1
|
Jiang K, Luo S, Li D, Yuan Q, Chen L, Zhang Y, Chen X, Yang D, Luo X, Shao J. Large-Scale Fabrication of 5 nm Plasmonic Hybrid Nanoslit Arrays. NANO LETTERS 2025; 25:8636-8643. [PMID: 40377473 DOI: 10.1021/acs.nanolett.5c01474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Surface plasmon resonance harnessed through nanometer-scale metallic gaps generates intense near-fields, unlocking vast potential for applications in nanophotonics and biosensing. However, the scarcity of scalable and reproducible nanofabrication techniques capable of achieving a sub-10 nm gap remains a significant barrier to widespread implementation. Here, we present a high-throughput method combining deep-UV interference lithography, molecular self-assembly, and peeling to fabricate large-scale arrays of an ∼ 5 nm Au-Ag hybrid nanoslit. These arrays serve as highly effective substrates for surface-enhanced Raman spectroscopy (SERS), demonstrating the ability to detect rhodamine 6G at concentrations as low as 1 pM with an analytical enhancement factor of 2.2 × 107. Specifically, the hybrid nanoslit arrays exhibit significantly higher (by 2.6-fold) field enhancements than monolithic nanoslit arrays due to the in-phase hybridization mode in Au-Ag nanoslit. Our cost-effective, large-scale approach overcomes traditional scalability and hybrid patterning barriers, offering transformative potential for sensitive, reliable SERS-based detection platforms.
Collapse
Affiliation(s)
- Kexin Jiang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P.R. China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Sihai Luo
- Frontier Institute of Science and Technology (FIST), Xi'An Jiaotong University, Interdisciplinary Research Center Of Frontier Science and Technology, Xi'an, Shaanxi 710049, P.R. China
- Micro-Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Dongxian Li
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P.R. China
- School of Optoelectronic Science and Engineering, University of Electronic Science and Technology of China, Chengdu, 611731, P.R. China
| | - Qi Yuan
- Frontier Institute of Science and Technology (FIST), Xi'An Jiaotong University, Interdisciplinary Research Center Of Frontier Science and Technology, Xi'an, Shaanxi 710049, P.R. China
- Micro-Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Lijuan Chen
- Frontier Institute of Science and Technology (FIST), Xi'An Jiaotong University, Interdisciplinary Research Center Of Frontier Science and Technology, Xi'an, Shaanxi 710049, P.R. China
- Micro-Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Yingfang Zhang
- Frontier Institute of Science and Technology (FIST), Xi'An Jiaotong University, Interdisciplinary Research Center Of Frontier Science and Technology, Xi'an, Shaanxi 710049, P.R. China
- Micro-Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Xiaoliang Chen
- Frontier Institute of Science and Technology (FIST), Xi'An Jiaotong University, Interdisciplinary Research Center Of Frontier Science and Technology, Xi'an, Shaanxi 710049, P.R. China
- Micro-Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| | - Dongxu Yang
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P.R. China
| | - Xiangang Luo
- State Key Laboratory of Optical Technologies on Nano-Fabrication and Micro-Engineering, Institute of Optics and Electronics, Chinese Academy of Sciences, Chengdu 610209, P.R. China
| | - Jinyou Shao
- Frontier Institute of Science and Technology (FIST), Xi'An Jiaotong University, Interdisciplinary Research Center Of Frontier Science and Technology, Xi'an, Shaanxi 710049, P.R. China
- Micro-Nanotechnology Research Center, State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P.R. China
| |
Collapse
|
2
|
Yin L, You T, Arslan M, El-Seedi HR, Guo Z, Zou X, Cai J. Dual-layers Raman reporter-tagged Au@Ag combined with core-satellite assemblies for SERS detection of Zearalenone. Food Chem 2023; 429:136834. [PMID: 37453336 DOI: 10.1016/j.foodchem.2023.136834] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 06/18/2023] [Accepted: 07/05/2023] [Indexed: 07/18/2023]
Abstract
Zearalenone (ZEN) is a prevalent mycotoxin identified in corn. A SERS-based immunosensor by constructing core-satellite assemblies was developed for ZEN detection. ZEN monoclonal antibody modified gold nanostars (AuNSs) were fabricated as the capture probe (core). The Raman signal probes (satellites) utilized ZEN antigen linked to the core-shell structures loaded with two layers of Raman reporter molecules (AuMBA@AgMBANPs). The coupling between AuNSs and AuMBA@AgMBANPs can produce a poweful electromagnetic field, thus considerably amplifying the Raman signal. The detection range of ZEN for corn samples under the optimal conditions was 5 ∼ 400 μg/kg with a LOD of 3 μg/kg, which completely satisfying the requirement of maximum residual level (60 μg/kg). Moreover, the proposed SERS method was consistent with the HPLC-FLD method for the detection of ZEN in naturally contaminated corn samples (90.58% ∼ 105.29%). Conclusively, fabricated immunosensor with exceptional sensitivity and specificity broaden the application of SERS in mycotoxin detection.
