1
|
Wu Z, Lu D, Sun S, Cai M, Lin L, Zhu M. Material Design, Fabrication Strategies, and the Development of Multifunctional Hydrogel Composites Dressings for Skin Wound Management. Biomacromolecules 2025; 26:1419-1460. [PMID: 39960380 DOI: 10.1021/acs.biomac.4c01715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2025]
Abstract
The skin is fragile, making it very vulnerable to damage and injury. Untreated skin wounds can pose a serious threat to human health. Three-dimensional polymer network hydrogels have broad application prospects in skin wound dressings due to their unique properties and structure. The therapeutic effect of traditional hydrogels is limited, while multifunctional composite hydrogels show greater potential. Multifunctional hydrogels can regulate wound moisture through formula adjustment. Moreover, hydrogels can be combined with bioactive ingredients to improve their performance in wound healing applications. Stimulus-responsive hydrogels can respond specifically to the wound environment and meet the needs of different wound healing stages. This review summarizes the material types, structure, properties, design considerations, and formulation strategies for multifunctional hydrogel composite dressings used in wound healing. We discuss various types of recently developed hydrogel dressings, highlights the importance of tailoring their physicochemical properties, and addresses potential challenges in preparing multifunctional hydrogel wound dressings.
Collapse
Affiliation(s)
- Ziteng Wu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Dongdong Lu
- Dongguan Key Laboratory of Interdisciplinary Science for Advanced Materials and Large-Scale Scientific Facilities, School of Physical Sciences, Great Bay University, Dongguan, Guangdong 523000, PR China
| | - Shuo Sun
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Manqi Cai
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Lin Lin
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| | - Mingning Zhu
- School of Biomedical Engineering, Guangdong Medical University, Dongguan 523808, PR China
- Key Laboratory of Medical Electronics and Medical Imaging Equipment, Dongguan 523808, PR China
- Songshan Lake Innovation Center of Medicine & Engineering, Guangdong Medical University, Dongguan 523808, PR China
| |
Collapse
|
2
|
Guo C, Jiao X, Du X, Zhang T, Peng B, Xu B. Application of Self-Healing Hydrogels in the Treatment of Intervertebral Disc Degeneration. J Biomed Mater Res B Appl Biomater 2025; 113:e35532. [PMID: 39842850 DOI: 10.1002/jbm.b.35532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 11/25/2024] [Accepted: 12/26/2024] [Indexed: 01/24/2025]
Abstract
Intervertebral disc degeneration (IDD) is one of the leading causes of chronic pain and disability, and traditional treatment methods often struggle to restore its complex biomechanical properties. This article explores the innovative application of self-healing hydrogels in the treatment of IDD, offering new hope for disc repair due to their exceptional self-repair capabilities and adaptability. As a key support structure in the human body, intervertebral discs are often damaged by trauma or degenerative changes. Self-healing hydrogels not only mimic the mechanical properties of natural intervertebral discs but also self-repair when damaged, thereby maintaining stable functionality. This article reviews the self-healing mechanisms and design strategies of self-healing hydrogels and, for the first time, outlines their potential in the treatment of IDD. Furthermore, the article looks forward to future developments in the field, including intelligent material design, multifunctional integration, encapsulation and release of bioactive molecules, and innovative combinations with tissue engineering and stem cell therapy, offering new perspectives and strategies for IDD treatment.
Collapse
Affiliation(s)
- Cunliang Guo
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xinyi Jiao
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaoxun Du
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | | - Bing Peng
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | | |
Collapse
|
3
|
Wu Z, Dong J, Guo H, Shang R, Qin X, Xia Y, Li X, Zhao X, Ji C, Zhang Q. Robust, Self-Healing, and Multi-Use Poly(Urethane-Urea-Imide) Elastomer as a Durable Adhesive for Thermal Interface Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401815. [PMID: 38573922 DOI: 10.1002/smll.202401815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/20/2024] [Indexed: 04/06/2024]
Abstract
Currently, research on thermal interface materials (TIMs) is primarily focused on enhancing thermal conductivity. However, strong adhesion and multifunctionality are also important characteristics for TIMs when pursing more stable interface heat conduction. Herein, a novel poly(urethane-urea-imide) (PUUI) elastomer containing abundant dynamic hydrogen bonds network and reversible disulfide linkages is successfully synthesized for application as a TIM matrix. The PUUI can self-adapt to the metal substrate surface at moderate temperatures (80 °C) and demonstrates a high adhesion strength of up to 7.39 MPa on aluminum substrates attributed its noncovalent interactions and strong intrinsic cohesion. Additionally, the PUUI displays efficient self-healing capability, which can restore 94% of its original mechanical properties after self-healing for 6 h at room temperature. Furthermore, PUUI composited with aluminum nitride and liquid metal hybrid fillers demonstrates a high thermal conductivity of 3.87 W m-1 K-1 while maintaining remarkable self-healing capability and adhesion. When used as an adhesive-type TIM, it achieves a low thermal contact resistance of 22.1 mm2 K W-1 at zero pressure, only 16.7% of that of commercial thermal pads. This study is expected to break the current research paradigm of TIMs and offers new insights for the development of advanced, reliable, and sustainable TIMs.
