1
|
Liu N, Lu Y, Li Z, Zhao H, Yu Q, Huang Y, Yang J, Huang L. Smart Wrinkled Interfaces: Patterning, Morphing, and Coding of Polymer Surfaces by Dynamic Anisotropic Wrinkling. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:18837-18856. [PMID: 39207273 DOI: 10.1021/acs.langmuir.4c02162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
In contrast to traditional static surfaces, smart patterned surfaces with periodical and reversible morphologies offer limitless opportunities for encoding surface functions and properties on demand, facilitating their widespread application as functional building blocks in various devices. Advances in intelligently controlling the macroscopic properties of these smart surfaces have been accomplished through various techniques (such as three-dimensional printing, imprint lithography and femtosecond laser) and responsive materials. In contrast to the sophisticated techniques above, dynamic anisotropic wrinkling, taking advantage of dynamic programmable manipulation of surface wrinkling and its orientation, offers a powerful alternative for fabricating dynamic periodical patterns due to its spontaneous formation, versatility, convenient scale-up fabrication, and sensitivity to various stimuli. This review comprehensively summarizes recent advances in smart patterned surfaces with dynamic oriented wrinkles, covering design principles, fabrication techniques, representative types of physical and chemical stimuli, as well as fine-tuning of wrinkle dimensions and orientation. Finally, advanced applications of these smart patterned surfaces are presented, along with a discussion of current challenges and future prospects in this rapidly evolving field. This review would offer some insights and guidelines for designing and engineering novel stimuli-responsive smart wrinkled surfaces, thereby facilitating their sustainable development and progressing toward commercialization.
Collapse
Affiliation(s)
- Ning Liu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yenie Lu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Ziyue Li
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Hongyang Zhao
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Qingyue Yu
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Yaxin Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Liang Huang
- Hubei Key Laboratory of Multi-media Pollution Cooperative Control in Yangtze Basin, School of Environmental Science & Engineering, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| |
Collapse
|
2
|
Chen YC, Luo YW, Huang CY, Li YL, Chen TL, Xu TY, Hsueh HY. Fabrication of Self-Wrinkling Polymer Films with Tunable Patterns through an Interfacial-Fuming-Induced Surface Instability Process. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2311679. [PMID: 38243856 DOI: 10.1002/smll.202311679] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/05/2024] [Indexed: 01/22/2024]
Abstract
Inspired by the superglue fuming method for fingerprint collection, this study developed a novel interfacial-fuming-induced surface instability process to generate wrinkled patterns on polymeric substrates. High-electronegativity groups are introduced on the substrate surface to initiate the polymerization of monomer vapors, such as ethyl cyanoacrylate, which results in the formation of a stiff poly(ethyl cyanoacrylate) capping layer. Moreover, interfacial polymerization resulted in the covalent bonding of the substrate, which led to the volumetric shrinkage of the composite and the accumulation of compressive strain. This process ultimately resulted in the development and stabilization of wrinkled surface morphologies. The authors systematically examined parameters such as the modulus of the epoxy substrate, prestrain, the flow rate of fuming, and operating temperature. The aforementioned technique can be easily applied to architectures with complex outer morphologies and inner surfaces, thereby enabling the construction of surface patterns under ambient conditions without vacuum limitations or precise process control. This study is the first to combine fuming-induced interfacial polymerization with surface instability to create robust wrinkles. The proposed method enables the fabrication of intricate microwrinkled patterns and has considerable potential for use in various practical applications, including microfluidics, optical components, bioinspired adhesive devices, and interfacial engineering.