Collapse
Affiliation(s)
- Limei Yin
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China; School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tianyan You
- Key Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Muhammad Arslan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Hesham R El-Seedi
- Pharmacognosy Group, Department of Pharmaceutical Biosciences, BMC, Uppsala University, Box 591, SE-751 24 Uppsala, Sweden
| | - Zhiming Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Xiaobo Zou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; International Joint Research Laboratory of Intelligent Agriculture and Agri-products Processing (Jiangsu University), Jiangsu Education Department, Zhenjiang 212013, China
| | - Jianrong Cai
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
3
|
Ahn H, Kim S, Oh SS, Park M, Kim S, Choi JR, Kim K. Plasmonic Nanopillars-A Brief Investigation of Fabrication Techniques and Biological Applications. BIOSENSORS 2023; 13:bios13050534. [PMID: 37232896 DOI: 10.3390/bios13050534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 05/03/2023] [Accepted: 05/08/2023] [Indexed: 05/27/2023]
Abstract
Nanopillars (NPs) are submicron-sized pillars composed of dielectrics, semiconductors, or metals. They have been employed to develop advanced optical components such as solar cells, light-emitting diodes, and biophotonic devices. To integrate localized surface plasmon resonance (LSPR) with NPs, plasmonic NPs consisting of dielectric nanoscale pillars with metal capping have been developed and used for plasmonic optical sensing and imaging applications. In this study, we studied plasmonic NPs in terms of their fabrication techniques and applications in biophotonics. We briefly described three methods for fabricating NPs, namely etching, nanoimprinting, and growing NPs on a substrate. Furthermore, we explored the role of metal capping in plasmonic enhancement. Then, we presented the biophotonic applications of high-sensitivity LSPR sensors, enhanced Raman spectroscopy, and high-resolution plasmonic optical imaging. After exploring plasmonic NPs, we determined that they had sufficient potential for advanced biophotonic instruments and biomedical applications.
Collapse
Affiliation(s)
- Heesang Ahn
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Soojung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Sung Suk Oh
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Mihee Park
- Educational Research Center for the Personalized Healthcare based on Cogno-Mechatronics, Pusan National University, Busan 46241, Republic of Korea
| | - Seungchul Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- The Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jong-Ryul Choi
- Medical Device Development Center, Daegu-Gyeongbuk Medical Innovation Foundation (K-MEDI hub), Daegu 41061, Republic of Korea
| | - Kyujung Kim
- Department of Cogno-Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
- The Department of Optics and Mechatronics Engineering, Pusan National University, Busan 46241, Republic of Korea
| |
Collapse
|
4
|
Xing K, Bao H, Ding N, Xiong Y, Peng J, Lai W. Plasmonic gold nanoparticles aggregate based on charge neutralization for the convenient detection of fumonisin B1 by colorimetry and SERS. Food Control 2023. [DOI: 10.1016/j.foodcont.2023.109610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
5
|
Hwang Y, Koo DJ, Ferhan AR, Sut TN, Yoon BK, Cho NJ, Jackman JA. Optimizing Plasmonic Gold Nanorod Deposition on Glass Surfaces for High-Sensitivity Refractometric Biosensing. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:3432. [PMID: 36234560 PMCID: PMC9565783 DOI: 10.3390/nano12193432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/13/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Owing to high surface sensitivity, gold nanorods (AuNRs) are widely used to construct surface-based nanoplasmonic biosensing platforms for label-free molecular diagnostic applications. A key fabrication step involves controlling AuNR deposition onto the target surface, which requires maximizing surface density while minimizing inter-particle aggregation, and is often achieved by surface functionalization with a self-assembled monolayer (SAM) prior to AuNR deposition. To date, existing studies have typically used a fixed concentration of SAM-forming organic molecules (0.2-10% v/v) while understanding how SAM density affects AuNR deposition and resulting sensing performance would be advantageous. Herein, we systematically investigated how controlling the (3-aminopropyl)triethoxysilane (APTES) concentration (1-30% v/v) during SAM preparation affects the fabrication of AuNR-coated glass surfaces for nanoplasmonic biosensing applications. Using scanning electron microscopy (SEM) and UV-visible spectroscopy, we identified an intermediate APTES concentration range that yielded the highest density of individually deposited AuNRs with minimal aggregation and also the highest peak wavelength in aqueous solution. Bulk refractive index sensitivity measurements indicated that the AuNR configuration had a strong effect on the sensing performance, and the corresponding wavelength-shift responses ranged from 125 to 290 nm per refractive index unit (RIU) depending on the APTES concentration used. Biosensing experiments involving protein detection and antigen-antibody interactions further demonstrated the high surface sensitivity of the optimized AuNR platform, especially in the low protein concentration range where the measurement shift was ~8-fold higher than that obtained with previously used sensing platforms.