Collapse
Affiliation(s)
- Zhiqiang Wu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Jie Dong
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Han Guo
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Rui Shang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiuzhi Qin
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanfei Xia
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiuting Li
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xin Zhao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Chengchang Ji
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Qinghua Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
4
|
Wang J, Wu M, Huang J, Wang Y, Miao X, Chen Y, Bian D, Zhao Y. In Situ Polymerized Self-Healing Microcapsules as Multifunctional Fillers toward Phosphate Ceramic Coatings. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26768-26786. [PMID: 38727026 DOI: 10.1021/acsami.4c04115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
The protective efficacy of chemically bonded phosphate ceramic coatings (CBPC) is notably diminished owing to the presence of micropores and inadequate self-healing capacity in prolonged corrosive environments. Consequently, it is imperative to augment the corrosion and wear resistance of phosphate ceramic coatings while imbuing them with self-healing capabilities. In this work, a novel self-healing phosphate ceramic coating (MC-PTx@CBPC, x = 0.5, 1.0, 1.5) is designed by urea-formaldehyde (UF) in situ polymerization of nanoscale microcapsules encapsulated with 1H,1H,2H,2H-perfluorodecyltriethoxysilane (PFDTES) and evaluated in detail for corrosion and wear resistance. The corrosion inhibition efficiencies of all formulated MC-PTx@CBPC (x = 0.5, 1.0, 1.5) coatings exceed 90%, with the impedance modulus at the lowest frequency (|Z|f=0.01) showing enhancements of 1-2 orders of magnitude compared to pure CBPC. Moreover, the self-healing function becomes active during prolonged immersion. This can be primarily ascribed to the formation of a unique micronanostructure facilitated by nanoscale microcapsules and micrometer-sized alumina ceramics, bonded via the AlPO4 phase. This structure enhances both the hydrophobicity and the bonding strength of the coating. Specifically, following prolonged immersion, the encapsulated PFDTES is liberated from the microcapsules, undergoing hydrolysis and subsequent polymerization upon contact with the electrolyte to form a protective thin film. This film efficiently obstructs the ingress of corrosive agents. Furthermore, the special micronanostructure enhances the hardness of the coating and the releasing PFDTES can form a lubricating film at the interface of abrasion, thus reducing the wear rate and friction coefficient of the MC-PTx@CBPC (x = 0.5, 1.0, 1.5). Therefore, MC-PTx@CBPC (x = 0.5, 1.0, 1.5) possesses excellent corrosion protection, tribological properties, and self-healing capabilities, which provide thought-provoking ideas for phosphate ceramic coatings to protect metals in harsh environments.
