1
|
Zhao R, Meng F, Wu Q, Zhong Z, Liu Y, Yang R, Li A, Liu H, Lu Y, Zhang Z, Li Q, Zhao H, Li J, Han L, Zuo K. Ultra-antiwetting Membrane for Hypersaline Water Crystallization in Membrane Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:14929-14939. [PMID: 39126388 DOI: 10.1021/acs.est.4c05283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/12/2024]
Abstract
Membrane distillation (MD) has great potential in the management of hypersaline water for zero liquid discharge (ZLD) due to its high salinity tolerance. However, the membrane wetting issue significantly restricts its practical application. In this study, a composite membrane tailored for extreme concentrations and even crystallization of hypersaline water is synthesized by coating a commercial hydrophobic porous membrane with a composite film containing a dense polyamide layer, a cation exchange layer (CEL), and an anion exchange layer (AEL). When used in direct contact MD for treating a 100 g L-1 NaCl hypersaline solution, the membrane achieves supersaturation of feed solution and a salt crystal yield of 38.0%, with the permeate concentration at <5 mg L-1. The composite membrane also demonstrates ultrahigh antiwetting stability in 360 h of long-term operation. Moreover, ion diffusion analysis reveals that the ultrahigh wetting resistance of the composite membrane is attributed to the bipolar AEL and CEL that eliminate ion crossover. The literature review elucidates that the composite membrane is superior to state-of-the-art membranes. This study demonstrates the great potential of the composite membrane for direct crystallization of hypersaline water, offering a promising approach to filling the gap between reverse osmosis and conventional thermal desalination processes for ZLD application.
Collapse
Affiliation(s)
- Ruixue Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fanxu Meng
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qinghao Wu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zihan Zhong
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yuanfeng Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Ruotong Yang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Pollution Prevention Biotechnology Laboratory of Hebei Province, College of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Ao Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- College of Life and Environmental Sciences, Minzu University of China, Beijing 100081, China
| | - Huan Liu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Yanyu Lu
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Zishuai Zhang
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Qilin Li
- Department of Civil and Environmental Engineering, Rice University, MS 319, 6100 Main Street, Houston, Texas 77005, United States
- NSF Nanosystems Engineering Research Center for Nanotechnology-Enabled Water Treatment, Rice University, MS 6398, 6100 Main Street, Houston, Texas 77005, United States
| | - Huazhang Zhao
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| | - Jianfeng Li
- Shanxi Laboratory for Yellow River, Institute of Resources and Environmental Engineering, Shanxi University, Taiyuan 030006, China
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Kuichang Zuo
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, College of Environment Sciences and Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
2
|
Regmi C, Kshetri YK, Wickramasinghe SR. Carbon-Based Nanocomposite Membranes for Membrane Distillation: Progress, Problems and Future Prospects. MEMBRANES 2024; 14:160. [PMID: 39057668 PMCID: PMC11278710 DOI: 10.3390/membranes14070160] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024]
Abstract
The development of an ideal membrane for membrane distillation (MD) is of the utmost importance. Enhancing the efficiency of MD by adding nanoparticles to or onto a membrane's surface has drawn considerable attention from the scientific community. It is crucial to thoroughly examine state-of-the-art nanomaterials-enabled MD membranes with desirable properties, as they greatly enhance the efficiency and reliability of the MD process. This, in turn, opens up opportunities for achieving a sustainable water-energy-environment nexus. By introducing carbon-based nanomaterials into the membrane's structure, the membrane gains excellent separation abilities, resistance to various feed waters, and a longer lifespan. Additionally, the use of carbon-based nanomaterials in MD has led to improved membrane performance characteristics such as increased permeability and a reduced fouling propensity. These nanomaterials have also enabled novel membrane capabilities like in situ foulant degradation and localized heat generation. Therefore, this review offers an overview of how the utilization of different carbon-based nanomaterials in membrane synthesis impacts the membrane characteristics, particularly the liquid entry pressure (LEP), hydrophobicity, porosity, and membrane permeability, as well as reduced fouling, thereby advancing the MD technology for water treatment processes. Furthermore, this review also discusses the development, challenges, and research opportunities that arise from these findings.