Collapse
Affiliation(s)
- Youngkyu Hwang
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Dong Jun Koo
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Abdul Rahim Ferhan
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Tun Naw Sut
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Bo Kyeong Yoon
- School of Healthcare and Biomedical Engineering, Chonnam National University, Yeosu 59626, Korea
| | - Nam-Joon Cho
- School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Joshua A. Jackman
- School of Chemical Engineering and Translational Nanobioscience Research Center, Sungkyunkwan University, Suwon 16419, Korea
| |
Collapse
|
6
|
Abstract
Surface-enhanced Raman spectroscopy (SERS) is a vibrational spectroscopy technique that enables specific identification of target analytes with sensitivity down to the single-molecule level by harnessing metal nanoparticles and nanostructures. Excitation of localized surface plasmon resonance of a nanostructured surface and the associated huge local electric field enhancement lie at the heart of SERS, and things will become better if strong chemical enhancement is also available simultaneously. Thus, the precise control of surface characteristics of enhancing substrates plays a key role in broadening the scope of SERS for scientific purposes and developing SERS into a routine analytical tool. In this review, the development of SERS substrates is outlined with some milestones in the nearly half-century history of SERS. In particular, these substrates are classified into zero-dimensional, one-dimensional, two-dimensional, and three-dimensional substrates according to their geometric dimension. We show that, in each category of SERS substrates, design upon the geometric and composite configuration can be made to achieve an optimized enhancement factor for the Raman signal. We also show that the temporal dimension can be incorporated into SERS by applying femtosecond pulse laser technology, so that the SERS technique can be used not only to identify the chemical structure of molecules but also to uncover the ultrafast dynamics of molecular structural changes. By adopting SERS substrates with the power of four-dimensional spatiotemporal control and design, the ultimate goal of probing the single-molecule chemical structural changes in the femtosecond time scale, watching the chemical reactions in four dimensions, and visualizing the elementary reaction steps in chemistry might be realized in the near future.
Collapse
Affiliation(s)
| | | | - Hai-Yao Yang
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| | - Zhiyuan Li
- School of Physics and Optoelectronics, South China University of Technology, Wushan Road 381, Guangzhou 510641, China
| |
Collapse
|
7
|
Zhang W, Zhu X, Chen Z, Belotelov VI, Song Y. Silver Nanopillar Arrayed Thin Films with Highly Surface-Enhanced Raman Scattering for Ultrasensitive Detection. ACS OMEGA 2022; 7:25726-25731. [PMID: 35910149 PMCID: PMC9330273 DOI: 10.1021/acsomega.2c03022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Surface-enhanced Raman scattering (SERS) technique based on surface plasmon resonance has been considerably investigated in recent years due to its superior sensitivity in the detection of organic or biological molecules at trace levels. However, most research usually focuses on artificial architectures as SERS substrates that always have a complex and expensive micro-nanofabrication process. The high cost of masks for SERS substrates becomes a key obstacle for the widespread commercialization of SERS technology. In this paper, a biomimetic SERS substrate composed of silver-coated nanopillar arrays on the top of a cicada wing was advanced to overcome these challenges as both substrates and masks. Benefiting from the high near-field plasmon resonance coupling at the limited space among neighboring nanopillars, a dramatically increased SERS signal can be achieved using rhodamine 6G (R6G) as a model molecule. Encouragingly, the analytical enhancement factor of the order of more than 108 has been conveniently realized with a reliable detection concentration of R6G of about 100 pM or less. This work provides a promising route for designing cost-effective and highly sensitive SERS substrates and the related mask fabrication using our previously proposed template transfer nanoimprint.
