo Zhao
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| | - Jin-Bo Cheng
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Bo-Wen Liu
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China
| | - Qiang Fu
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, People's Republic of China
| | - Yu-Zhong Wang
- Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory for Eco-Friendly Polymer Materials (Sichuan), College of Chemistry, Sichuan University, Chengdu, 610064, People's Republic of China.
| |
Collapse
|
10
|
Zhang Y, Zhang Z, Zhu Y, Zhang Y, Yang M, Li S, Suo K, Li K. N-doped graphene encapsulated MoS 2nanosphere composite as a high-performance anode for lithium-ion batteries. NANOTECHNOLOGY 2022; 33:235703. [PMID: 35240588 DOI: 10.1088/1361-6528/ac5a84] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 03/03/2022] [Indexed: 06/14/2023]
Abstract
MoS2is widely used in lithium-ion batteries (LIBs) due to its high capacity (670 mAh g-1) and unique two-dimensional structure. However, the further application was limited of MoS2as anode materials suffer from its volume expansion and low conductivity. In this work, N-doped graphene encapsulated MoS2nanosphere composite (MoS2@NG) were prepared and its unique sandwich structure containing abundant mesopores and defects can efficiently enhance reaction kinetics. The MoS2@NG electrode shows a reversible capacity of 975.9 mAh g-1at 0.1 A g-1after 100 cycles, and a reversible capacity of 325.2 mAh g-1is still maintained after 300 cycles at 5 A g-1. In addition, the MoS2@NG electrode exhibites an excellent rate performance benefiting from the electrochemical properties dominated by capacitive behavior. This suggests that MoS2@NG composite can be used as potential anode materials for LIBs.
Collapse
Affiliation(s)
- Yating Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
- Key Laboratory of Coal Resources Exploration and Comprehensive Utilization, Ministry of Natural Resources, Xi'an, Shaanxi 710021, People's Republic of China
| | - Zhanrui Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Youyu Zhu
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Yongling Zhang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Mengnan Yang
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Siyi Li
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Ke Suo
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| | - Keke Li
- College of Chemistry & Chemical Engineering, Xi'an University of Science and Technology, Xi'an, Shaanxi 710054, People's Republic of China
| |
Collapse
|
11
|
Wang X, Li C, Geng H, Xie J, Chen Z, Zhang X, Xiong C, Wang S. Tunable dielectric properties and electromagnetic wave absorbing performance of MoS2/Fe3O4/PANI composite. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128285] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Peng M, Qin F, Zhou L, Wei H, Zhu Z, Shen X. Material-structure integrated design for ultra-broadband all-dielectric metamaterial absorber. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2021; 34:115701. [PMID: 34905743 DOI: 10.1088/1361-648x/ac431e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Material and structure are the essential elements of all-dielectric metamaterials. Structure design for specific dielectric materials has been studied while the contribution of material and synergistic effect of material and structure have been overlooked in the past years. Herein, we propose a material-structure integrated design (MSID) methodology for all-dielectric metamaterials, increasing the degree of freedom in the metamaterial design, to comprehensively optimize microwave absorption performance and further investigate the contribution of material and structure to absorption. A dielectric metamaterial absorber with an ultra-broadband absorption from 5.3 to 18.0 GHz is realized. Theoretical calculation and numerical simulation demonstrate that the symphony of material and structure excites multiple resonance modes encompassing quarter-wavelength interference cancellation, spoof surface plasmon polariton mode, dielectric resonance mode and grating mode, which is essential to afford the desirable absorption performance. This work highlights the superiority of coupling of material and structure and provides an effective design and optimization strategy for all-dielectric metamaterial absorbers.
