1
|
Zhong Z, Liu X, Li L, Han Z, He Y, Xu X, Hai J, Zhu R, Yu J. An asymmetric A-D-π-A type non-fullerene acceptor enables high-detectivity near-infrared organic photodiodes. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1385-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
2
|
Xu X, Li Y, Peng Q. Ternary Blend Organic Solar Cells: Understanding the Morphology from Recent Progress. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2107476. [PMID: 34796991 DOI: 10.1002/adma.202107476] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/14/2021] [Indexed: 06/13/2023]
Abstract
Ternary blend organic solar cells (TB-OSCs) incorporating multiple donor and/or acceptor materials into the active layer have emerged as a promising strategy to simultaneously improve the overall device parameters for realizing higher performances than binary devices. Whereas introducing multiple materials also results in a more complicated morphology than their binary blend counterparts. Understanding the morphology is crucially important for further improving the device performance of TB-OSC. This review introduces the solubility and miscibility parameters that affect the morphology of ternary blends. Then, this review summarizes the recent processes of morphology study on ternary blends from the aspects of molecular crystallinity, molecular packing orientation, domain size and purity, directly observation of morphology, vertical phase separation as well as morphological stability. Finally, summary and prospects of TB-OSCs are concluded.
Collapse
Affiliation(s)
- Xiaopeng Xu
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Ying Li
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| | - Qiang Peng
- School of Chemical Engineering, Key Laboratory of Green Chemistry and Technology of Ministry of Education and State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, 610065, P. R. China
| |
Collapse
|
3
|
Yu K, Song W, Ge J, Zheng K, Xie L, Chen Z, Qiu Y, Hong L, Liu C, Ge Z. 18.01% Efficiency organic solar cell and 2.53% light utilization efficiency semitransparent organic solar cell enabled by optimizing PM6:Y6 active layer morphology. Sci China Chem 2022. [DOI: 10.1007/s11426-022-1270-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
4
|
Li MY, Pan YQ, Sun GY, Geng Y. Charge Transfer Mechanisms Regulated by the Third Component in Ternary Organic Solar Cells. J Phys Chem Lett 2021; 12:8982-8990. [PMID: 34506716 DOI: 10.1021/acs.jpclett.1c02413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
For ternary organic solar cells (T-OSCs), introducing the third component (D2) can significantly enhance the efficiency of cell while still maintaining easy fabrication. However, it brings difficulty in physical understanding of the fundamental mechanism because of the more complicated photophysical processes in T-OSCs. Accordingly, how the guest donor D2 regulates the charge transfer mechanism was explored in theory using three T-OSCs containing two donors and an acceptor. The results point out that larger differences in molecular weight and/or backbone between D2 and the host donor D1 cause different charge transfer mechanisms, which hardly provide a coexisting charge transfer path. Besides, strong absorption capacity of D2 with a high oscillator strength would produce favorable regulation of the charge transfer mechanism. Therefore, this work clarifies the influence of D2 on the charge transfer mechanism in T-OSCs, which suggests that the method of improving the power conversion efficiency cannot be generalized but rather must be tailored to specific conditions.
Collapse
Affiliation(s)
- Ming-Yang Li
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China
| | - Yi-Qi Pan
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China
| | - Guang-Yan Sun
- Department of Chemistry, Faculty of Science, Yanbian University, Yanji, Jilin 133002, P. R. China
- Faculty of Chemical Engineering and New Energy Materials, Zhuhai College of Science and Technology, Zhuhai, Guangdong 519041, P. R. China
| | - Yun Geng
- Institute of Functional Material Chemistry, Faculty of Chemistry, Northeast Normal University, Changchun, Jilin 130024, P. R. China
| |
Collapse
|
5
|
Wang J, Zhao C, Zhou L, Liang X, Li Y, Sheng G, Du Z, Tang J. An Effective Strategy to Design a Large Bandgap Conjugated Polymer by Tuning the Molecular Backbone Curvature. Macromol Rapid Commun 2021; 42:e2000757. [PMID: 33870582 DOI: 10.1002/marc.202000757] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/25/2021] [Indexed: 11/10/2022]
Abstract
With the significant progress of low bandgap non-fullerene acceptors, the development of wide bandgap (WBG) donors possessing ideal complementary absorption is of crucial importance to further enhance the photovoltaic performance of organic solar cells. An ideal strategy to design WBG donors is to down-shift the highest occupied molecular orbital (HOMO) and up-shift the lowest unoccupied molecular orbital (LUMO). A properly low-lying HOMO of the donor is favorable to obtaining a high open-circuit voltage, and a properly high-lying LUMO of the donor is conductive to efficient exciton dissociation. This work provides a new strategy to enlarge the bandgap of a polymer with simultaneously decreased HOMO and increased LUMO by increasing the polymer backbone curvature. The polymer PIDT-fDTBT with a large molecular backbone curvature shows a decreased HOMO of -5.38 eV and a prominently increased LUMO of -3.35 eV relative to the linear polymer PIDT-DTBT (EHOMO = -5.30 eV, ELUMO = -3.55 eV). The optical bandgap of PIDT-fDTBT is obviously broadened from 1.75 to 2.03 eV. This work demonstrates that increasing the polymer backbone curvature can effectively broaden the bandgap by simultaneously decreasing HOMO and increasing LUMO, which may guide the design of WBG conjugated materials.