Collapse
Affiliation(s)
- Weiwei Zhang
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- School of Mathematics and Physics, Hebei GEO University, 136 East Huai'an Road, Yuhua District, Shijiazhuang 050031, China
- Shunde Graduate School, University of Science and Technology Beijing. Daliang Zhihui Road 2, Shunde Distinct, Foshan 528399, China
| | - Xiaomin Zhu
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Zhanghua Chen
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
| | - Vladimir I Belotelov
- Vernadsky Crimean Federal University, Vernadskogo av. 4, Simferopol 295007, Russia
- NTI Center for Quantum Communications, National University of Science and Technology MISiS, Leninsky prospekt 4, Moscow 119049, Russia
- Photonic and Quantum Technologies School, Lomonosov Moscow State University, Leninskie Gori, 119991 Moscow, Russia
| | - Yujun Song
- Center for Modern Physics Technology, School of Mathematics and Physics, University of Science and Technology Beijing, Beijing, 30 Xueyuan Road, Haidian District, Beijing 100083, China
- Zhengzhou Tianzhao Biomedical Technology Company Ltd., 7 Dongqing Street, Zhengzhou High Tech Development Zone, Zhengzhou 451450, China
- Key Laboratory of Pulsed Power Translational Medicine of Zhejiang Province, Hangzhou Ruidi Biotechnology Company Ltd., Room 803, Bldg. 4, 4959 Yuhangtang Road, Cangqian Street, Hangzhou, Zhejiang 310023, China
| |
Collapse
|
8
|
Lim H, Jeon CS, Park YM, Lee HN, Pyun SH, Kim HJ. Controllable fabrication of silver-deposited polyurethane acrylate nanopillar array film as a flexible surface-enhanced Raman scattering (SERS) substrate with high sensitivity and reproducibility. Mikrochim Acta 2022; 189:288. [PMID: 35879508 DOI: 10.1007/s00604-022-05391-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 06/20/2022] [Indexed: 11/24/2022]
Abstract
A controllable method for fabricating flexible surface-enhanced Raman scattering (SERS) substrates is demonstrated by depositing silver onto a flexible nanopillar array film. The flexible nanopillar array film was cost-effectively prepared by replicating an anodic aluminum oxide (AAO) template with UV-curable polyurethane acrylate (PUA) over a large area. Then, the deposition of silver was done by an Ar-assisted thermal evaporation. In the deposition process, the partial pressure of Ar was optimized because it has a significant influence on the SERS intensity through the microstructural changes of silver deposited on PUA nanopillars. In addition, the increase in the nanopillar diameter and height enhanced the SERS intensity obtained at 785-nm excitation because of the increased number of hot spots. However, the agglomeration of Ag-deposited nanopillars, which is caused by high aspect ratios, negatively affected the SERS performance in terms of intensity and standard deviation. The optimized Ag-deposited nanopillar array film with nanopillar diameters and heights of 80 nm and 200 nm exhibited excellent SERS sensitivity and signal reproducibility with stable mechanical flexibility. For application in food and biomedical analysis, it was used for detecting saccharin and peptide and showed a good linear relationship between the SERS intensity and concentration. These findings demonstrate the suitability of our method for the controllable fabrication and optimization of flexible SERS substrates with high sensitivity and reproducibility.