Collapse
Affiliation(s)
- Mengyue Peng
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Faxiang Qin
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Liping Zhou
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Huijie Wei
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Zihao Zhu
- Institute for Composites Science Innovation (InCSI), School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, People's Republic of China
| | - Xiaopeng Shen
- School of Material Science and Physics, China University of Mining and Technology, Xuzhou, 221116, People's Republic of China
| |
Collapse
|
13
|
Geng H, Zhang X, Xie W, Zhao P, Wang G, Liao J, Dong L. Lightweight and broadband 2D MoS 2 nanosheets/3D carbon nanofibers hybrid aerogel for high-efficiency microwave absorption. J Colloid Interface Sci 2021; 609:33-42. [PMID: 34894554 DOI: 10.1016/j.jcis.2021.11.192] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/22/2022]
Abstract
Three-dimensional (3D) porous molybdenum disulfide nanosheets/carbon nanofibers (MoS2/CNF) hybrid aerogels were synthesized by using solvothermal method and following carbonization, where two-dimensional (2D) MoS2 nanosheets were homogenously in-situ grown on the interconnected CNF skeleton derived from bacterial cellulose, forming a hierarchical porous structure. This unique heterogeneous structure of the MoS2/CNF hybrid aerogels were conducive to electromagnetic loss, including conduction, polarization, multi-scatterings, and reflections, thus resulting in a balanced impedance matching and microwave attenuation capacity. It was found that the resulted MoS2/CNF hybrid aerogels demonstrate excellent microwave absorbing performance when the only 5.0 wt% fillers were loaded in paraffin. Particularly, MoS2/CNF-2-900 hybrid aerogel displayed an effective absorption bandwidth of 5.68 GHz and minimum reflection loss (RLmin) value of -36.19 dB at a thickness of 2.0 mm. As the thickness increases to 4.4 mm, the RLmin value of MoS2/CNF-2-900 hybrid aerogel reaches -48.53 dB. Electromagnetic loss mechanism analysis indicates that such improved microwave attenuation is attributed to proper component, multiple heterogenous interface and hierarchical porous structures. All the results in this work pave the avenue for the development of ultralight microwave absorber with high absorption capacity as well as broad effective absorption bandwidth.
Collapse
Affiliation(s)
- Haoran Geng
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Xuan Zhang
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Wenhan Xie
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China
| | - Pengfei Zhao
- Key Laboratory of Tropical Crop Products Processing of Ministry of Agriculture and Rural Affairs, Agricultural Products Processing Research Institute, Chinese Academy of Tropical Agricultural Sciences, Renmin Avenue 48, Zhanjiang 524001, China
| | - Guizhen Wang
- School of Materials Science and Engineering, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Jianhe Liao
- School of Materials Science and Engineering, Hainan University, Renmin Avenue 58, Haikou 570208, China
| | - Lijie Dong
- Center for Smart Materials and Devices, State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Luoshi Road 122, Wuhan 430070, China.
| |
Collapse
|
14
|
Zhang J, Zhang J, Shuai X, Zhao R, Guo T, Li K, Wang D, Ma C, Li J, Du J. Design and Synthesis Strategies: 2D Materials for Electromagnetic Shielding/Absorbing. Chem Asian J 2021; 16:3817-3832. [PMID: 34585842 DOI: 10.1002/asia.202100979] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 09/26/2021] [Indexed: 01/15/2023]
Abstract
Two-dimensional (2D) materials possess special physical and chemical properties. They have been proved to have potential application advantage in the microwave absorption (MA) and electromagnetic interference (EMI) shielding. Particularly, they exhibit positive shielding and absorbing response to EMI. Here, the research progress of preparation, electromagnetic performance and microwave shielding/absorbing mechanisms of 2D composite materials are introduced. Effective preparation routes including introducing heteroatoms, constructing unique structures and 2D composite materials are described. Furthermore, the application prospects and challenges for the development of novel EMI materials are expatiated.
