1
|
Liu L, Gao X, Zheng S, Yao X, Ju J, Jiang L. Recent Progress on Liquid Superspreading and Its Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2501734. [PMID: 40376945 DOI: 10.1002/adma.202501734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 04/16/2025] [Indexed: 05/18/2025]
Abstract
The dynamic spreading of liquids on solid surfaces is essential across numerous daily and industrial processes. Surfaces that enable liquid superspreading, characterized by rapid or extensive spreading, are particularly valuable due to their implications in functional film fabrication, heat management, liquid/liquid separation, and more. Recently, significant research is conducted on liquid superspreading surfaces, with microstructure-regulated surfaces gaining increasing attention. However, the deeper correlations between microstructural physical factors and the superspreading behaviors, along with the relevant applications, remain inadequately understood. This review aims to consolidate the existing knowledge from published results and stimulate further investigation by detailing structures, functionalities, and principles for constructing liquid superspreading surfaces. Examining is began by the energy balance between input and dissipation that underpins droplet spreading dynamics. Then current designs are reviewed for superspreading surfaces, with a focus on chemical and physical aspects, giving greater emphasis to the physical perspective. Additionally, several typical applications are categorized based on liquid superspreading behaviors across various fields. Finally, the prevailing challenges are highlighted and provide insights into future research directions.
Collapse
Affiliation(s)
- Lan Liu
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Xinyu Gao
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Shuangshuang Zheng
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Xi Yao
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
| | - Jie Ju
- School of Nanoscience and Materials Engineering, Henan University, Zhengzhou, Henan, 450046, P. R. China
- Key Lab for Special Functional Materials, Ministry of Education, Zhengzhou, Henan, 450046, P. R. China
- Longzihu New Energy Laboratory, Henan University, Zhengzhou, Henan, 450046, P. R. China
| | - Lei Jiang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100191, P. R. China
| |
Collapse
|
2
|
Lum LYX, Liu P, Ye H, Ho JY. Revealing Microstructured Surface Critical Heat Flux Degradation Mechanisms and Synergistic Pool Boiling Enhancement in Fluorinated Fluids. ACS APPLIED MATERIALS & INTERFACES 2025; 17:27331-27350. [PMID: 40277450 DOI: 10.1021/acsami.4c22543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
Fluorinated dielectric fluids are widely utilized as heat transfer fluids for two-phase cooling of electronics, capitalizing on the fluids' large latent heat release during boiling for efficient heat flux removal. Recent studies have optimized surface micro/nanostructures on aluminum alloy through chemical etching, achieving more than 2× enhancements in boiling heat transfer coefficients (HTCs) of these fluids compared to plain surfaces. However, these microengineered surfaces suffer from critical heat flux (CHF) reduction of nearly 40%, with the mechanisms driving this CHF reduction remaining unclear. Here, we investigate the mechanism resulting in the poor CHF of microstructured surfaces and develop a guideline to synergistically enhance the HTC and CHF of these surfaces. Immersion boiling tests in fluorinated and nonfluorinated fluids, coupled with wickability and elemental analysis, revealed that surface degeneration─caused by fluorine deposition forming C-F bonds with adventitious carbon─has minimal impact on CHF in fluorinated fluids. To further verify that surface degeneration is not responsible for CHF reduction, pool boiling experiments with cavity sizes from 1 to 5 μm identified the 5 μm cavity surface, AM-H(400)E(5), as achieving the highest HTC in both HFE-7100 and ethanol. However, CHF reductions of 30-50% were consistently observed, regardless of whether the surface transitioned to hydrophobicity or retained superhydrophilicity. Arising from this investigation, it is concluded that the increased nucleation site density on AM-H(400)E(5), which leads to the overcrowding of bubbles, is the primary cause of CHF reduction. To overcome these limitations, we devise a method of hierarchical addition of microstructures on macro-fins to simultaneously enhance HTC and CHF, creating a single-process two-tier hierarchical structure by leveraging on AM to fabricate the macrostructures. The two-tier macro/microstructure design has successfully enhanced HTC and CHF by 99 and 202.2%, respectively, compared to the best single-tier microstructured surface. This approach not only effectively delay undesirable vapor layer formation but also provides a robust guideline for enhancing boiling performance in other fluorinated fluids, including refrigerants R134a and R1234ze(E).