Collapse
Affiliation(s)
- Hana Lim
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Chang Su Jeon
- R&D Center, Speclipse Inc, Gyeonggi-do, Seongnam-si, 13461, Republic of Korea
| | - Young Min Park
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Ho Nyun Lee
- Surface Technology Group, Korea Institute of Industrial Technology (KITECH), Incheon, 21999, Republic of Korea
| | - Sung Hyun Pyun
- R&D Center, Speclipse Inc, Gyeonggi-do, Seongnam-si, 13461, Republic of Korea.
| | - Hyun-Jong Kim
- R&D Center, Speclipse Inc, Gyeonggi-do, Seongnam-si, 13461, Republic of Korea.
| |
Collapse
|
9
|
Metamaterial Solar Absorber Based on Refractory Metal Titanium and Its Compound. COATINGS 2022. [DOI: 10.3390/coatings12070929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Metamaterials refers to a class of artificial materials with special properties. Through its unique geometry and the small size of each unit, the material can acquire unique electromagnetic field properties that conventional materials do not have. Based on these factors, we put forward a kind of high absorption near-ultraviolet to near-infrared electromagnetic wave absorber of the solar energy. The surface structure of the designed absorber is composed of TiN-TiO2-Al2O3 with rectangles and disks, and the substrate is Ti-Al2O3-Ti layer. In the study band range (0.1–3.0 μm), the solar absorber’s average absorption is up to 96.32%, and the designed absorber absorbs more than 90% of the electromagnetic wave with a wavelength width of 2.577 μm (0.413–2.990 μm). Meanwhile, the designed solar absorber has good performance under different angles of oblique incident light. Ultra-wideband solar absorbers have great potential in light absorption related applicaitions because of their wide spectrum high absorption properites.
Collapse
|
10
|
Weak Polyelectrolytes as Nanoarchitectonic Design Tools for Functional Materials: A Review of Recent Achievements. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103263. [PMID: 35630741 PMCID: PMC9145934 DOI: 10.3390/molecules27103263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/13/2022] [Accepted: 05/16/2022] [Indexed: 12/23/2022]
Abstract
The ionization degree, charge density, and conformation of weak polyelectrolytes can be adjusted through adjusting the pH and ionic strength stimuli. Such polymers thus offer a range of reversible interactions, including electrostatic complexation, H-bonding, and hydrophobic interactions, which position weak polyelectrolytes as key nano-units for the design of dynamic systems with precise structures, compositions, and responses to stimuli. The purpose of this review article is to discuss recent examples of nanoarchitectonic systems and applications that use weak polyelectrolytes as smart components. Surface platforms (electrodeposited films, brushes), multilayers (coatings and capsules), processed polyelectrolyte complexes (gels and membranes), and pharmaceutical vectors from both synthetic or natural-type weak polyelectrolytes are discussed. Finally, the increasing significance of block copolymers with weak polyion blocks is discussed with respect to the design of nanovectors by micellization and film/membrane nanopatterning via phase separation.
Collapse
|
11
|
Yang GG, Choi HJ, Han KH, Kim JH, Lee CW, Jung EI, Jin HM, Kim SO. Block Copolymer Nanopatterning for Nonsemiconductor Device Applications. ACS APPLIED MATERIALS & INTERFACES 2022; 14:12011-12037. [PMID: 35230079 DOI: 10.1021/acsami.1c22836] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Block copolymer (BCP) nanopatterning has emerged as a versatile nanoscale fabrication tool for semiconductor devices and other applications, because of its ability to organize well-defined, periodic nanostructures with a critical dimension of 5-100 nm. While the most promising application field of BCP nanopatterning has been semiconductor devices, the versatility of BCPs has also led to enormous interest from a broad spectrum of other application areas. In particular, the intrinsically low cost and straightforward processing of BCP nanopatterning have been widely recognized for their large-area parallel formation of dense nanoscale features, which clearly contrasts that of sophisticated processing steps of the typical photolithographic process, including EUV lithography. In this Review, we highlight the recent progress in the field of BCP nanopatterning for various nonsemiconductor applications. Notable examples relying on BCP nanopatterning, including nanocatalysts, sensors, optics, energy devices, membranes, surface modifications and other emerging applications, are summarized. We further discuss the current limitations of BCP nanopatterning and suggest future research directions to open up new potential application fields.