Collapse
Affiliation(s)
- Jianyu Wang
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Meiping Wu
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Jiaqi Huang
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiyao Wang
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Xiaojin Miao
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yiwen Chen
- Dongfang Electric Corporation Dongfang Turbine Co., Ltd., Deyang 618000, China
- State Key Laboratory of Clean and Efficient Turbomachinery Power Equipment, Deyang 618000, China
| | - Da Bian
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| | - Yongwu Zhao
- School of Mechanical Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
- Jiangsu Key Laboratory of Advanced Food Manufacturing Equipment and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China
| |
Collapse
|
5
|
Zhuo S, Liang Y, Wu Z, Zhao X, Han Y, Guo B. Supramolecular hydrogels for wound repair and hemostasis. MATERIALS HORIZONS 2024; 11:37-101. [PMID: 38018225 DOI: 10.1039/d3mh01403g] [Citation(s) in RCA: 15] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
The unique network characteristics and stimuli responsiveness of supramolecular hydrogels have rendered them highly advantageous in the field of wound dressings, showcasing unprecedented potential. However, there are few reports on a comprehensive review of supramolecular hydrogel dressings for wound repair and hemostasis. This review first introduces the major cross-linking methods for supramolecular hydrogels, which includes hydrogen bonding, electrostatic interactions, hydrophobic interactions, host-guest interactions, metal ligand coordination and some other interactions. Then, we review the advanced materials reported in recent years and then summarize the basic principles of each cross-linking method. Next, we classify the network structures of supramolecular hydrogels before outlining their forming process and propose their potential future directions. Furthermore, we also discuss the raw materials, structural design principles, and material characteristics used to achieve the advanced functions of supramolecular hydrogels, such as antibacterial function, tissue adhesion, substance delivery, anti-inflammatory and antioxidant functions, cell behavior regulation, angiogenesis promotion, hemostasis and other innovative functions in recent years. Finally, the existing problems as well as future development directions of the cross-linking strategy, network design, and functions in wound repair and hemostasis of supramolecular hydrogels are discussed. This review is proposed to stimulate further exploration of supramolecular hydrogels on wound repair and hemostasis by researchers in the future.
Collapse
Affiliation(s)
- Shaowen Zhuo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yongping Liang
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Zhengying Wu
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Xin Zhao
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
| | - Yong Han
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Baolin Guo
- State Key Laboratory for Mechanical Behavior of Materials, and Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, China.
- Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
6
|
Gu R, Zhou H, Zhang Z, Lv Y, Pan Y, Li Q, Shi C, Wang Y, Wei L. Research progress related to thermosensitive hydrogel dressings in wound healing: a review. NANOSCALE ADVANCES 2023; 5:6017-6037. [PMID: 37941954 PMCID: PMC10629053 DOI: 10.1039/d3na00407d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/27/2023] [Indexed: 11/10/2023]
Abstract
Wound healing is a dynamic and complex process in which the microenvironment at the wound site plays an important role. As a common material for wound healing, dressings accelerate wound healing and prevent external wound infections. Hydrogels have become a hot topic in wound-dressing research because of their high water content, good biocompatibility, and adjustable physical and chemical properties. Intelligent hydrogel dressings have attracted considerable attention because of their excellent environmental responsiveness. As smart polymer hydrogels, thermosensitive hydrogels can respond to small temperature changes in the environment, and their special properties make them superior to other hydrogels. This review mainly focuses on the research progress in thermosensitive intelligent hydrogel dressings for wound healing. Polymers suitable for hydrogel formation and the appropriate molecular design of the hydrogel network to achieve thermosensitive hydrogel properties are discussed, followed by the application of thermosensitive hydrogels as wound dressings. We also discuss the future perspectives of thermosensitive hydrogels as wound dressings and provide systematic theoretical support for wound healing.
Collapse
Affiliation(s)
- Ruting Gu
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Haiqing Zhou
- Department of Thoracic Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Zirui Zhang
- Emergency Departments, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yun Lv
- School of Nursing, Qingdao University Qingdao 266000 China
| | - Yueshuai Pan
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Qianqian Li
- Ophthalmology Department, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Changfang Shi
- Department of Spinal Surgery, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Yanhui Wang
- Department of Oral Implantology, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| | - Lili Wei
- Office of the Dean, The Affiliated Hospital of Qingdao University Qingdao 266000 China
| |
Collapse
|
7
|
Lan MH, Guan X, Zhu DY, Chen ZP, Liu T, Tang Z. Highly Elastic, Self-Healing, Recyclable Interlocking Double-Network Liquid-Free Ionic Conductive Elastomers via Facile Fabrication for Wearable Strain Sensors. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19447-19458. [PMID: 37037788 DOI: 10.1021/acsami.3c01585] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Liquid-free ionic conductive elastomers (ICEs) are ideal materials for wearable strain sensors in increasingly flexible electronic devices. However, developing recyclable ICEs with high elasticity, self-healability, and recyclability is still a great challenge. In this study, we fabricated a series of novel ICEs by in situ polymerization of lipoic acid (LA) in poly(acrylic acid) (PAA) solution and cross-linking by coordination bonding and hydrogen bonding. One of the obtained dynamically cross-linked interlocking double-network ICEs, PLA-PAA4-1% ICE, showed excellent mechanical properties, with high elasticity (90%) and stretchability (610%), as well as rapid self-healability (mechanical self-healing within 2 h and electrical recovery within 0.3 s). The PLA-PAA4-1% ICE was used as a strain sensor and possessed excellent linear sensitivity and highly cyclic stability, effectively monitoring diverse human motions with both stretched and compressed deformations. Notably, the PLA-PAA4-1% ICE can be fully recycled and reused as a new strain sensor without any structure change or degradation in performance. This work provided a viable path to fabricate conductive materials by solving the two contradictions of high mechanical property and self-healability, and structure stability and recyclability. We believe that the superior overall performance and feasible fabrication make the developed PLA-PAA4-1% ICE hold great promise as a multifunctional strain sensor for practical applications in flexible wearable electronic devices and humanoid robotics.