Collapse
Affiliation(s)
- Yi-Chen Chen
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ying-Wei Luo
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ching-Yu Huang
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Yan-Lin Li
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ting-Lun Chen
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Ting-Yu Xu
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| | - Han-Yu Hsueh
- Department of Material Science and Engineering, National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
- Innovation and Development Center of Sustainable Agriculture (IDCSA), National Chung Hsing University, Taichung, Taiwan, 40227, Republic of China
| |
Collapse
|
3
|
Zhao X, Demchuk Z, Tian J, Luo J, Li B, Cao K, Sokolov AP, Hun D, Saito T, Cao PF. Ductile adhesive elastomers with force-triggered ultra-high adhesion strength. MATERIALS HORIZONS 2024; 11:969-977. [PMID: 38053446 DOI: 10.1039/d3mh01280h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Elastomers play a vital role in many forthcoming advanced technologies in which their adhesive properties determine materials' interface performance. Despite great success in improving the adhesive properties of elastomers, permanent adhesives tend to stick to the surfaces prematurely or result in poor contact depending on the installation method. Thus, elastomers with on-demand adhesion that is not limited to being triggered by UV light or heat, which may not be practical for scenarios that do not allow an additional external source, provide a solution to various challenges in conventional adhesive elastomers. Herein, we report a novel, ready-to-use, ultra high-strength, ductile adhesive elastomer with an on-demand adhesion feature that can be easily triggered by a compression force. The precursor is mainly composed of a capsule-separated, two-component curing system. After a force-trigger and curing process, the ductile adhesive elastomer exhibits a peel strength and a lap shear strength of 1.2 × 104 N m-1 and 7.8 × 103 kPa, respectively, which exceed the reported values for advanced ductile adhesive elastomers. The ultra-high adhesion force is attributed to the excellent surface contact of the liquid-like precursor and to the high elastic modulus of the cured elastomer that is reinforced by a two-phase design. Incorporation of such on-demand adhesion into an elastomer enables a controlled delay between installation and curing so that these can take place under their individual ideal conditions, effectively reducing the energy cost, preventing failures, and improving installation processes.
Collapse
Affiliation(s)
- Xiao Zhao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Zoriana Demchuk
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Jia Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Jiancheng Luo
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Bingrui Li
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Ke Cao
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Alexei P Sokolov
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
- Department of Chemistry, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Hun
- Buildings and Transportation Science Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
| | - Tomonori Saito
- Chemical Sciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37830, USA.
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN 37996, USA
| | - Peng-Fei Cao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
4
|
Baban NS, Saha S, Jancheska S, Singh I, Khapli S, Khobdabayev M, Kim J, Bhattacharjee S, Song YA, Chakrabarty K, Karri R. Material-level countermeasures for securing microfluidic biochips. LAB ON A CHIP 2023; 23:4213-4231. [PMID: 37605818 DOI: 10.1039/d3lc00335c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Flow-based microfluidic biochips (FMBs) have been rapidly commercialized and deployed in recent years for biological computing, clinical diagnostics, and point-of-care-tests (POCTs). However, outsourcing FMBs makes them susceptible to material-level attacks by malicious actors for illegitimate monetary gain. The attacks involve deliberate material degradation of an FMB's polydimethylsiloxane (PDMS) components by either doping with reactive solvents or altering the PDMS curing ratio during fabrication. Such attacks are stealthy enough to evade detection and deteriorate the FMB's function. Furthermore, material-level attacks can become prevalent in attacks based on intellectual property (IP) theft, such as counterfeiting, overbuilding, etc., which involve unscrupulous third-party manufacturers. To address this problem, we present a dynamic material-level watermarking scheme for PDMS-based FMBs with microvalves using a perylene-labeled fluorescent dye. The dyed microvalves show a unique excimer intensity peak under 405 nm laser excitation. Moreover, when pneumatically actuated, the peak shows a predetermined downward shift in intensity as a function of mechanical strain. We validated this protection scheme experimentally using fluorescence microscopy, which showed a high correlation (R2 = 0.971) between the normalized excimer intensity change and the maximum principal strain of the actuated microvalves. To detect curing ratio-based attacks, we adapted machine learning (ML) models, which were trained on the force-displacement data obtained from a mechanical punch test method. Our ML models achieved more than 99% accuracy in detecting curing ratio anomalies. These countermeasures can be used to proactively safeguard FMBs against material-level attacks in the era of global pandemics and diagnostics based on POCTs.
Collapse
Affiliation(s)
- Navajit Singh Baban
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sohini Saha
- Department of Electrical and Computer Engineering, Duke University, Durham, USA
| | - Sofija Jancheska
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Inderjeet Singh
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sachin Khapli
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Maksat Khobdabayev
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Jongmin Kim
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
| | - Sukanta Bhattacharjee
- Department of Computer Science and Engineering, Indian Institute of Technology Guwahati, India
| | - Yong-Ak Song
- Division of Engineering, New York University Abu Dhabi, Abu Dhabi, United Arab Emirates.