Collapse
Affiliation(s)
- Chhabilal Regmi
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| | - Yuwaraj K. Kshetri
- Research Center for Green Advanced Materials, Sun Moon University, Asan 31460, Republic of Korea
- Department of Energy and Chemical Engineering, Sun Moon University, Asan 31460, Republic of Korea
| | - S. Ranil Wickramasinghe
- Ralph E. Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, USA
| |
Collapse
|
3
|
Paul S, Bhoumick MC, Mitra S. Fouling Reduction and Thermal Efficiency Enhancement in Membrane Distillation Using a Bilayer-Fluorinated Alkyl Silane-Carbon Nanotube Membrane. MEMBRANES 2024; 14:152. [PMID: 39057660 PMCID: PMC11279159 DOI: 10.3390/membranes14070152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/24/2024] [Accepted: 07/05/2024] [Indexed: 07/28/2024]
Abstract
In this study, we report the robust hydrophobicity, lower fouling propensity, and high thermal efficiency of the 1H,1H,2H,2H-perfluorooctyltriethoxysilane (FAS)-coated, carbon nanotube-immobilized membrane (CNIM) when applied to desalination via membrane distillation. Referred to as FAS-CNIM, the membrane was developed through a process that combined the drop-casting of nanotubes flowed by a dip coating of the FAS layer. The membranes were tested for porosity, surface morphology, thermal stability, contact angle, and flux. The static contact angle of the FAS-CNIM was 153 ± 1°, and the modified membrane showed enhancement in water flux by 18% compared to the base PTFE membrane. The flux was tested at different operating conditions and the fouling behavior was investigated under extreme conditions using a CaCO3 as well as a mixture of CaCO3 and CaSO4 solution. The FAS-CNIM showed significantly lower fouling than plain PTFE or the CNIM; the relative flux reduction was 34.4% and 37.6% lower than the control for the CaCO3 and CaCO3/CaSO4 mixed salt solution. The FAS-CNIM exhibited a notable decrease in specific energy consumption (SEC). Specifically, the SEC for the FAS-CNIM measured 311 kwh/m3 compared to 330.5 kwh/m3 for the CNIM and 354 kwh/m3 for PTFE using a mixture of CaCO3/CaSO4. This investigation underscores the significant contribution of the carbon nanotubes' (CNTs) intermediate layer in creating a durable superhydrophobic membrane, highlighting the potential of utilizing carbon nanotubes for tailored interface engineering to tackle fouling for salt mixtures. The innovative design of a superhydrophobic membrane has the potential to alleviate wetting issues resulting from low surface energy contaminants present in the feed of membrane distillation processes.
Collapse
Affiliation(s)
| | | | - Somenath Mitra
- Department of Chemistry and Environmental Science, New Jersey Institute of Technology, Newark, NJ 07102, USA; (S.P.); (M.C.B.)
| |
Collapse
|
4
|
Ede SR, Yu H, Sung CH, Kisailus D. Bio-Inspired Functional Materials for Environmental Applications. SMALL METHODS 2024; 8:e2301227. [PMID: 38133492 DOI: 10.1002/smtd.202301227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Indexed: 12/23/2023]
Abstract
With the global population expected to reach 9.7 billion by 2050, there is an urgent need for advanced materials that can address existing and developing environmental issues. Many current synthesis processes are environmentally unfriendly and often lack control over size, shape, and phase of resulting materials. Based on knowledge from biological synthesis and assembly processes, as well as their resulting functions (e.g., photosynthesis, self-healing, anti-fouling, etc.), researchers are now beginning to leverage these biological blueprints to advance bio-inspired pathways for functional materials for water treatment, air purification and sensing. The result has been the development of novel materials that demonstrate enhanced performance and address sustainability. Here, an overview of the progress and potential of bio-inspired methods toward functional materials for environmental applications is provided. The challenges and opportunities for this rapidly expanding field and aim to provide a valuable resource for researchers and engineers interested in developing sustainable and efficient processes and technologies is discussed.