Collapse
Affiliation(s)
- Ming Hui Lan
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Xiaoxiao Guan
- China Electronic Product Reliability and Environmental Testing Research Institute, Guangzhou, Guangdong 510507, P. R. China
| | - Dong Yu Zhu
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Laboratory of Chemistry and Fine Chemical Engineering Jieyang Center, Jieyang 515200, P. R. China
- Guangdong Provincial Key Laboratory of Plant Resources Biorefinery, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhi Peng Chen
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Tingsu Liu
- School of Physics and Optoeletronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| | - Zhenhua Tang
- School of Physics and Optoeletronic Engineering, Guangdong University of Technology, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
8
|
Patel DK, Patil TV, Ganguly K, Dutta SD, Luthfikasari R, Lim KT. Polymer Nanohybrid-Based Smart Platforms for Controlled Delivery and Wound Management. NANOROBOTICS AND NANODIAGNOSTICS IN INTEGRATIVE BIOLOGY AND BIOMEDICINE 2023:171-199. [DOI: 10.1007/978-3-031-16084-4_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
9
|
Anti-wetting surfaces with self-healing property: fabrication strategy and application. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.10.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
10
|
Wang S, Ong PJ, Liu S, Thitsartarn W, Tan MJBH, Suwardi A, Zhu Q, Loh XJ. Recent advances in host-guest supramolecular hydrogels for biomedical applications. Chem Asian J 2022; 17:e202200608. [PMID: 35866560 DOI: 10.1002/asia.202200608] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/18/2022] [Indexed: 11/09/2022]
Abstract
The recognition-directed host-guest interaction is recognized as a valuable tool for creating supramolecular polymers. Functional hydrogels constructed through the dynamic and reversible host-guest complexation are endowed with a great many appealing features, such as superior self-healing, injectability, flexibility, stimuli-responsiveness and biocompatibility, which are crucial for biological and medicinal applications. With numerous topological structures and host-guest combinations established previously, recent breakthroughs in this area mostly focus on further improvement and fine-tuning of various properties for practical utilizations. The current contribution provides a comprehensive overview of the latest developments in host-guest supramolecular hydrogels, with a particular emphasis on the innovative molecular-level design strategies and hydrogel formation methodologies targeting at a wide range of active biomedical domains, including drug delivery, 3D printing, wound healing, tissue engineering, artificial actuators, biosensors, etc. Furthermore, a brief conclusion and discussion on the steps forward to bring these smart hydrogels to clinical practice is also presented.
Collapse
Affiliation(s)
- Suxi Wang
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Pin Jin Ong
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Songlin Liu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Warintorn Thitsartarn
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | | | - Ady Suwardi
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| | - Qiang Zhu
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, 2 Fusionopolis Way, 138634, Singapore, SINGAPORE
| | - Xian Jun Loh
- Institute of Materials Research and Engineering, Institute of Materials Research and Engineering, SINGAPORE
| |
Collapse
|
11
|
Li Y, Zhou X, Sarkar B, Gagnon-Lafrenais N, Cicoira F. Recent Progress on Self-Healable Conducting Polymers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2108932. [PMID: 35043469 DOI: 10.1002/adma.202108932] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 01/07/2022] [Indexed: 06/14/2023]
Abstract
Materials able to regenerate after damage have been the object of investigation since the ancient times. For instance, self-healing concretes, able to resist earthquakes, aging, weather, and seawater have been known since the times of ancient Rome and are still the object of research. During the last decade, there has been an increasing interest in self-healing electronic materials, for applications in electronic skin (E-skin) for health monitoring, wearable and stretchable sensors, actuators, transistors, energy harvesting, and storage devices. Self-healing materials based on conducting polymers are particularly attractive due to their tunable high conductivity, good stability, intrinsic flexibility, excellent processability and biocompatibility. Here recent developments are reviewed in the field of self-healing electronic materials based on conducting polymers, such as poly 3,4-ethylenedioxythiophene (PEDOT), polypyrrole (PPy), and polyaniline (PANI). The different types of healing, the strategies adopted to optimize electrical and mechanical properties, and the various possible healing mechanisms are introduced. Finally, the main challenges and perspectives in the field are discussed.
