1
|
Xiao X, Yang L, Sun W, Chen Y, Yu H, Li K, Jia B, Zhang L, Ma T. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105830. [PMID: 34878210 DOI: 10.1002/smll.202105830] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/20/2021] [Indexed: 06/13/2023]
Abstract
Electrocatalytic water splitting is regarded as the most effective pathway to generate green energy-hydrogen-which is considered as one of the most promising clean energy solutions to the world's energy crisis and climate change mitigation. Although electrocatalytic water splitting has been proposed for decades, large-scale industrial hydrogen production is hindered by high electricity cost, capital investment, and electrolysis media. Harsh conditions (strong acid/alkaline) are widely used in electrocatalytic mechanism studies, and excellent catalytic activities and efficiencies have been achieved. However, the practical application of electrocatalytic water splitting in harsh conditions encounters several obstacles, such as corrosion issues, catalyst stability, and membrane technical difficulties. Thus, the research on water splitting in mild conditions (neutral/near neutral), even in natural seawater, has aroused increasing attention. However, the mechanism in mild conditions or natural seawater is not clear. Herein, different conditions in electrocatalytic water splitting are reviewed and the effects and proposed mechanisms in the three conditions are summarized. Then, a comparison of the reaction process and the effects of the ions in different electrolytes are presented. Finally, the challenges and opportunities associated with direct electrocatalytic natural seawater splitting and the perspective are presented to promote the progress of hydrogen production by water splitting.
Collapse
Affiliation(s)
- Xue Xiao
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lijun Yang
- Institute of Clean Energy Chemistry, Key Laboratory for Green Synthesis and Preparative Chemistry of Advanced Materials, College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Wenping Sun
- School of Materials Science and Engineering, State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou, 310027, China
| | - Yu Chen
- Key Laboratory of Macromolecular Science of Shaanxi Province, Key Laboratory of Applied Surface and Colloid Chemistry (MOE), Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Lab for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an, Shaanxi, 710062, China
| | - Hai Yu
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Kangkang Li
- CSIRO Energy, 10 Murray Dwyer Circuit, Mayfield West, NSW, 2304, Australia
| | - Baohua Jia
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| | - Lei Zhang
- College of Chemistry, Liaoning University, 66 Chongshan Middle Road, Shenyang, 110036, China
| | - Tianyi Ma
- Centre for Translational Atomaterials, Swinburne University of Technology, Hawthorn, VIC, 3122, Australia
| |
Collapse
|
2
|
Ge L, Lai W, Deng Y, Bao J, Ouyang B, Li H. Spontaneous Dissolution of Oxometalates Boosting the Surface Reconstruction of CoMOx (M = Mo, V) to Achieve Efficient Overall Water Splitting in Alkaline Media. Inorg Chem 2022; 61:2619-2627. [DOI: 10.1021/acs.inorgchem.1c03677] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Lihong Ge
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Wei Lai
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Yilin Deng
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Jian Bao
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| | - Bo Ouyang
- Department of Applied Physics and Institution of Energy and Microstructure, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Huaming Li
- Institute for Energy Research, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
3
|
Zhao S, Xie R, Kang L, Yang M, He X, Li W, Wang R, Brett DJL, He G, Chai G, Parkin IP. Enhancing Hydrogen Evolution Electrocatalytic Performance in Neutral Media via Nitrogen and Iron Phosphide Interactions. SMALL SCIENCE 2021; 1:2100032. [PMID: 40213050 PMCID: PMC11935853 DOI: 10.1002/smsc.202100032] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 04/08/2021] [Indexed: 04/18/2025] Open
Abstract
It remains a challenge to develop efficient electrocatalysts in neutral media for hydrogen evolution reaction (HER) due to the sluggish kinetics and switch of the rate determining step. Although metal phosphides are widely used HER catalysts, their structural stability is an issue due to oxidization, and the HER performance in neutral media requires improvement. Herein, a new material, i.e., grapevine-shaped N-doped iron phosphide on carbon nanotubes, as an efficient HER catalyst in neutral media is developed. The optimized catalyst shows an overpotential of 256 mV at a large current density of 65 mA cm-2, which is even 10 mV lower than that of the commercial 20% Pt/C catalyst. The excellent performance of the catalyst is further studied by combined computational and experimental techniques, which proves that the interaction between nitrogen and iron phosphides can provide more efficient active structures and stabilize the metal phosphide electrocatalysts for HER.
Collapse
Affiliation(s)
- Siyu Zhao
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Ruikuan Xie
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002FujianP. R. China
| | - Liqun Kang
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Manni Yang
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| | - Xingyu He
- Department of Chemical EngineeringUniversity of Cincinnati2600 Clifton AvenueOH45221USA
| | - Wenyao Li
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Ryan Wang
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Dan J. L. Brett
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
| | - Guanjie He
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
- Department of Chemical EngineeringUniversity College LondonLondonWC1E 7JEUK
- School of ChemistryJoseph Banks LaboratoriesUniversity of LincolnGreen LaneLincolnLN6 7DLUK
| | - Guoliang Chai
- State Key Laboratory of Structural ChemistryFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhou350002FujianP. R. China
- Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of ChinaFuzhou, Fujian350108P. R. China
- Fujian Provincial Key Laboratory of Theoretical and Computational ChemistryXiamenFujian361005P. R. China
| | - Ivan P. Parkin
- Christopher Ingold LaboratoryDepartment of ChemistryUniversity College London20 Gordon StreetLondonWC1H 0AJUK
| |
Collapse
|