Collapse
Affiliation(s)
- Leymus Yong Xiang Lum
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Pengfei Liu
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Hanyang Ye
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| | - Jin Yao Ho
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
- Singapore Centre for 3D Printing, School of Mechanical and Aerospace Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Republic of Singapore
| |
Collapse
|
3
|
Shaik S, Gupta PK, Sharma M, Khare K, Ramakrishna SA. Reversible Wetting Transition of Water from Hydrophilic to Superhydrophilic State with UV-Ozone- and Ar-Plasma-Exposed Nanoporous Alumina Membranes: Microcooling, Sensing, and Filtering Applications. ACS OMEGA 2025; 10:17170-17181. [PMID: 40352510 PMCID: PMC12059923 DOI: 10.1021/acsomega.4c07796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 05/14/2025]
Abstract
The hydrophilic-superhydrophilic transition dynamics of water on the multifunctional nanoporous anodic alumina (NAA) membranes of various pore lengths (0.03-5 μm) fabricated by the acid anodization process is demonstrated. The original pristine alumina surfaces were found to be in the hydrophilic Wenzel state. The pristine NAA sample surfaces were modified to a superhydrophilic state upon UV-ozone (UVO) exposure for 1 min. The sample surfaces were also modified to the near-superhydrophilic state by Argon plasma (Ar-P) treatment for 1 min. Carboxylate ions incorporated inside the NAA matrix during the anodization process were found to play an important role in modifying the sample surfaces to be superhydrophilic. It was revealed from XPS analysis that the increment in the oxygen percentage and reduction in the carbon percentage were the key points behind the superhydrophilic state after UVO and Ar-P treatment. The NAA matrix was made functional as a nanofluidic system consisting of water after UVO and Ar plasma exposure which can be used for micro-cooling, sensing, and filtering applications. Reversible switching to hydrophilic state was found, leaving the sample surfaces to ambient after UVO and Ar-P exposure.
Collapse
Affiliation(s)
- Saleem Shaik
- Department
of Physics, IIT Kanpur, Kanpur 208016, India
| | | | | | | | | |
Collapse
|
4
|
Lee Y, Park H, Nam HT, Kim YH, Ahn JH, Lee D. Temperature Effects on Wicking Dynamics: Experimental and Numerical Study on Micropillar-Structured Surfaces. MICROMACHINES 2025; 16:512. [PMID: 40428639 PMCID: PMC12114549 DOI: 10.3390/mi16050512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Revised: 04/18/2025] [Accepted: 04/22/2025] [Indexed: 05/29/2025]
Abstract
Boiling heat transfer, utilizing latent heat during phase change, has widely been used due to its high thermal efficiency and plays an important role in existing and next-generation cooling technologies. The most critical parameter in boiling heat transfer is critical heat flux (CHF), which represents the maximum heat flux a heated surface can sustain during boiling. CHF is primarily influenced by the wicking performance, which governs liquid supply to the surface. This study experimentally and numerically analyzed the wicking performance of micropillar structures at various temperatures (20-95 °C) using distilled water as the working fluid to provide fundamental data for CHF prediction. Infrared (IR) visualization was used to extract the wicking coefficient, and the experimental data were compared with computational fluid dynamics (CFD) simulations for validation. At room temperature (20 °C), the wicking coefficient increased with larger pillar diameters (D) and smaller gaps (G). Specifically, the highest roughness factor sample (D04G10, r = 2.51) exhibited a 117% higher wicking coefficient than the lowest roughness factor sample (D04G20, r = 1.51), attributed to enhanced capillary pressure and improved liquid supply. Additionally, for the same surface roughness factor, the wicking coefficient increased with temperature, showing a 49% rise at 95 °C compared to 20 °C due to reduced viscous resistance. CFD simulations showed strong agreement with experiments, with error within ±10%. These results confirm that the proposed numerical methodology is a reliable tool for predicting wicking performance near boiling temperatures.