Collapse
Affiliation(s)
- Jie Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Jianchao Zhang
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Xiaofeng Shuai
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Ruihua Zhao
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Kunming Tobacco Co. Ltd., 21 Dachang South Road, Taiyuan, Shanxi, P. R. China
| | - Tianyu Guo
- College of Environment Science and Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Kexun Li
- Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Donghong Wang
- Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Chen Ma
- Electromagnetic Protection Materials and Technology, Key Laboratory of Shanxi Province, 33rd Research Institute of China Electronics Technology Group Corporation, Taiyuan, 030006, P. R. China
| | - Jinping Li
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| | - Jianping Du
- College of Chemistry and Chemical Engineering, Taiyuan University of Technology, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China.,Shanxi Key Laboratory of Gas Energy Efficient and Clean Utilization, No. 79 Yingze West Street, Taiyuan, Shanxi, P. R. China
| |
Collapse
|
15
|
Chen J, Song G, Liu Z, Xie L, Zhang S, Chen C. Design of core-shell nickel oxide/silicon carbide whiskers towards excellent microwave absorption property. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2021.03.047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
16
|
Chen J, Zheng J, Huang Q, Wang F, Ji G. Enhanced Microwave Absorbing Ability of Carbon Fibers with Embedded FeCo/CoFe 2O 4 Nanoparticles. ACS APPLIED MATERIALS & INTERFACES 2021; 13:36182-36189. [PMID: 34291899 DOI: 10.1021/acsami.1c09430] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the face of increasingly severe electromagnetic (EM) wave pollution, the research of EM wave absorbing materials is an effective solution. To reduce the density of traditional absorbing materials, in this work, FeCo/CoFe2O4/carbon nanofiber composites were successfully prepared by electrospinning for the EM wave attenuation application. Benefiting from the loss ability of interface polarization, dipole polarization, and magnetic loss, the composites obtained a bandwidth of 5.0 GHz at a 1.95 mm thickness and an absorption peak of -52.3 dB. More importantly, the radar cross section (RCS) reduction of composite coatings calculated by ANSYS Electronics Desktop 2018 (HFSS) can reach 34.5 dBm2, and the RCS value is almost less than -10 dBm2 when the incident angle is greater than 20°, demonstrating great scattering ability of the material coating to EM waves. This work, combined with the exploration of the mechanism and the simulation analysis of the absorbing coating, will be of significance for the development of absorbing materials.
Collapse
Affiliation(s)
- Jiabin Chen
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Jing Zheng
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, P. R. China
| | - Qianqian Huang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Fan Wang
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| | - Guangbin Ji
- College of Materials Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, P. R. China
| |
Collapse
|
17
|
Zhang Z, Cai Z, Xia L, Zhao D, Fan F, Huang Y. Synergistically Assembled Cobalt-Telluride/Graphene Foam with High-Performance Electromagnetic Wave Absorption in Both Gigahertz and Terahertz Band Ranges. ACS APPLIED MATERIALS & INTERFACES 2021; 13:30967-30979. [PMID: 34165957 DOI: 10.1021/acsami.1c05351] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Electromagnetic wave (EMW)-absorbing materials have a great impact on civil use and national defense. In this paper, a novel composite, RGO@6CoTe2-300 (the mass ratio of reduced graphene oxide to CoTe2 is 1:6, annealed at 300 °C), has been obtained through a facile melt-diffusion method and solvothermal method. The as-prepared samples have shown excellent reflection losses (RL) and effective adsorption bandwidth (EAB) by controlling the loading of CoTe2 and the annealing temperature. The sample has exhibited a RL of -62.2 dB at 13.04 GHz with the matching thickness of 3.53 mm, and the EAB reaches 8.2 GHz at 2-18 GHz. Moreover, excellent terahertz (THz) absorption property is also obtained at 0.2-2.0 THz. A RL of 54.07 dB is acquired, and the EAB covers 100% of the entire measured bandwidth. Thus, RGO@6CoTe2-300 can be considered as a promising EMW absorption material in both gigahertz and terahertz band ranges.
Collapse
Affiliation(s)
- Zhiwei Zhang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Zhihao Cai
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Lun Xia
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China
| | - Dan Zhao
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, PR China
| | - Fei Fan
- Institute of Modern Optics, Nankai University, Tianjin Key Laboratory of Micro-scale Optical Information Science and Technology, Tianjin 300350, PR China
| | - Yi Huang
- National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule Based Material Chemistry, Key Laboratory of Functional Polymer Materials, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Materials Science and Engineering, Nankai University, Tianjin 300350, PR China
| |
Collapse
|
18
|
Duan Q, Lu Y. Silk Sericin As a Green Adhesive to Fabricate a Textile Strain Sensor with Excellent Electromagnetic Shielding Performance. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28832-28842. [PMID: 34126738 DOI: 10.1021/acsami.1c05671] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Although flexible textile-based electronics and lightweight electromagnetic shielding materials have attracted increasing attention due to their wide application, the seamless integration of textile sensors and electromagnetic shielding materials is still a challenge. Herein, we designed a simple, cost-effective, and environmentally friendly method to fabricate nickel-plated acetate fabrics coated with carbon nanotubes, using silk sericin to disperse carbon nanotubes in water and adsorb abundant nickel ions easily on the surface of carbon nanotubes via hydroxyl groups without other additives. The as-prepared composites exhibited excellent conductivity and electromagnetic interference (EMI) shield effectiveness (>30 dB) at X-band with around 0.8 mm thickness. The low-loading carbon nanotubes could offer more loss mechanism and had a positive effect upon EMI. The conductive textiles had higher tensile strength and negative relative resistance changes in strain, and had a great potential as wearable sensors in response to finger folding and wrist bending. Silk sericin as a green adhesive and dispersant provides an alternative strategy to large-scale produce multifunctional conductive wearable textiles for applications in EMI shielding and/or human-machine interaction.