Collapse
Affiliation(s)
- Sivasankara Rao Ede
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Haitao Yu
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - Chao Hsuan Sung
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| | - David Kisailus
- Department of Materials Science and Engineering, University of California, Irvine, California, 92697, USA
| |
Collapse
|
5
|
Yu Y, Zeng Q, Zhang H, Ao M, Yao J, Yang C, Velizarov S, Han L. Graphene Oxide/Polyethyleneimine-Modified Cation Exchange Membrane for Efficient Selective Recovery of Ammonia Nitrogen from Wastewater. MEMBRANES 2023; 13:726. [PMID: 37623787 PMCID: PMC10456636 DOI: 10.3390/membranes13080726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 08/07/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
Competition for the migration of interfering cations limits the scale-up and implementation of the Donnan dialysis process for the recovery of ammonia nitrogen (NH4+-N) from wastewater in practice. Highly efficient selective permeation of NH4+ through a cation exchange membrane (CEM) is expected to be modulated via tuning the surface charge and structure of CEM. In this work, a novel CEM was designed to form a graphene oxide (GO)-polyethyleneimine (PEI) cross-linked layer by introducing self-assembling layers of GO and PEI on the surface of a commercial CEM, which rationally regulates the surface charge and structure of the membrane. The resulting positively charged membrane surface exhibits stronger repulsion for divalent cations compared to monovalent cations according to Coulomb's law, while, simultaneously, GO forms π-metal cation conjugates between metal cations (e.g., Mg2+ and Ca2+), thus limiting metal cation transport across the membrane. During the DD process, higher NH4+ concentrations resulted in a longer time to reach Donnan equilibrium and higher NH4+ flux, while increased Mg2+ concentrations resulted in lower NH4+ flux (from 0.414 to 0.213 mol·m-2·h-1). Using the synergistic effect of electrostatic interaction and non-covalent cross-linking, the designed membrane, referred to as GO-PEI (20) and prepared by a 20 min impregnation in the GO-PEI mixture, exhibited an NH4+ transport rate of 0.429 mol·m-2·h-1 and a Mg2+ transport rate of 0.003 mol·m-2·h-1 in single-salt solution tests and an NH4+/Mg2+ selectivity of 15.46, outperforming those of the unmodified and PEI membranes (1.30 and 5.74, respectively). In mixed salt solution tests, the GO-PEI (20) membrane showed a selectivity of 15.46 (~1.36, the unmodified membrane) for NH4+/Mg2+ and a good structural stability after 72 h of continuous operation. Therefore, this facile surface charge modulation approach provides a promising avenue for achieving efficient NH4+-selective separation by modified CEMs.
Collapse
Affiliation(s)
- Yuanyuan Yu
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Qin Zeng
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Haoquan Zhang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Maoqin Ao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Jingmei Yao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Chun Yang
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| | - Svetlozar Velizarov
- LAQV/REQUIMTE, Department of Chemistry, NOVA School of Science and Technology, FCT NOVA, Universidade NOVA de Lisboa, 2829-516 Caparica, Portugal
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (Y.Y.); (Q.Z.); (H.Z.); (M.A.); (J.Y.); (C.Y.)
| |
Collapse
|
6
|
Liu W, Wang R, Straub AP, Lin S. Membrane Design Criteria and Practical Viability of Pressure-Driven Distillation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:2129-2137. [PMID: 36693171 DOI: 10.1021/acs.est.2c07765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Pressure-driven distillation (PD) is a novel desalination technology based on hydraulic pressure driving force and vapor transport across a hydrophobic porous membrane. In theory, PD offers near-perfect rejection for nonvolatile solutes, chlorine resistance, and the ability to decouple water and solute transport. Despite its advantages, pore wetting and the development of a reverse transmembrane temperature difference are potential critical concerns in PD, with the former compromising the salt rejection and the latter reducing or even eliminating the driving force for vapor transport. We herein present an analysis to evaluate the practical viability and membrane design principles of PD with a focus on the dependence of flux and salt rejection (SR) on membrane properties. By modeling the mass transfer in a PD process under different conditions, we arrive at two important conclusions. First, a practically detrimental reverse transmembrane temperature difference does not develop in PD under all relevant circumstances and is thus not a practical concern. Second, for a PD process to achieve an acceptable SR, the membrane pores should be at the nanometer scale with a highly uniform pore size distribution. This analysis demonstrates the practical viability of PD and provides the principles for designing robust and high-performance PD membranes.