Collapse
Affiliation(s)
- Yoomyeong Lee
- Graduate School of Mechanical-Aerospace-Electric Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (Y.L.); (H.P.); (H.T.N.)
| | - Hyunmuk Park
- Graduate School of Mechanical-Aerospace-Electric Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (Y.L.); (H.P.); (H.T.N.)
| | - Hyeon Taek Nam
- Graduate School of Mechanical-Aerospace-Electric Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (Y.L.); (H.P.); (H.T.N.)
| | - Yong-Hyeon Kim
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea;
| | - Jae-Hwan Ahn
- Food Safety and Distribution Research Group, Korea Food Research Institute, Wanju-gun 55365, Jeollabuk-do, Republic of Korea;
| | - Donghwi Lee
- Graduate School of Mechanical-Aerospace-Electric Convergence Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea; (Y.L.); (H.P.); (H.T.N.)
- Department of Mechanical System Engineering, Jeonbuk National University, 567 Baekje-Daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
- Advanced Transportation Machinery Research Center, Jeonbuk National University, 567 Baekje-Daero, Deokjin-gu, Jeonju-si 54896, Jeollabuk-do, Republic of Korea
| |
Collapse
|
5
|
Jiao Y, Du Y, Guo Y, Ji J, Wang J, Liu X, Liu K. Dominant Role of Surface Peak-Valley Features in Droplet Infiltration Dynamics. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:26076-26085. [PMID: 39589442 DOI: 10.1021/acs.langmuir.4c03527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/27/2024]
Abstract
In this study, droplet infiltration dynamics on microtextured surfaces is explored to demonstrate the dominant role of surface peak-valley features in the capillary-driven wetting process. Even though two rough surfaces have nearly the same roughness, the microtopography and distribution of surface peaks and valleys may be completely different, leading to variations in liquid infiltration characteristics. Experimental results show that under the same surface roughness (Sa = 12.0 μm), the positively skewed surface dominated by micropillars (Ssk > 0) is more conducive to liquid infiltration compared with the negatively skewed surface dominated by micropits (Ssk < 0). The physical mechanism is fully analyzed in terms of the equilibrium of the air-liquid interface by constructing a hydrodynamic model. This study also demonstrates that the dominant influence of surface peak-valley features on droplet infiltrating dynamics is independent of the materials. Moreover, the cooling efficiency of the prepared surfaces is compared, and the results indicate that the micropillar surfaces with positive skewness exhibit superior heat dissipation performance under similar conditions because of their excellent infiltration features and large spreading area, proving that positively skewed surfaces have high utilization potential in high-density heat dissipation technology.
Collapse
Affiliation(s)
- Yunlong Jiao
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yu Du
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Yuhang Guo
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Jiawei Ji
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Jiaxiang Wang
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Xiaojun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| | - Kun Liu
- Institute of Tribology, Hefei University of Technology, Hefei 230009, China
| |
Collapse
|
6
|
Tan Y, Zhang S, Liu Y, Li J, Zhang S, Pan H. A novel integrated lateral flow immunoassay platform for the detection of cardiac troponin I using hierarchical dendritic copper-nickel nanostructures. Talanta 2024; 277:126332. [PMID: 38823322 DOI: 10.1016/j.talanta.2024.126332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/03/2024]
Abstract