Collapse
Affiliation(s)
- Yang Li
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Xin Zhou
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Biporjoy Sarkar
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Noémy Gagnon-Lafrenais
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| | - Fabio Cicoira
- Department of Chemical Engineering, Polytechnique Montreal, Montreal, Quebec, H3C 3A7, Canada
| |
Collapse
|
12
|
Zhu DY, Chen ZP, Hong ZP, Zhang L, Liang X, Li Y, Duan X, Luo H, Peng J, Guo J. Injectable thermo-sensitive and wide-crack self-healing hydrogel loaded with antibacterial anti-inflammatory dipotassium glycyrrhizate for full-thickness skin wound repair. Acta Biomater 2022; 143:203-215. [PMID: 35245682 DOI: 10.1016/j.actbio.2022.02.041] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 02/16/2022] [Accepted: 02/25/2022] [Indexed: 02/07/2023]
Abstract
Severe skin injuries are hard to repair and susceptible to bacterial infection. Development of a versatile antimicrobial anti-inflammatory hydrogel dressing that eliminates concern over antibiotic resistance is urgently needed but remains an elusive goal. Our research, described herein, the design and fabrication of a new family of supramolecular hydrogels based on hydroxypropyl chitosan (HPCS) and poly(N-isopropylacrylamide) (PNIPAM) may prove to be that goal. Employing the reversible cross-linking by β-cyclodextrin (β-CD) and adamantyl (AD) pre-assembly, the hydrogels can be formed in a facile one-pot method. Additionally, the structure and performance of the hydrogels can be controlled by a simple adjustment of the AD content. The obtained hydrogels exhibit an abundance of desired properties; they are injectable, thermosensitive, highly ductile, self-healable (will self-heal recurring damage to the hydrogel bandage of up to several millimeters wide), biocompatible, and have antimicrobial activity against Staphylococcus aureus when infused with dipotassium glycyrrhizinate (DG). Using a mouse full-thickness skin defect model, in vivo wound healing evaluations revealed that the DG-loaded hydrogels (HP-3/DG10) applied to the wound resulted in rapid wound closure. The hydrogels promoted efficient tissue remolding, collagen deposition, decreased inflammation and performed better than the control groups of commercial TegadermTM film and 3M dressing. Given their multifunctionality and in vivo efficacy, the DG-loaded HP hydrogels hold great potential as a wound dressing for full-thickness skin repair. STATEMENT OF SIGNIFICANCE: Injectable hydrogels are receiving increasing attention as an ideal wound dressing. To the best of our knowledge, however, injectable and wide-crack self-healing hydrogel dressings have been hardly studied. A versatile antimicrobial hydrogel without drug resistance or cytotoxicity is also highly required. Therefore, in the present study, we constructed injectable thermosensitive and wide-crack self-healing hydrogels with antibacterial and anti-inflammatory properties. These hydrogels were developed through novel strategies of the wide-crack self-healing design and the loading of the bioactive antibacterial and anti-inflammatory agent dipotassium glycyrrhizinate. The simple preparation method and multifunctionality of the studied hydrogel composites may provide important insights for the development of future biomaterials for wound dressings and other biomedical applications.
Collapse
|
13
|
Zhao P, Xia J, Liu J, Tan Y, Ji S, Xu H. Laser-Induced Remote Healing of Stretchable Diselenide-Containing Conductive Composites. ACS APPLIED MATERIALS & INTERFACES 2021; 13:50422-50429. [PMID: 34649428 DOI: 10.1021/acsami.1c15855] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Remotely controlled on-demand functional healing is vital to components that are difficult to access and repair in distance such as satellites and unmanned cruising aircrafts. Compared with other stimuli, a blue laser is a better choice to input energy to the damaged area in distance because of its high energy density and low dissipation through the air. Herein, diselenide-containing polyurethane (PUSe) is first employed to fabricate visible light-responsive stretchable conductive composites with multiwalled carbon nanotubes (MWCNTs). Then, laser-induced remote healing was realized based on the characteristics of long-distance propagation of lasers and the dynamic properties of diselenide bonds. Moreover, the PUSe/MWCNT composite film can be used to transfer an electrical signal in the circuit containing a signal generator. This laser-induced remote healing of conductivity paves the way for developing healing conductors which are difficult to access and repair.