Collapse
Affiliation(s)
- Jiuxing Wang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Congcong Zhao
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China.,CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Long Zhou
- Key Laboratory of Marine Chemistry Theory and Technology, Ministry of Education, College of Chemistry and Chemical Engineering, Ocean University of China, Qingdao, 266100, China
| | - Xin Liang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Yonghai Li
- CAS Key Laboratory of Bio-based Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
| | - Guanyu Sheng
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Zhonglin Du
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| | - Jianguo Tang
- Institute of Hybrid Materials, National Center of International Joint Research for Hybrid Materials Technology, College of Materials Science and Engineering, Qingdao University, Qingdao, 266071, China
| |
Collapse
|
6
|
Feng C, Wang X, Chen G, Zhang B, He Z, Cao Y. Mechanism of the Alcohol-Soluble Ionic Organic Interlayer in Organic Solar Cells. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2021; 37:4347-4354. [PMID: 33797928 DOI: 10.1021/acs.langmuir.1c00413] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
In this article combining density functional theory (DFT) calculations and corresponding experimental measurements, the adsorption behaviors and working mechanism of the alcohol-soluble ionic organic interlayer on different electrode substrates were studied. The results suggest that, when the ionic organic bipyridine salt interlayer (FPyBr) is adsorbed on the Ag surface, Br- will break away from molecule chains and form new chemical bonds with the Ag substrate, as confirmed by both the X-ray photoelectron spectroscopy (XPS) study and DFT study for the first time. Charges are further found to transfer to the Ag substrate from the new interlayer molecular structure without Br-, resulting in adsorption dipoles directed from Ag to the interlayer. Moreover, the direction of the intrinsic dipole of the molecule itself on the Ag substrate is also verified, which is the same as that of the adsorption dipole. Subsequently, the superposition of the two dipoles results in a large reduction of the Ag substrate work function. In addition, the dipole formation mechanism of the interlayer on the ITO surface was also studied. The change in the work function of the ITO substrate by this interlayer is found to be smaller than that of Ag as confirmed by both a DFT study and scanning Kelvin probe microscopy (SKPM) results, which is mainly due to the reversed direction of the molecular intrinsic dipole with respect to the interfacial dipole. The worst device performance of organic solar cells based on the ITO-FPyBr substrate is considered to be one of the consequences of the feature. The findings here are of great importance for the study of the mechanism of the ionic organic interlayer in organic electronic devices, providing insightful understandings on how to further improve the material and device performance.
Collapse
Affiliation(s)
- Chuang Feng
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Xiaojing Wang
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Guiting Chen
- School of Chemistry and Environment, Jiaying University, Meizhou 514015, P. R. China
| | - Bin Zhang
- Jiangsu Engineering Laboratory of Light-Electricity-Heat Energy-Converting Materials and Applications, School of Materials Science and Engineering, Changzhou University, Changzhou 213164, P. R. China
| | - Zhicai He
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| | - Yong Cao
- State Key Laboratory of Luminescent Materials and Devices, Institute of Polymer Optoelectronic Materials and Devices, South China University of Technology, Guangzhou 510640, P. R. China
| |
Collapse
|
7
|
Ma S, Wu S, Zhang J, Song Y, Tang H, Zhang K, Huang F, Cao Y. Heptacyclic S,N-Heteroacene-Based Near-Infrared Nonfullerene Acceptor Enables High-Performance Organic Solar Cells with Small Highest Occupied Molecular Orbital Offsets. ACS APPLIED MATERIALS & INTERFACES 2020; 12:51776-51784. [PMID: 33156597 DOI: 10.1021/acsami.0c19033] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The reduction of energy offsets between donors and acceptors is a direct way to improve the open-circuit voltage (VOC) and overall performance of organic solar cells (OSCs). In this work, two nonfullerene acceptors (NFAs) (BDTBO-4F and BDTBO-4Cl) were synthesized, which were composed of a heptacyclic S,N-heteroacene core and terminal units with halogen atoms, where the latter modulates the energy level of the frontier molecular orbital. Consequently, BDTBO-4Cl exhibited a deeper highest occupied molecular orbital level (EHOMO) and lowest unoccupied molecular orbital level (ELUMO) than BDTBO-4F. Moreover, these two NFAs exhibited high electron mobility and strong absorption at 700-900 nm. The polymer donor PM6 was combined with BDTBO-4F and BDTBO-4Cl, and the resulting OSCs exhibited outstanding power conversion efficiencies of 14.83% for the PM6:BDTBO-4F device and 13.87% for the PM6:BDTBO-4Cl device. More encouragingly, these OSCs exhibited efficient hole transfer from NFAs to PM6, despite small ΔEHOMO(D-A) values (<0.10 eV). These results prove that modulation of EHOMO of acceptors to decrease ΔEHOMO(D-A) is an efficient strategy for high-performance OSCs.
Collapse
Affiliation(s)
- Shanshan Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Shihao Wu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Jie Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yu Song
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Haoran Tang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Kai Zhang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Fei Huang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, People's Republic of China
| |
Collapse
|