Collapse
Affiliation(s)
- Weifan Liu
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
| | - Ruoyu Wang
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
| | - Anthony P Straub
- Department of Civil, Environmental and Architectural Engineering, University of Colorado Boulder, Boulder, Colorado80309-0428, United States
| | - Shihong Lin
- Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
- Department of Chemical and Bimolecular Engineering, Vanderbilt University, Nashville, Tennessee37235-1831, United States
| |
Collapse
|
7
|
|
8
|
Ma R, Lu X, Zhang S, Ren K, Gu J, Liu C, Liu Z, Wang H. Constructing discontinuous silicon-island structure with low surface energy based on the responsiveness of hydrophilic layers to improve the anti-fouling property of membranes. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120770] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Li B, Hou D, Li C, Yun Y. Mussels-inspired design a carbon nanotube based underwater superoleophobic/hydrophobic Janus membrane with robust anti-oil-fouling for direct contact membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Tunable hydrophobicity and roughness on PVDF surface by grafting to mode – Approach to enhance membrane performance in membrane distillation process. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120935] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
11
|
Enhanced anti-wetting and anti-fouling properties of composite PFPE/PVDF membrane in vacuum membrane distillation. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120084] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
12
|
Han M, Zhao R, Shi J, Li X, He D, Liu L, Han L. Membrane Distillation Hybrid Peroxydisulfate Activation toward Mitigating the Membrane Wetting by Sodium Dodecyl Sulfate. MEMBRANES 2022; 12:membranes12020164. [PMID: 35207085 PMCID: PMC8875670 DOI: 10.3390/membranes12020164] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/24/2022] [Accepted: 01/27/2022] [Indexed: 02/01/2023]
Abstract
The fouling/wetting of hydrophobic membrane caused by organic substances with low-surface energy substantially limits the development of the membrane distillation (MD) process. The sulfate radical (SO4 ·−)-based advanced oxidation process (AOP) has been a promising technology to degrade organics in wastewater treatment, and peroxydisulfate (PDS) could be efficiently activated by heat. Thus, a hybrid process of MD-AOP via PDS activated by a hot feed was hypothesized to mitigate membrane fouling/wetting. Experiments dealing with sodium dodecyl sulfate (SDS) containing a salty solution via two commercial membranes (PVDF and PTFE) were performed, and varying membrane wetting extents in the coupling process were discussed at different PDS concentrations and feed temperatures. Our results demonstrated permeate flux decline and a rise in conductivity due to membrane wetting by SDS, which was efficiently alleviated in the hybrid process rather than the standalone MD process. Moreover, such a mitigation was enhanced by a higher PDS concentration up to 5 mM and higher feed temperature. In addition, qualitative characterization on membrane coupons wetted by SDS was successfully performed using electrochemical impedance spectroscopy (EIS). The EIS results implied both types of hydrophobic membranes were protected from losing their hydrophobicity in the presence of PDS activation, agreeing with our initial hypothesis. This work could provide insight into future fouling/wetting control strategies for hydrophobic membranes and facilitate the development of an MD process.
Collapse
Affiliation(s)
- Minyuan Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
| | - Ruixue Zhao
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
| | - Jianchao Shi
- School of Civil Engineering, Yantai University, Yantai 264005, China;
| | - Xiaobo Li
- Animal Husbandry Service of Chongqing, Chongqing 401121, China; (X.L.); (D.H.)
| | - Daoling He
- Animal Husbandry Service of Chongqing, Chongqing 401121, China; (X.L.); (D.H.)
| | - Lang Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China;
| | - Le Han
- Key Laboratory of the Three Gorges Reservoir Region’s Eco-Environment, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400045, China; (M.H.); (R.Z.)
- Correspondence:
| |
Collapse
|
13
|
Lu C, Gao Y, Yu S, Zhou H, Wang X, Li L. Non-Fluorinated Flexible Superhydrophobic Surface with Excellent Mechanical Durability and Self-Cleaning Performance. ACS APPLIED MATERIALS & INTERFACES 2022; 14:4750-4758. [PMID: 35029969 DOI: 10.1021/acsami.1c21840] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although plenty of superhydrophobic surfaces have been developed owing to their tremendous potential applications, it is still a great challenge for the superhydrophobic surfaces to possess environmental friendliness, biocompatibility, and mechanical durability simultaneously. Herein, a non-fluorinated flexible superhydrophobic surface was designed by constructing a film-substrate system with labyrinth-like wrinkles combining an intrinsically hydrophobic Zn film and a polydimethylsiloxane (PDMS) substrate. Excellent superhydrophobicity with a contact angle up to 168.5° and a slide angle as low as 0° has been achieved on the Zn/PDMS surface, which is attributed to the micro-/nano-textured structures of the labyrinth-like wrinkles, providing sufficient air pockets to form a stable Cassie-Baxter state. Furthermore, the Zn/PDMS surface retains excellent superhydrophobicity under stretching, bending, and twisting mechanical deformation up to 500 cycles due to the stability of the micro-/nano-textured structures of the labyrinth-like wrinkles protected by the fantastic self-healing ability of the micro-cracks. Additionally, the Zn/PDMS superhydrophobic surface possesses an outstanding self-cleaning performance for various contaminants. The present work provides a valuable routine to design non-fluorinated flexible superhydrophobic surfaces with superb mechanical durability and self-cleaning property as promising functional layers for flexible electronics, wearable devices, biomedical engineering, and so forth.