Cardiac troponin I (cTnI) is a critical biomarker for the diagnosis of acute myocardial infarction (AMI). Herein, we report a novel integrated lateral flow immunoassay (LFIA) platform for highly sensitive point-of-care testing (POCT) of cTnI using hierarchical dendritic copper-nickel (HD-nanoCu-Ni) nanostructures. The electrodeposited HD-nanoCu-Ni film (∼22 μm thick) on an ITO-coated glass substrate exhibits superior capillary action and structural integrity. These properties enable efficient sample transport and antibody immobilization, making it a compelling alternative to conventional multi-component paper-based LFIA test strips, which are often plagued by structural fragility and susceptibility to moisture damage. The biofunctionalized HD-nanoCu-Ni substrates were laser-etched with lateral flow channels, including a sample loading/conjugate release zone, a test zone, and a control zone. Numerical simulations were used to further optimize the design of these channels to achieve optimal fluid flow and target capture. The HD-nanoCu-Ni LFIA device utilizes a fluorescence quenching based sandwich immunoassay format using antibody-labeled gold nanoparticles (AuNPs) as quenchers. Two different fluorescent materials, fluorescein isothiocyanate (FITC) and CdSe@ZnS quantum dots (QDs), were used as background fluorophores in the device. Upon the formation of a sandwich immunocomplex with cTnI on the HD-nanoCu-Ni device, introduced AuNPs led to the fluorescence quenching of the background fluorophores. The total assay time was approximately 15 min, demonstrating the rapid and efficient nature of the HD-nanoCu-Ni LFIA platform. For FITC, both inner filter effect (IFE) and fluorescence resonance energy transfer (FRET) contributed to the AuNP-mediated quenching. In the case of CdSe@ZnS QDs, IFE dominated the AuNP-induced quenching. Calibration curves were established based on the relationship between the fluorescence quenching intensity and cTnI concentration in human serum samples, ranging from 0.5 to 128 ng/mL. The limits of detection (LODs) were determined to be 0.27 ng/mL and 0.40 ng/mL for FITC and CdSe@ZnS QDs, respectively. A method comparison study using Passing-Bablok regression analysis on varying cTnI concentrations in human serum samples confirmed the equivalence of the HD-nanoCu-Ni LFIA platform to a commercial fluorescence cTnI LFIA assay kit, with no significant systematic or proportional bias observed.
Collapse
Affiliation(s)
- Yuxin Tan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Shirong Zhang
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Yilei Liu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jishun Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shenglan Zhang
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
7
|
Nam HT, Cho HH, Lee S, Lee D. Two-Phase Particle Image Velocimetry Visualization of Rewetting Flow on the Micropillar Interfacial Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:34313-34325. [PMID: 38907697 DOI: 10.1021/acsami.4c04114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/24/2024]
Abstract
Boiling heat transfer has a high thermal efficiency by latent heat absorption, which makes it an attractive process for cooling electronic device chips. Critical heat flux (CHF), the maximum heat flux, is a crucial factor determining the operating range of the boiling applications. The CHF can be enhanced by improving the fluid supply to the boiling surface. Herein, micropillar interfacial surfaces have been proposed to increase the CHF by increasing the rewetting flow, which determines the fluid-supply capacity near the bubble contact line. A state-of-art two-phase particle image velocimetry (two-phase PIV) technique is introduced for rewetting flow measurement on micropillar structures (MPSs) to analyze the CHF-enhancement mechanism. The two-phase PIV visualization setup offers high spatial (∼120 μm) and temporal (∼2000 Hz) resolutions for measuring rewetting flow during bubble growth. The MPS samples exhibit enhanced CHF and rewetting flows compared to those on a plain surface. The roughest case, D04G10 sample, had a CHF of 164 W/cm2, 1.84 times higher than that of the plain surface. The D04G10 sample also recorded the highest rewetting velocity of 0.311 m/s, 4.7 times higher than that of the plain surface. The comparison between the rewetting flow and wicking performance shows that wicking-induced flow accounted for a substantial part (∼17%) of the rewetting flow and contributed significantly to the CHF enhancement owing to large rewetting flow by delaying vapor-film formation. Based on these findings, a new CHF model suggested by introducing the rewetting parameter shows a high CHF prediction accuracy of 94%.