- Department of Chemical and Biomolecular Engineering, Tandon School of Engineering, New York University, New York, USA
- Department of Biomedical Engineering, Tandon School of Engineering, New York University, New York, USA
| | - Krishnendu Chakrabarty
- School of Electrical, Computer and Energy Engineering, Arizona State University, Phoenix, Arizona, USA
| | - Ramesh Karri
- Department of Electrical and Computer Engineering, Tandon School of Engineering, New York University, New York, USA
| |
Collapse
|
5
|
Lai YF, Chang MY, Liou YY, Lee CC, Hsueh HY. Morphological Diagram of Dynamic-Interfacial-Release-Induced Surface Instability. ACS APPLIED MATERIALS & INTERFACES 2023; 15:38975-38985. [PMID: 37478376 DOI: 10.1021/acsami.3c07497] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2023]
Abstract
In this study, a morphological diagram was constructed for quantitatively predicting various modes of surface instabilities caused by the dynamic interfacial release of strain in initially flat bilayer composites comprising an elastomer and a capping layer. Theory, experiment, and simulation were combined to produce the diagram, which enables systematic generation of the following instability patterns: wrinkle, fold, period-double, delamination, and coexisting patterns. The pattern that forms is most strongly affected by three experimental parameters: the elastic modulus of the elastomer, the elastic modulus of the capping layer, and the thickness of the capping layer. The morphological diagram offers understanding of the formation of complex patterns and development of their applications. Critically, the wrinkle alignment can be well controlled by changing the direction of the interfacial release to enable the creation of centimeter-sized and highly ordered lamellar wrinkled patterns with a single orientation on a soft elastomer without the need for costly high-vacuum instruments or complex fabrication processes. The method and diagram have great potential for broad use in many practical applications ranging from flexible electronic devices to smart windows.
Collapse
Affiliation(s)
- Yu-Fang Lai
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Meng-Yuan Chang
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| | - Yan-Yu Liou
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Chang-Chun Lee
- Department of Power Mechanical Engineering, National Tsing Hua University, Hsinchu 30013, Taiwan, Republic of China
| | - Han-Yu Hsueh
- Department of Materials Science and Engineering, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung 40227, Taiwan, Republic of China
| |
Collapse
|
6
|
Liu N, Sun Q, Yang Z, Shan L, Wang Z, Li H. Wrinkled Interfaces: Taking Advantage of Anisotropic Wrinkling to Periodically Pattern Polymer Surfaces. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207210. [PMID: 36775851 PMCID: PMC10131883 DOI: 10.1002/advs.202207210] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Indexed: 06/18/2023]
Abstract
Periodically patterned surfaces can cause special surface properties and are employed as functional building blocks in many devices, yet remaining challenges in fabrication. Advancements in fabricating structured polymer surfaces for obtaining periodic patterns are accomplished by adopting "top-down" strategies based on self-assembly or physico-chemical growth of atoms, molecules, or particles or "bottom-up" strategies ranging from traditional micromolding (embossing) or micro/nanoimprinting to novel laser-induced periodic surface structure, soft lithography, or direct laser interference patterning among others. Thus, technological advances directly promote higher resolution capabilities. Contrasted with the above techniques requiring highly sophisticated tools, surface instabilities taking advantage of the intrinsic properties of polymers induce surface wrinkling in order to fabricate periodically oriented wrinkled patterns. Such abundant and elaborate patterns are obtained as a result of self-organizing processes that are rather difficult if not impossible to fabricate through conventional patterning techniques. Focusing on oriented wrinkles, this review thoroughly describes the formation mechanisms and fabrication approaches for oriented wrinkles, as well as their fine-tuning in the wavelength, amplitude, and orientation control. Finally, the major applications in which oriented wrinkled interfaces are already in use or may be prospective in the near future are overviewed.