Collapse
Affiliation(s)
- Chenxi Lu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Yuan Gao
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Senjiang Yu
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Hong Zhou
- Department of Physics, China Jiliang University, Hangzhou 310018, P. R. China
| | - Xin Wang
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| | - Lingwei Li
- Key Laboratory of Novel Materials for Sensor of Zhejiang Province, Institute of Advanced Magnetic Materials, Hangzhou Dianzi University, Hangzhou 310012, P. R. China
| |
Collapse
|
14
|
Preparation of ECTFE Porous Membrane for Dehumidification of Gaseous Streams through Membrane Condenser. MEMBRANES 2022; 12:membranes12010065. [PMID: 35054591 PMCID: PMC8781967 DOI: 10.3390/membranes12010065] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/28/2021] [Accepted: 12/29/2021] [Indexed: 02/06/2023]
Abstract
Due to the good hydrophobicity and chemical resistance of poly(ethylene trifluoroethylene) (ECTFE), it has been an attractive potential material for microfiltration, membrane distillation and more. However, few porous hydrophobic ECTFE membranes were prepared by thermally induced phase separation (TIPS) for membrane condenser applications. In this work, the diluent, di-n-octyl phthalate (DnOP), was selected to prepare the dope solutions. The calculated Hassen solubility parameter indicated that ECTFE has good compatibility with DnOP. The corresponding thermodynamic phase diagram was established, and it has been mutually verified with the bi-continuous structure observed in the SEM images. At 30 wt% ECTFE, the surface contact angle and liquid entry pressure reach their maximum values of 139.5° and 0.71 MPa, respectively. In addition, some other basic membrane properties, such as pore size, porosity, and mechanical properties, were determined. Finally, the prepared ECTFE membranes were tested using a homemade membrane condenser setup. When the polymer content is 30 wt%, the corresponding results are better; the water recovery and condensed water yield is 17.6% and 1.86 kg m−2 h−1, respectively.
Collapse
|
15
|
Liao X, Goh K, Liao Y, Wang R, Razaqpur AG. Bio-inspired super liquid-repellent membranes for membrane distillation: Mechanisms, fabrications and applications. Adv Colloid Interface Sci 2021; 297:102547. [PMID: 34687984 DOI: 10.1016/j.cis.2021.102547] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 10/02/2021] [Accepted: 10/08/2021] [Indexed: 01/22/2023]
Abstract
With the aggravation of the global water crisis, membrane distillation (MD) for seawater desalination and hypersaline wastewater treatment is highlighted due to its low operating temperature, low hydrostatic pressure, and theoretically 100% rejection. However, some issues still impede the large-scale applications of MD technology, such as membrane fouling, scaling and unsatisfactory wetting resistance. Bio-inspired super liquid-repellent membranes have progressed rapidly in the past decades and been considered as one of the most promising approaches to overcome the above problems. This review for the first time systematically summarizes and analyzes the mechanisms of different super liquid-repellent surfaces, their preparation and modification methods, and anti-wetting/fouling/scaling performances in the MD process. Firstly, the topology theories of in-air superhydrophobic, in-air omniphobic and underwater superoleophobic surfaces are illustrated using different models. Secondly, the fabrication methods of various super liquid-repellent membranes are classified. The merits and demerits of each method are illustrated. Thirdly, the anti-wetting/fouling/scaling mechanisms of super liquid-repellent membranes are summarized. Finally, the conclusions and perspectives of the bio-inspired super liquid-repellent membranes are elaborated. It is anticipated that the systematic review herein can provide readers with foundational knowledge and current progress of super liquid-repellent membranes, and inspire researchers to overcome the challenges up ahead.
Collapse
Affiliation(s)
- Xiangjun Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yuan Liao
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| | - Rong Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Res. Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore; School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore
| | - Abdul Ghani Razaqpur
- Sino-Canadian Joint R&D Center for Water and Environmental Safety, College of Environmental Science and Engineering, Nankai University, No.38 Tongyan Road, Jinnan District, Tianjin 300350, PR China.
| |
Collapse
|