Collapse
Affiliation(s)
- Geon Gug Yang
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hee Jae Choi
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Kyu Hyo Han
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Jang Hwan Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Chan Woo Lee
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Edwin Ino Jung
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| | - Hyeong Min Jin
- Department of Organic Materials Engineering, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Sang Ouk Kim
- National Creative Research Initiative Center for Multi-Dimensional Directed Nanoscale Assembly, Department of Materials Science and Engineering, KAIST, Daejeon 34141, Republic of Korea
| |
Collapse
|
12
|
Akinoglu GE, Akinoglu EM, Kempa K, Hutchison JA. Materials design of vertically coupled plasmonic arrays. NANOSCALE ADVANCES 2021; 3:6925-6933. [PMID: 36132355 PMCID: PMC9418460 DOI: 10.1039/d1na00647a] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/05/2021] [Indexed: 06/15/2023]
Abstract
Plasmonic metasurfaces have important applications in life science, optics, and catalysis. However, their industrial usage is limited by the challenges of high throughput nanofabrication. A promising solution is the transfer of a pattern into a substrate using block copolymers, nanostructured stamps or molds to create binary, three dimensional templates, which can then be decorated with plasmonically active metals. Here, we report on the optical properties of quasi-Babinet complementary arrays in the non-retarded regime investigated by finite-difference time-domain simulations. The structures consist of a nanopillar support, which is covered with metal disks on top of the pillars and a quasi-Babinet complementary hole array film at the base of the pillars. Strong vertical plasmonic coupling occurs for small separation distances of the plasmonic slabs. We present a comprehensive study of the near and far-field properties of such vertically coupled plasmonic arrays varying their critical geometric dimension and the employed metals with their intrinsic plasmonic material properties. In particular, we consider gold, silver, copper, aluminum, nickel, and palladium. Furthermore, the effect of the refractive index n of the nanopillar support between the range of n = 1.4 to n = 3.4 is investigated. The plasmonic slabs show tunable extraordinary transmission and large electric near-field enhancements, which are strongly dependent on the employed material and geometry. Further, we show that the templates are suitable for plasmonic heterostructures commonly used in plasmon-enhanced photocatalysis.
Collapse
Affiliation(s)
- Goekalp Engin Akinoglu
- School of Chemistry, University of Melbourne Parkville Victoria 3010 Australia
- Advanced Materials & BioEngineering Research Centre (AMBER), The School of Chemistry, Trinity College Dublin, The University of Dublin Dublin 2 Ireland
| | - Eser Metin Akinoglu
- International Academy of Optoelectronics at Zhaoqing, South China Normal University Zhaoqing 526238 Guangdong China
| | - Krzysztof Kempa
- Boston College, Department of Physics Chestnut Hill MA 02467 USA
| | | |
Collapse
|
13
|
Neppalli SN, Collins TW, Gholamvand Z, Cummins C, Morris MA, Mokarian-Tabari P. Defining Swelling Kinetics in Block Copolymer Thin Films: The Critical Role of Temperature and Vapour Pressure Ramp. Polymers (Basel) 2021; 13:4238. [PMID: 34883741 PMCID: PMC8659708 DOI: 10.3390/polym13234238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/25/2022] Open
Abstract
We studied the kinetics of swelling in high-χ lamellar-forming poly(styrene)-block- poly(lactic acid) (PS-b-PLA) block copolymer (BCP) by varying the heating rate and monitoring the solvent vapour pressure and the substrate temperature in situ during solvo-thermal vapour annealing (STVA) in an oven, and analysing the resulting morphology. Our results demonstrate that there is not only a solvent vapour pressure threshold (120 kPa), but also that the rate of reaching this pressure threshold has a significant effect on the microphase separation and the resulting morphologies. To study the heating rate effect, identical films were annealed in a tetrahydrofuran (THF) vapour environment under three different ramp regimes, low (rT<1 °C/min), medium (2
Collapse
Affiliation(s)
- Sudhakara Naidu Neppalli
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Timothy W. Collins
- Department of Chemistry, University College Cork, Tyndall National Institute, T12 K8AF Cork, Ireland;
| | - Zahra Gholamvand
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Cian Cummins
- Centre de Recherche Paul Pascal (CRPP), The French National Centre for Scientific Research (CNRS), University of Bordeaux, UMR 5031, 115 Avenue Schweitzer, 33600 Pessac, France;
- Laboratoire de Chimie des Polymeres Organiques (LCPO), University of Bordeaux, CNRS, Bordeaux INP, 16 Avenue Pey-Berland, CEDEX, 33607 Pessac, France
| | - Michael A. Morris
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Department of Chemistry, University College Cork, Tyndall National Institute, T12 K8AF Cork, Ireland;
| | - Parvaneh Mokarian-Tabari
- School of Chemistry, The University of Dublin, Trinity College Dublin, D02 PN40 Dublin, Ireland; (S.N.N.); (Z.G.); (M.A.M.)