Collapse
Affiliation(s)
- Ning Liu
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Qichao Sun
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhensheng Yang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Linna Shan
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Zhiying Wang
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| | - Hao Li
- National‐Local Joint Engineering Laboratory for Energy Conservation of Chemical Process Integration and Resources UtilizationSchool of Chemical Engineering and TechnologyHebei University of TechnologyTianjin300130China
| |
Collapse
|
7
|
Liu A, Yao Y, Yao J, Liu T. Droplet Spreading Induced Wrinkling and Its Use for Measuring the Elastic Modulus of Polymeric Thin Films. Macromolecules 2022. [DOI: 10.1021/acs.macromol.2c00345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Aishuang Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow 215123, P. R. China
| | - Yanbo Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow 215123, P. R. China
| | - Jingwen Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow 215123, P. R. China
| | - Tao Liu
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Soochow 215123, P. R. China
| |
Collapse
|
8
|
Lee SH, Song HW, Park HJ, Kwak MK. Surface Adaptable and Adhesion Controllable Dry Adhesive with Shape Memory Polymer. Macromol Rapid Commun 2022; 43:e2200012. [PMID: 35132723 DOI: 10.1002/marc.202200012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 02/01/2022] [Indexed: 11/08/2022]
Abstract
Gecko foot consist of numerous micro/nano hierarchical hairs and exhibit a high adhesion onto various surfaces by the "van der Waals force". The gecko, despite its mighty adhesion, can travel efficiently with a rapid adhesion switching given that the end of hair in the gecko foot is slanted in one direction. Herein, we report a shape memory polymer (SMP)-based switchable dry adhesive (SSA), inspired by gecko foot, having tremendous surface adaptability and adhesion switching capability. The SSA shows not only high adhesion to the various surfaces (approximately 332.8 kPa) but also easy detachment (nearly 3.73 kPa) due to the characteristic of SMP, which can reversibly recover from a deformed shape to its initial shape. On the basis of the novel adhesion switching property, we suggest the SSA-applied advanced glass transfer system as a feasible application. This experiment confirms that an ultra-thin and light glass film is transferred easily and sustainably, and we believe that the SSA might be a breakthrough and a powerful alternative for not only conventional dry adhesive but also the next-level transfer systems. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sung Ho Lee
- Department of Electrical Electronics and Computer Science, University of Michigan, Ann Arbor, 48109, United States
| | - Hyun Woo Song
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Han Jun Park
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Moon Kyu Kwak
- Department of Mechanical Engineering, Kyungpook National University, Daegu, 41566, Republic of Korea
| |
Collapse
|
9
|
Zhang Q, Peng B, Chu M, Wen P, Wang S, Xu J. Curved Film Microstructure Arrays Fabricated via Mechanical Stretching. MICROMACHINES 2021; 12:1281. [PMID: 34832694 PMCID: PMC8617774 DOI: 10.3390/mi12111281] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/10/2021] [Accepted: 10/16/2021] [Indexed: 12/21/2022]
Abstract
We report on curved film microstructure arrays fabricated through polydimethylsiloxane (PDMS) film buckling induced by mechanical stretching. In the process of the microstructure preparation, a PDMA film is glued on a bidirectionally prestretched PDMS sheet that has a square distributed hole array on its surface. After releasing the prestrain, the film microstructure array is created spontaneously. The fabricated microstructures possess a spherical surface and demonstrate very good uniformity. The film microstructure arrays can serve as microlens arrays with a focal length of 1010 μm. The microstructure formation mechanism is investigated via theoretical analysis and numerical simulation. The simulation results agree well with the experimental results. The prestrain applied by mechanical stretching during the fabrication has an important effect on the shape of the resulting film microstructures. The microstructure geometry can be easily tuned through controlling the applied prestrain.