Collapse
Affiliation(s)
- Qiuyan Duan
- Department of Materials Science, Fudan University, Shanghai 200433, China
| | - Yinxiang Lu
- Department of Materials Science, Fudan University, Shanghai 200433, China
| |
Collapse
|
19
|
Shi HG, Zhao HB, Liu BW, Wang YZ. Multifunctional Flame-Retardant Melamine-Based Hybrid Foam for Infrared Stealth, Thermal Insulation, and Electromagnetic Interference Shielding. ACS APPLIED MATERIALS & INTERFACES 2021; 13:26505-26514. [PMID: 34048209 DOI: 10.1021/acsami.1c07363] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Multifunctionalization is an important development direction of electromagnetic interference (EMI)-shielding materials. However, it is still a huge challenge to effectively integrate multiple functions into materials. Herein, we reported a facile method to fabricate multifunctional EMI-shielding materials, which were assembled with multidimensional components consisting of a 3D melamine-formaldehyde (MF) foam skeleton, 0D ferroferric oxide (Fe3O4) nanoparticles, and 1D silver nanowires (AgNWs) via coprecipitation and dip-coating processes. Due to the coaction of conductive AgNWs and magnetic Fe3O4 nanoparticles, the resultant hybrid foam showed excellent absorption-dominant EMI-shielding performances with a high specific EMI-shielding effectiveness value of 12,704 dB cm2 g-1. Moreover, thanks to the multilayer porous micro-/nanostructure and the nonflammability of functional coatings, the hybrid foam shows excellent flame retardancy and heat insulation, making it attractive for the functions of infrared stealth and heat insulation. The corresponding mechanism is discussed in detail. Combined with the advantages of high thermal insulation, flame retardancy, elasticity, and excellent absorption-dominant EMI-shielding performances, the hybrid foam showed great applications in the fields of both military and civilian. This work provides new inspiration and insights for the design of multifunctional high-performance EMI-absorbing materials.
Collapse
Affiliation(s)
- Hai-Gang Shi
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Hai-Bo Zhao
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Bo-Wen Liu
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| | - Yu-Zhong Wang
- School of Chemical Engineering, Collaborative Innovation Center for Eco-Friendly and Fire-Safety Polymeric Materials (MoE), State Key Laboratory of Polymer Materials Engineering, National Engineering Laboratory of Eco-Friendly Polymeric Materials (Sichuan), Sichuan University, Chengdu 610064, China
| |
Collapse
|
20
|
Wang X, Liao J, Du R, Wang G, Tsidaeva N, Wang W. Achieving super-broad effective absorption bandwidth with low filler loading for graphene aerogels/raspberry-like CoFe2O4 clusters by N doping. J Colloid Interface Sci 2021; 590:186-198. [DOI: 10.1016/j.jcis.2021.01.069] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 01/26/2023]
|
21
|
Liang L, Li Q, Yan X, Feng Y, Wang Y, Zhang HB, Zhou X, Liu C, Shen C, Xie X. Multifunctional Magnetic Ti 3C 2T x MXene/Graphene Aerogel with Superior Electromagnetic Wave Absorption Performance. ACS NANO 2021; 15:6622-6632. [PMID: 33780231 DOI: 10.1021/acsnano.0c09982] [Citation(s) in RCA: 185] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
Ingenious microstructure design and a suitable multicomponent strategy are still challenging for advanced electromagnetic wave absorbing (EMA) materials with strong absorption and a broad effective absorption bandwidth (EAB) at thin sample thickness and low filling level. Herein, a three-dimensional (3D) dielectric Ti3C2Tx MXene/reduced graphene oxide (RGO) aerogel anchored with magnetic Ni nanochains was constructed via a directional-freezing method followed by the hydrazine vapor reduction process. The oriented cell structure and heterogeneous dielectric/magnetic interfaces benefit the superior absorption performance by forming perfect impedance matching, multiple polarizations, and electric/magnetic-coupling effects. Interestingly, the prepared ultralight Ni/MXene/RGO (NiMR-H) aerogel (6.45 mg cm-3) delivers the best EMA performance in reported MXene-based absorbing materials up to now, with a minimal reflection loss (RLmin) of -75.2 dB (99.999 996% wave absorption) and a broadest EAB of 7.3 GHz. Furthermore, the excellent structural robustness and mechanical properties, as well as the high hydrophobicity and heat insulation performance (close to air), guarantee the stable and durable EMA application of the NiMR-H aerogel to resist deformation, water or humid environments, and high-temperature attacks.