Collapse
Affiliation(s)
- Hyeon Taek Nam
- Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Hyung Hee Cho
- Department of Mechanical Engineering, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 120-749, Republic of Korea
| | - Seungro Lee
- Department of Mechanical Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Laboratory for Renewable Energy and Sector Coupling, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
| | - Donghwi Lee
- Department of Mechanical System Engineering, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju-si, Jeollabuk-do 54896, Republic of Korea
- Advanced Transportation Machinery Research Center, Jeonbuk National University, 567 Baekje-daero, Deokjin-gu, Jeonju 54896, Republic of Korea
| |
Collapse
|
8
|
Xu A, Li J, Zhang S, Pan H. An integrated immunochromatographic device for C-reactive protein detection using hierarchical dendritic gold nanostructure films. Anal Chim Acta 2023; 1269:341402. [PMID: 37290857 DOI: 10.1016/j.aca.2023.341402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Revised: 05/17/2023] [Accepted: 05/21/2023] [Indexed: 06/10/2023]
Abstract
Immunochromatographic test strips typically consist of sample pad, conjugate pad, nitrocellulose membrane, and absorbent pad. Even minute variations in the assembly of these components can lead to inconsistent sample-reagent interactions, thereby reducing reproducibility. In addition, the nitrocellulose membrane is susceptible to damage during assembly and handling. To address this issue, we propose to replace the sample pad, conjugate pad, and nitrocellulose membrane with hierarchical dendritic gold nanostructure (HD-nanoAu) films to develop a compact integrated immunochromatographic strip. The strip uses quantum dots as a background fluorescence signal and employs fluorescence quenching to detect C-reactive protein (CRP) in human serum. A 5.9 μm thick HD-nanoAu film was electrodeposited on an ITO conductive glass by the constant potential method. The wicking kinetics of the HD-nanoAu film was thoroughly investigated, and the results indicated that the film exhibited favorable wicking properties, with a wicking coefficient of 0.72 μm ms-0.5. The immunochromatographic device was fabricated by etching three interconnected rings on HD-nanoAu/ITO to designate sample/conjugate (S/C), test (T), and control (C) regions. The S/C region was immobilized with mouse anti-human CRP antibody (Ab1) labeled with gold nanoparticles (AuNPs), while the T region was preloaded with polystyrene microspheres decorated with CdSe@ZnS quantum dots (QDs) as background fluorescent material, followed by mouse anti-human CRP antibody (Ab2). The C region was immobilized with goat anti-mouse IgG antibody. After the samples were added to the S/C region, the excellent wicking properties of the HD-nanoAu film facilitated the lateral flow of the CRP-containing sample toward the T and C regions after binding to AuNPs labeled with CRP Ab1. In the T region, CRP-AuNPs-Ab1 formed sandwich immunocomplexes with Ab2, and the fluorescence of QDs was quenched by AuNPs. The ratio of fluorescence intensity in the T region to that in the C region was used to quantify CRP. The T/C fluorescence intensity ratio was negatively correlated with the CRP concentration in the range of 26.67-853.33 ng mL-1 (corresponding to 300-fold diluted human serum), with a correlation coefficient (R2) of 0.98. The limit of detection was 15.0 ng mL-1 (corresponding to 300-fold diluted human serum), and the range of relative standard deviation: 4.48-5.31%, with a recovery rate of 98.22-108.33%. Common interfering substances did not cause significant interference, and the range of relative standard deviation: 1.96-5.51%. This device integrates multiple components of conventional immunochromatographic strips onto a single HD-nanoAu film, resulting in a more compact structure that improves the reproducibility and robustness of detection, making it promising for point-of-care testing applications.
Collapse
Affiliation(s)
- Anan Xu
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China
| | - Jishun Li
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China
| | - Shenglan Zhang
- College of Mechanical and Control Engineering, Guilin University of Technology, Guilin, 541004, China.
| | - Hongcheng Pan
- Guangxi Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, 541004, China; College of Environmental Science and Engineering, Guilin University of Technology, Guilin, 541004, China.
| |
Collapse
|
9
|
Capillary spreading of ethanol-water on hierarchical nanowire surfaces with interconnected V-groove. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
10
|
Lee J, Mohraz A, Won Y. Enhanced Capillary Wicking through Hierarchically Porous Constructs Derived from Bijel Templates. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14063-14072. [PMID: 36342818 DOI: 10.1021/acs.langmuir.2c01965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Liquid capillarity through porous media can be enhanced by a rational design of hierarchically porous constructs that suggest sufficiently large liquid pathways from an upper-level hierarchy as well as capillary pressure enabled by a lower hierarchy. Here, we demonstrate a material design strategy utilizing a new class of self-assembled soft materials, called bicontinuous interfacially jammed emulsion gels (bijels), to produce hierarchically porous copper, which enables the unique combination of unprecedented control over both macropores and mesopores in a regular, uniform, and continuous arrangement. The dynamic droplet topologies on the hierarchically copper pores prove the significant enhancement in liquid capillarity compared to homogeneous porous structures. The role of nanoscale morphology in liquid infiltration is further investigated through environmental scanning electron microscopy, in which wetting through the mesopores occurs at the beginning, followed by liquid transport through macropores. This understanding on capillary wicking will allow us to design better hierarchically porous media that can address performance breakthroughs in interfacial applications, ranging from battery electrodes, cell delivery in biomedical devices, to capillary-fed thermal management systems.