- Advance Material and BioEngineering Research (AMBER) Centre and CRANN, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
14
|
Fu H, Bao H, Zhang H, Zhao Q, Zhou L, Zhu S, Wei Y, Li Y, Cai W. Quantitative Surface-Enhanced Raman Spectroscopy for Field Detections Based on Structurally Homogeneous Silver-Coated Silicon Nanocone Arrays. ACS OMEGA 2021; 6:18928-18938. [PMID: 34337232 PMCID: PMC8320141 DOI: 10.1021/acsomega.1c02179] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2021] [Accepted: 06/21/2021] [Indexed: 05/28/2023]
Abstract
Practical application of surface-enhanced Raman spectroscopy (SERS) is greatly limited by the inaccurate quantitative analyses due to the measuring parameter's fluctuations induced by different operators, different Raman spectrometers, and different test sites and moments, especially during the field tests. Herein, we develop a strategy of quantitative SERS for field detection via designing structurally homogeneous and ordered Ag-coated Si nanocone arrays. Such an array is fabricated as SERS chips by depositing Ag on the template etching-induced Si nanocone array. Taking 4-aminothiophenol as the typical analyte, the influences of fluctuations in measuring parameters (such as defocusing depth and laser powers) on Raman signals are systematically studied, which significantly change SERS measurements. It has been shown that the silicon underneath the Ag coating in the chip can respond to the measuring parameters' fluctuations synchronously with and similar to the analyte adsorbed on the chip surface, and the normalization with Si Raman signals can well eliminate the big fluctuations (up to 1 or 2 orders of magnitude) in measurements, achieving highly reproducible measurements (mostly, <5% in signal fluctuations) and accurate quantitative SERS analyses. Finally, the simulated field tests demonstrate that the developed strategy enables quantitatively analyzing the highly scattered SERS measurements well with 1 order of magnitude in signal fluctuation, exhibiting good practicability. This study provides a new practical chip and reliable quantitative SERS for the field detection of real samples.
Collapse
Affiliation(s)
- Hao Fu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Haoming Bao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Hongwen Zhang
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Qian Zhao
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Le Zhou
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Shuyi Zhu
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yi Wei
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Yue Li
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Weiping Cai
- Key
Lab of Materials Physics, Anhui Key Lab of Nanomaterials and Nanotechnology,
Institute of Solid State Physics, HFIPS, Chinese Academy of Sciences, Hefei 230031, P. R. China
- University
of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
15
|
Ginige G, Song Y, Olsen BC, Luber EJ, Yavuz CT, Buriak JM. Solvent Vapor Annealing, Defect Analysis, and Optimization of Self-Assembly of Block Copolymers Using Machine Learning Approaches. ACS APPLIED MATERIALS & INTERFACES 2021; 13:28639-28649. [PMID: 34100583 DOI: 10.1021/acsami.1c05056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Self-assembly of block copolymers (BCPs) is an alternative patterning technique that promises high resolution and density multiplication with lower costs. The defectivity of the resulting nanopatterns remains too high for many applications in microelectronics and is exacerbated by small variations of processing parameters, such as film thickness, and fluctuations of solvent vapor pressure and temperature, among others. In this work, a solvent vapor annealing (SVA) flow-controlled system is combined with design of experiments (DOE) and machine learning (ML) approaches. The SVA flow-controlled system enables precise optimization of the conditions of self-assembly of the high Flory-Huggins interaction parameter (χ) hexagonal dot-array forming BCP, poly(styrene-b-dimethylsiloxane) (PS-b-PDMS). The defects within the resulting patterns at various length scales are then characterized and quantified. The results show that the defectivity of the resulting nanopatterned surfaces is highly dependent upon very small variations of the initial film thicknesses of the BCP, as well as the degree of swelling under the SVA conditions. These parameters also significantly contribute to the quality of the resulting pattern with respect to grain coarsening, as well as the formation of different macroscale phases (single and double layers and wetting layers). The results of qualitative and quantitative defect analyses are then compiled into a single figure of merit (FOM) and are mapped across the experimental parameter space using ML approaches, which enable the identification of the narrow region of optimum conditions for SVA for a given BCP. The result of these analyses is a faster and less resource intensive route toward the production of low-defectivity BCP dot arrays via rational determination of the ideal combination of processing factors. The DOE and machine learning-enabled approach is generalizable to the scale-up of self-assembly-based nanopatterning for applications in electronic microfabrication.