Collapse
Affiliation(s)
- Luyang Liang
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Qianming Li
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Xu Yan
- Beijing Institute of Radio Measurement, Beijing 100854, China
| | - Yuezhan Feng
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Yaming Wang
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Hao-Bin Zhang
- State Key Laboratory of Organic-Inorganic Composites, College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xingping Zhou
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chuntai Liu
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Changyu Shen
- Key Laboratory of Materials Processing and Mold Ministry of Education, National Engineering Research Center for Advanced Polymer Processing Technology, Zhengzhou University, Zhengzhou 450002, China
| | - Xiaolin Xie
- Key Laboratory of Material Chemistry for Energy Conversion and Storage Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
22
|
Pan F, Liu Z, Deng B, Dong Y, Zhu X, Huang C, Lu W. Lotus Leaf-Derived Gradient Hierarchical Porous C/MoS 2 Morphology Genetic Composites with Wideband and Tunable Electromagnetic Absorption Performance. NANO-MICRO LETTERS 2021; 13:43. [PMID: 34138226 PMCID: PMC8187516 DOI: 10.1007/s40820-020-00568-1] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Accepted: 11/01/2020] [Indexed: 05/17/2023]
Abstract
Inspired by the nature, lotus leaf-derived gradient hierarchical porous C/MoS2 morphology genetic composites (GHPCM) were successfully fabricated through an in situ strategy. The biological microstructure of lotus leaf was well preserved after treatment. Different pores with gradient pore sizes ranging from 300 to 5 μm were hierarchically distributed in the composites. In addition, the surface states of lotus leaf resulted in the Janus-like morphologies of MoS2. The GHPCM exhibit excellent electromagnetic wave absorption performance, with the minimum reflection loss of - 50.1 dB at a thickness of 2.4 mm and the maximum effective bandwidth of 6.0 GHz at a thickness of 2.2 mm. The outstanding performance could be attributed to the synergy of conductive loss, polarization loss, and impedance matching. In particularly, we provided a brand-new dielectric sum-quotient model to analyze the electromagnetic performance of the non-magnetic material system. It suggests that the specific sum and quotient of permittivity are the key to keep reflection loss below - 10 dB within a certain frequency range. Furthermore, based on the concept of material genetic engineering, the dielectric constant could be taken into account to seek for suitable materials with designable electromagnetic absorption performance.
Collapse
Affiliation(s)
- Fei Pan
- Shanghai Key Lab. of D &A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Zhicheng Liu
- Shanghai Key Lab. of D &A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Baiwen Deng
- Shanghai Key Lab. of D &A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Yanyan Dong
- Shanghai Key Lab. of D &A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Xiaojie Zhu
- Shanghai Key Lab. of D &A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China
| | - Chuang Huang
- School of Materials Science & Engineering, University of Shanghai for Science and Technology, Shanghai, 200092, People's Republic of China
| | - Wei Lu
- Shanghai Key Lab. of D &A for Metal-Functional Materials, School of Materials Science & Engineering, Tongji University, Shanghai, 201804, People's Republic of China.
| |
Collapse
|