Collapse
Affiliation(s)
- Jonggyu Lee
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California92697, United States
| | - Ali Mohraz
- Department of Chemical and Biomolecular Engineering, University of California, Irvine, Irvine, California92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California92697, United States
| | - Yoonjin Won
- Department of Mechanical and Aerospace Engineering, University of California, Irvine, Irvine, California92697, United States
- Department of Materials Science and Engineering, University of California, Irvine, Irvine, California92697, United States
| |
Collapse
|
11
|
Wang M, Long J, Liu Y, Wang N, Li H, Yang H, Ruan S. A Superhydrophilic Silicon Surface Enhanced by Multiscale Hierarchical Structures Fabricated by Laser Direct Writing. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:11015-11021. [PMID: 36044782 DOI: 10.1021/acs.langmuir.2c01633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Many biological surfaces with hierarchical structures exhibit super wetting properties, but a multiscale hierarchical metal surface with superhydrophilic performance is difficult to be fabricated using a simple method. In this work, we report a large area micro/nanotextured superhydrophilic silicon surface fabricated by a laser direct writing technique. The combination of a microscale column structure and randomization-distributed nano-bumps decorated on the column enhances the superhydrophilic properties, with the contact angle reduced substantially from about 46° to 0°, where the droplets are able to spread rapidly within 591 ms. The water wetting orientation can be regulated by controlling the shape of microcolumns on the surface. Moreover, our results show that the fabricated surface with the hierarchical structure has better droplet shape control performance and higher fog collection efficiency compared to a smooth surface. These surfaces have potential applications in heat exchangers, biosensors, cell adhesives, and self-cleaning solar cells.
Collapse
Affiliation(s)
- Meng Wang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Jiazhao Long
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Yiting Liu
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Ning Wang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Hui Li
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Huan Yang
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| | - Shuangchen Ruan
- Shenzhen Technology University, Shenzhen 518118, People's Republic of China
| |
Collapse
|
12
|
Al Hossain A, Dick A, Doerk G, Colosqui CE. Toward controlling wetting hysteresis with nanostructured surfaces derived from block copolymer self-assembly. NANOTECHNOLOGY 2022; 33:455302. [PMID: 35760037 DOI: 10.1088/1361-6528/ac7c24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
The synthesis of nanostructured surfaces via block copolymer (BCP) self-assembly enables a precise control of the surface feature shape within a range of dimensions of the order of tens of nanometers. This work studies how to exploit this ability to control the wetting hysteresis and liquid adhesion forces as the substrate undergoes chemical aging and changes in its intrinsic wettability. Via BCP self-assembly we fabricate nanostructured surfaces on silicon substrates with a hexagonal array of regular conical pillars having a fixed period (52 nm) and two different heights (60 and 200 nm), which results in substantially different lateral and top surface areas of the nanostructure. The wetting hysteresis of the fabricated surfaces is characterized using force-displacement measurements under quasistaic conditions and over sufficiently long periods of time for which the substrate chemistry and surface energy, characterized by the Young contact angle, varies significantly. The experimental results and theoretical analysis indicate that controlling the lateral and top area of the nanostructure not only controls the degree of wetting hysteresis but can also make the advancing and receding contact angles less susceptible to chemical aging. These results can help rationalize the design of nanostructured surfaces for different applications such as self-cleaning, enhanced heat transfer, and drag reduction in micro/nanofluidic devices.