Collapse
Affiliation(s)
- Peng Zhao
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jiahao Xia
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Jianbing Liu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Yizheng Tan
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| | - Shaobo Ji
- Innovative Centre for Flexible Devices (iFLEX), School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Huaping Xu
- Key Lab of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China
| |
Collapse
|
14
|
Lv H, Wu B, Song J, Wu W, Cai W, Xu J. Hydrogel, a novel therapeutic and delivery strategy, in the treatment of intrauterine adhesions. J Mater Chem B 2021; 9:6536-6552. [PMID: 34324619 DOI: 10.1039/d1tb01005k] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Intrauterine adhesions (IUAs) are caused by damage to the underlying lining of the endometrium. They' re related to disorder of endometrial repair. In recent years, hydrogels with controllable biological activity have been widely used for treating IUAs. They encapsulate estrogen, cytokines, cells, or exosomes, forming a delivery system to release therapeutic components for the treatment of IUAs. In addition, the hydrogel acting as a barrier can be degraded in the body automatically, reducing the risk of infection caused by secondary surgeries. In this review, we summarize the recent progress of hydrogels and their application in IUAs as both a novel alternative therapeutic and an artificial delivery strategy.
Collapse
Affiliation(s)
- Houyi Lv
- Department of Reproductive Medicine, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People's Republic of China
| | | | | | | | | | | |
Collapse
|
15
|
Yang DQ, Chen JH, Cao QT, Duan B, Chen HJ, Yu XC, Xiao YF. Operando monitoring transition dynamics of responsive polymer using optofluidic microcavities. LIGHT, SCIENCE & APPLICATIONS 2021; 10:128. [PMID: 34135305 PMCID: PMC8209048 DOI: 10.1038/s41377-021-00570-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 05/26/2023]
Abstract
Optical microcavities have become an attractive platform for precision measurement with merits of ultrahigh sensitivity, miniature footprint and fast response. Despite the achievements of ultrasensitive detection, optical microcavities still face significant challenges in the measurement of biochemical and physical processes with complex dynamics, especially when multiple effects are present. Here we demonstrate operando monitoring of the transition dynamics of a phase-change material via a self-referencing optofluidic microcavity. We use a pair of cavity modes to precisely decouple the refractive index and temperature information of the analyte during the phase-transition process. Through real-time measurements, we reveal the detailed hysteresis behaviors of refractive index during the irreversible phase transitions between hydrophilic and hydrophobic states. We further extract the phase-transition threshold by analyzing the steady-state refractive index change at various power levels. Our technology could be further extended to other materials and provide great opportunities for exploring on-demand dynamic biochemical processes.
Collapse
Affiliation(s)
- Da-Quan Yang
- School of Information and Communication Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Jin-Hui Chen
- Institute of Electromagnetics and Acoustics, Xiamen University, Xiamen, 361005, China
| | - Qi-Tao Cao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Bing Duan
- School of Information and Communication Engineering, State Key Laboratory of Information Photonics and Optical Communications, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Hao-Jing Chen
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China
| | - Xiao-Chong Yu
- Department of Physics and Applied Optics Beijing Area Major Laboratory, Beijing Normal University, Beijing, 100875, China
| | - Yun-Feng Xiao
- State Key Laboratory for Mesoscopic Physics and Frontiers Science Center for Nano-optoelectronics, School of Physics, Peking University, Beijing, 100871, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, 030006, China.
- Peking University Yangtze Delta Institute of Optoelectronics, Nantong, 226010, China.