Collapse
Affiliation(s)
| | - Bei Peng
- School of Mechanical and Electrical Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China; (Q.Z.); (M.C.); (P.W.); (S.W.); (J.X.)
| | | | | | | | | |
Collapse
|
10
|
Knapp A, Nebel LJ, Nitschke M, Sander O, Fery A. Controlling line defects in wrinkling: a pathway towards hierarchical wrinkling structures. SOFT MATTER 2021; 17:5384-5392. [PMID: 33969367 DOI: 10.1039/d0sm02231d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
We demonstrate a novel approach for controlling the line defect formation in microscopic wrinkling structures by patterned plasma treatment of elastomeric surfaces. Wrinkles were formed on polydimethylsiloxane (PDMS) surfaces exposed to low-pressure plasma under uniaxial stretching and subsequent relaxation. The wrinkling wavelength λ can be regulated via the treatment time and choice of plasma process gases (H2, N2). Sequential masking allows for changing these parameters on micron-scale dimensions. Thus, abrupt changes of the wrinkling wavelength become feasible and result in line defects located at the boundary zone between areas of different wavelengths. Wavelengths, morphology, and mechanical properties of the respective areas are investigated by Atomic Force Microscopy and agree quantitatively with predictions of analytical models for wrinkle formation. Notably, the approach allows for the first time the realization of a dramatic wavelength change up to a factor of 7 to control the location of the branching zone. This allows structures with a fixed but also with a strictly alternating branching behavior. The morphology inside the branching zone is compared with finite element methods and shows semi-quantitative agreement. Thus our finding opens new perspectives for "programming" hierarchical wrinkling patterns with potential applications in optics, tribology, and biomimetic structuring of surfaces.
Collapse
Affiliation(s)
- André Knapp
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany.
| | - Lisa Julia Nebel
- Institute for Numerical Mathematics, Technical University Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany.
| | - Mirko Nitschke
- Max Bergmann Center of Biomaterials, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany
| | - Oliver Sander
- Institute for Numerical Mathematics, Technical University Dresden, Zellescher Weg 12-14, 01069 Dresden, Germany.
| | - Andreas Fery
- Institute of Physical Chemistry and Polymer Physics, Leibniz Institute of Polymer Research Dresden e. V., Hohe Str. 6, 01069 Dresden, Germany. and Chair for Physical Chemistry of Polymeric Materials, Technical University Dresden, Mommsenstr. 4, 01062 Dresden, Germany
| |
Collapse
|
11
|
Shou H, Ma T, Li T, Chen S, Ma X, Yin J, Jiang X. Photo-Oxidation-Controlled Surface Pattern with Responsive Wrinkled Topography and Fluorescence. Chemistry 2021; 27:5810-5816. [PMID: 33501668 DOI: 10.1002/chem.202100189] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/09/2022]
Abstract
Wrinkles and photo-oxidation reactions are widely found in soft materials, which are intimately associated with the failure of materials and structures. It is expected that the photo-oxidation process could also have a positive effect on the material and its surface. Here, we report the photo-oxidation of 2-(4-dietheylaminophenyl)-4,5-bis(4-methoxyphenyl) imidazole (DEA-TAI) into a wrinkled bilayer system to control surface wrinkle and fluorescent patterns, in which a supramolecular polymer network composed of carboxylic acid-containing copolymer (PS-BA-AA; PS=poly(styrene), BA=butyl acrylate; AA=acrylic acid) and DEA-TAI were used as the skin layer. Ultraviolet (UV) irradiation can induce photo-oxidation of the imidazole ring of DEA-TAI to weaken the intermolecular hydrogen bonding between PS-BA-AA and DEA-TAI, resulting in the release of stress in the bilayer system. The wrinkled morphology and fluorescence of the surface can be simultaneously regulated by photo-oxidation of DEA-TAI under UV light, and the resulting wrinkles are extremely sensitive to the pH value, which can be quickly and reversibly erased by NH3 gas. Smart surfaces with specific hierarchical wrinkles and fluorescence can be achieved by selective irradiation with photomasks, which may find potential applications in smart displays and multi-code information storage.
Collapse
Affiliation(s)
- Huizhu Shou
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tianjiao Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Tiantian Li
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Shuai Chen
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xiaodong Ma
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Jie Yin
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| | - Xuesong Jiang
- School of Chemistry & Chemical Engineering, Frontiers Science Center for Transformative Molecules, State Key Laboratory for Metal Matrix Composite Materials, Shanghai Jiao Tong University, Shanghai, 200240, P. R. China
| |
Collapse
|