Collapse
Affiliation(s)
- Aktaruzzaman Al Hossain
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Austin Dick
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, United States of America
| | - Gregory Doerk
- Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, United States of America
| | - Carlos E Colosqui
- Department of Mechanical Engineering, Stony Brook University, Stony Brook, NY 11794, United States of America
- Department of Applied Mathematics & Statistics, Stony Brook University, Stony Brook, NY 11794, United States of America
| |
Collapse
|
13
|
Droplet Spreading Characteristics on Ultra-Slippery Solid Hydrophilic Surfaces with Ultra-Low Contact Angle Hysteresis. COATINGS 2022. [DOI: 10.3390/coatings12060755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2022]
Abstract
Dynamic interactions of the droplet impact on a solid surface are essential to many emerging applications, such as electronics cooling, ink-jet printing, water harvesting/collection, anti-frosting/icing, and microfluidic and biomedical device applications. Despite extensive studies on the kinematic features of the droplet impact on a surface over the last two decades, the spreading characteristics of the droplet impact on a solid hydrophilic surface with ultra-low contact angle hysteresis are unclear. This paper clarifies the specific role of the contact angle and contact angle hysteresis at each stage of the droplet impact and spreading process. The spreading characteristics of the droplet impact on an ultra-slippery hydrophilic solid surface are systematically compared with those on plain hydrophilic, hydroxylated hydrophilic, and plain hydrophobic surfaces. The results reveal that the maximum spreading factor (βmax) of impacting droplets is mainly dependent on the contact angle and We. βmax increases with the increase in We and the decrease in the contact angle. Low contact angle hysteresis can decrease the time required to reach the maximum spreading diameter and the time interval during which the maximum spreading diameter is maintained when the contact angles are similar. Moreover, the effect of the surface inclination angle on the spreading and slipping dynamics of impacting droplets is investigated. With the increase in the inclination angle and We, the gliding distance of the impacting droplet becomes longer. Ultra-low contact angle hysteresis enables an impacting droplet to slip continuously on the ultra-slippery hydrophilic surface without being pinned to the surface. The findings of this work not only show the important role of the surface wettability in droplet spreading characteristics but also present a pathway to controlling the dynamic interactions of impacting droplets with ultra-slippery hydrophilic surfaces.
Collapse
|
14
|
Jiang G, Tian Z, Wang L, Luo X, Chen C, Hu X, Peng R, Zhang H, Zhong M. Anisotropic Hemiwicking Behavior on Laser Structured Prismatic Microgrooves. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6665-6675. [PMID: 35578803 DOI: 10.1021/acs.langmuir.2c00568] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The wicking phenomenon, including wicking and hemiwicking, has attracted increasing attention for its critical importance to a wide range of engineering applications, such as thermal management, water harvesting, fuel cells, microfluidics, and biosciences. There exists a more urgent demand for anisotropic wicking behaviors since an increasing number of advanced applications are significantly complex. For example, special-shaped vapor chambers and heating atomizers in some electronic cigarettes need liquid replenishing with various velocities in different directions. Here, we report two-dimensional anisotropic hemiwicking behaviors with elliptical shapes on laser structured prismatic microgrooves. The prismatic microgrooves were fabricated via one-step femtosecond laser direct writing, and the anisotropic hemiwicking behaviors were observed when utilizing glycerol, glycol, and water as the test liquid. Specifically, the ratios of horizontal wicking distance in directions along short and long axes were tan 0°, tan 15°, tan 30°, and tan 45° for samples with cross-angles of 0°, 30°, 60°, and 90°, respectively. The vertical water wicking front displayed corresponding angles under the guidance of laser structured prismatic microgrooves. Theoretical analysis shows that the wicking distance is mainly dependent on the cross-angle θ and surface roughness, in which the wicking distance is proportional to cos(θ/2). Driven by the capillary pressure forming in the narrow microgrooves, the liquid initially filled the valleys of microgrooves and then surrounded and covered the prismatic ridges with laser-induced nanoparticles. The abundant nanoparticles increased the surface roughness, leading to the enhancement of wicking performance, which was further evidenced by the larger wicking speed of the sample with more nanoparticles. The mechanism of anisotropic hemiwicking behaviors revealed in this work paves the way for wicking control, and the proposed prismatic microgrooved surfaces with two-dimensional anisotropic hemiwicking performance and superhydrophilicity could serve in a broad range of applications, especially for the advanced thermal management with specific heat load configurations.