| |
Collapse
|
16
|
Xiong J, Gong Z, Ding J, Chen Y. A conductive rubber with self‐healing ability enabled by metal‐ligand coordination. POLYM ADVAN TECHNOL 2021. [DOI: 10.1002/pat.5283] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Jianxiang Xiong
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| | - Zhou Gong
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| | - Jianping Ding
- College of Material Science and Engineering South China University of Technology Guangzhou China
| | - Yukun Chen
- Lab of Advanced Elastomer South China University of Technology Guangzhou China
| |
Collapse
|
17
|
Reversible Mechanochemistry Enabled Autonomous Sustaining of Robustness of Polymers—An Example of Next Generation Self-healing Strategy. CHINESE JOURNAL OF POLYMER SCIENCE 2020. [DOI: 10.1007/s10118-021-2532-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
18
|
Hydrogel Properties and Their Impact on Regenerative Medicine and Tissue Engineering. Molecules 2020; 25:molecules25245795. [PMID: 33302592 PMCID: PMC7764781 DOI: 10.3390/molecules25245795] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2020] [Revised: 12/04/2020] [Accepted: 12/07/2020] [Indexed: 12/21/2022] Open
Abstract
Hydrogels (HGs), as three-dimensional structures, are widely used in modern medicine, including regenerative medicine. The use of HGs in wound treatment and tissue engineering is a rapidly developing sector of medicine. The unique properties of HGs allow researchers to easily modify them to maximize their potential. Herein, we describe the physicochemical properties of HGs, which determine their subsequent applications in regenerative medicine and tissue engineering. Examples of chemical modifications of HGs and their applications are described based on the latest scientific reports.
Collapse
|
19
|
Jiang Y, Yan R, Pang B, Mi J, Zhang Y, Liu H, Xin J, Zhang Y, Li N, Zhao Y, Lin Q. A Novel Temperature-Dependent Hydrogel Emulsion with Sol/Gel Reversible Phase Transition Behavior Based on Polystyrene-co-poly(N-isopropylacrylamide)/Poly(N-isopropylacrylamide) Core-Shell Nanoparticle. Macromol Rapid Commun 2020; 42:e2000507. [PMID: 33210416 DOI: 10.1002/marc.202000507] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 10/19/2020] [Indexed: 12/28/2022]
Abstract
As a kind of temperature-responsive hydrogel, polystyrene-co-poly(N-isopropylacrylamide)/poly(N-isopropylacrylamide) (PS-co-PNIPAM/PNIPAM) core-shell nanoparticles prepared by two-step copolymerization are widely studied and used because of their specific structures and properties. Unlike most reports about the steady stability of PS-co-PNIPAM/PNIPAM core-shell nanoparticle hydrogel emulsion, in this work, the PS-co-PNIPAM/PNIPAM core-shell nanoparticle hydrogel emulsion (symbolized as PS/PNIPAM hydrogel emulsion), which is prepared after the second step of synthesis and without washing out a large number of PNIPAM polymer segments, shows a reversible temperature-dependent sol-gel transition characteristic during the temperature range of 34-80 °C. The PS/PNIPAM hydrogel emulsion is a normal solution at room temperature, and it changes from a sol to a gel statue when the temperature approaches up to low critical solution temperature (LCST). As the temperature continues to increase, the gel (core-shell nanoparticles as the crosslinkers and the linear PNIPAM chain as the 3D gel network) of the PS/PNIPAM hydrogel emulsion gradually shrinks and drains linearly. Compared with most crosslinked hydrogels, the hydrogel here can be arbitrarily changed in shape according to use needs, which is convenient for use, transportation, and storage. Here a new route is provided for the preparation of a PS/PNIPAM core-shell hydrogel nanoparticle system, as well as a new supramolecular crosslinking sol-gel system for application in biomedical materials, sensors, biological separation, drug release, macromolecular adsorption, and purification.
Collapse
Affiliation(s)
- Yingnan Jiang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Ruyue Yan
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Bo Pang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jiqiang Mi
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Yang Zhang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Hou Liu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Jingwei Xin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Ying Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| | - Na Li
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Quan Lin
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, China
| |
Collapse
|
20
|
Xie T, Vogt BD. A Virtual Special Issue on Self-Healing Materials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49277-49280. [PMID: 33143431 DOI: 10.1021/acsami.0c18104] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
|
21
|
Li X, Lu J, Feng L, Zhang L, Gong J. Smart pH-Regulated Switchable Nanoprobes for Photoelectrochemical Multiplex Detection of Antibiotic Resistance Genes. Anal Chem 2020; 92:11476-11483. [DOI: 10.1021/acs.analchem.0c02839] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xin Li
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Junmiao Lu
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhen Feng
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Lizhi Zhang
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| | - Jingming Gong
- Key Laboratory of Pesticide & Chemical Biology of Ministry of Education, International Joint Research Center for Intelligent Biosensing Technology and Health, College of Chemistry, Central China Normal University, Wuhan 430079, P. R. China
| |
Collapse
|