Collapse
Affiliation(s)
- Gayashani Ginige
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Youngdong Song
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
| | - Brian C Olsen
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Erik J Luber
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| | - Cafer T Yavuz
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon 34141, Republic of Korea
- KAUST Catalysis Center (KCC), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
- Advanced Membranes and Porous Materials Center (AMPM), Physical Sciences and Engineering (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia
| | - Jillian M Buriak
- Department of Chemistry, University of Alberta, 11227-Saskatchewan Drive, Edmonton, Alberta T6G 2G2, Canada
| |
Collapse
|
16
|
Mullen E, Morris MA. Green Nanofabrication Opportunities in the Semiconductor Industry: A Life Cycle Perspective. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1085. [PMID: 33922231 PMCID: PMC8146645 DOI: 10.3390/nano11051085] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 12/24/2022]
Abstract
The turn of the 21st century heralded in the semiconductor age alongside the Anthropocene epoch, characterised by the ever-increasing human impact on the environment. The ecological consequences of semiconductor chip manufacturing are the most predominant within the electronics industry. This is due to current reliance upon large amounts of solvents, acids and gases that have numerous toxicological impacts. Management and assessment of hazardous chemicals is complicated by trade secrets and continual rapid change in the electronic manufacturing process. Of the many subprocesses involved in chip manufacturing, lithographic processes are of particular concern. Current developments in bottom-up lithography, such as directed self-assembly (DSA) of block copolymers (BCPs), are being considered as a next-generation technology for semiconductor chip production. These nanofabrication techniques present a novel opportunity for improving the sustainability of lithography by reducing the number of processing steps, energy and chemical waste products involved. At present, to the extent of our knowledge, there is no published life cycle assessment (LCA) evaluating the environmental impact of new bottom-up lithography versus conventional lithographic techniques. Quantification of this impact is central to verifying whether these new nanofabrication routes can replace conventional deposition techniques in industry as a more environmentally friendly option.
Collapse
Affiliation(s)
- Eleanor Mullen
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| | - Michael A. Morris
- CRANN and AMBER Research Centres, School of Chemistry, Trinity College Dublin, D02 W085 Dublin, Ireland
| |
Collapse
|
17
|
Akinoglu EM, Luo L, Dodge T, Guo L, Akinoglu GE, Wang X, Shui L, Zhou G, Naughton MJ, Kempa K, Giersig M. Extraordinary optical transmission in nano-bridged plasmonic arrays mimicking a stable weakly-connected percolation threshold. OPTICS EXPRESS 2020; 28:31425-31435. [PMID: 33115115 DOI: 10.1364/oe.403034] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 08/28/2020] [Indexed: 06/11/2023]
Abstract
Ultrasensitive sensors of various physical properties can be based on percolation systems, e.g., insulating media filled with nearly touching conducting particles. Such a system at its percolation threshold featuring the critical particle concentration, changes drastically its response (electrical conduction, light transmission, etc.) when subjected to an external stimulus. Due to the critical nature of this threshold, a given state at the threshold is typically very unstable. However, stability can be restored without significantly sacrificing the structure sensitivity by forming weak connections between the conducting particles. In this work, we employed nano-bridged nanosphere lithography to produce such a weakly connected percolation system. It consists of two coupled quasi-Babinet complementary arrays, one with weakly connected, and the other with disconnected metallic islands. We demonstrate via experiment and simulation that the physics of this plasmonic system is non-trivial, and leads to the extraordinary optical transmission at narrowly defined peaks sensitive to system parameters, with surface plasmons mediating this process. Thus, our system is a potential candidate for percolation effect based sensor applications. Promising detection schemes could be based on these effects.
Collapse
|