Collapse
Affiliation(s)
- Guochen Jiang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Ze Tian
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Lizhong Wang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Xiao Luo
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Changhao Chen
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Xinyu Hu
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Rui Peng
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Hongjun Zhang
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| | - Minlin Zhong
- Laser Materials Processing Research Centre, School of Materials Science and Engineering, Tsinghua University, Key Laboratory for Advanced Materials Processing Technology, Ministry of Education, Beijing 100084, P. R. China
| |
Collapse
|
15
|
Chun J, Xu C, Li Q, Chen Y, Zhao Q, Yang W, Wen R, Ma X. Microscopic Observation of Preferential Capillary Pumping in Hollow Nanowire Bundles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:352-362. [PMID: 34812042 DOI: 10.1021/acs.langmuir.1c02647] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Numerous studies have focused on designing micro/nanostructured surfaces to improve wicking capability for rapid liquid transport in many industrial applications. Although hierarchical surfaces have been demonstrated to enhance wicking capability, the underlying mechanism of liquid transport remains elusive. Here, we report the preferential capillary pumping on hollow hierarchical surfaces with internal nanostructures, which are different from the conventional solid hierarchical surfaces with external nanostructures. Specifically, capillary pumping preferentially occurs in the nanowire bundles instead of the interconnected V-groove on hollow hierarchical surfaces, observed by confocal laser scanning fluorescence microscopy. Theoretical analysis shows that capillary pumping capability is mainly dependent on the nanowire diameter and results in 15.5 times higher capillary climbing velocity in the nanowire bundles than that in the microscale V-groove. Driven by the Laplace pressure difference between nanowire bundles and V-grooves, the preferential capillary pumping is increased with the reduction of the nanowire diameter. Capillary pumping of the nanowire bundles provides a preferential path for rapid liquid flow, leading to 2 times higher wicking capability of the hollow hierarchical surface comparing with the conventional hierarchical surface. The unique mechanism of preferential capillary pumping revealed in this work paves the way for wicking enhancement and provides an insight into the design of wicking surfaces for high-performance capillary evaporation in a broad range of applications.
Collapse
Affiliation(s)
- Jiang Chun
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chen Xu
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qifan Li
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yansong Chen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Qishan Zhao
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Yang
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Rongfu Wen
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| | - Xuehu Ma
- State Key Laboratory of Fine Chemicals, Liaoning Key Laboratory of Clean Utilization of Chemical Resources, Institute of Chemical Engineering, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
16
|
Nandyala D, Wang Z, Hwang D, Cubaud T, Colosqui CE. Design, Fabrication, and Analysis of a Capillary Diode for Potential Application in Water-Oil Separation. ACS APPLIED MATERIALS & INTERFACES 2020; 12:45950-45960. [PMID: 32955850 DOI: 10.1021/acsami.0c10744] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
A capillary device is designed and fabricated in glass to work as a fluidic diode with vanishingly small hydrodynamic conductance for imbibition of water within a finite range of immersion depths. This is attained through patterning a section of predefined length on the device surfaces using a single-step laser-based ablation process and without resorting to chemical treatment of the hydrophilic glass substrate. While the studied device works as a fluidic diode for water, it can behave as a conventional capillary slit for the imbibition of oils (e.g., alkanes, silicone oils) with low surface tension. A prototype device with simple geometric design is demonstrated for selective adsorption and separation of water and oil in vertical imbibition experiments at controlled immersion depths. Efficient devices for passive separation of water and oil can be designed based on the demonstrated physical mechanism and the analytical model proposed in this work.
Collapse
Affiliation(s)
- Dhiraj Nandyala
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - Zhen Wang
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - David Hwang
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - Thomas Cubaud
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
| | - Carlos E Colosqui
- Department of Mechanical Engineering, Stony Brook University, New York, New York 11794, United States
- Department of Applied Mathematics and Statistics, Stony Brook University, New York, New York 11794, United States
| |
Collapse
|