1
|
Hao Y, Zhu G. The Latest Advances in Mechanically Robust Self-Healing Polyurea Based on Dynamic Chemistry. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2414788. [PMID: 40245274 PMCID: PMC12097089 DOI: 10.1002/advs.202414788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/14/2025] [Indexed: 04/19/2025]
Abstract
Polyureas are widely used in many fields such as civil, industry, and defense due to their excellent performance and structural adjustable properties. The development of self-healing polyurea materials with high strength and toughness, key connotations of their advanced applications, is both fascinating and challenging because these properties are associated with conflicting structural features, making it difficult to optimize these contradictory properties in a single material. In this review, the relationship between polyurea structure and performance is discussed, and the design strategy of self-healing polyurea networks based on dynamic interactions that allow for balancing high mechanical performance and repairability is delineated from a molecular design point of view. Lastly, a summary of the potential applications of polyurea in the fields of sensing, protective coatings, and recycling, as well as possible future challenges, is presented.
Collapse
Affiliation(s)
- Yujia Hao
- School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710129China
| | - Guangming Zhu
- School of Chemistry and Chemical EngineeringNorthwestern Polytechnical UniversityXi'an710129China
| |
Collapse
|
2
|
Wang Z, Yuan J, Wang X, Zhang Y, Wang Z, Wang Y, Guo B, Shi J, Xu J. Strong and Anti-Impact Multi-Functional Elastomer via Hierarchical Hydrogen Bonding Design. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2500381. [PMID: 40304148 DOI: 10.1002/smll.202500381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 04/13/2025] [Indexed: 05/02/2025]
Abstract
Despite extensive research on enhancing the strength, toughness, or impact resistance of elastomers, materials that simultaneously integrate these properties remain elusive. In this work, a multifunctional elastomer is developed with high strength, superior toughness, and excellent impact resistance by designing multiscale structures. The synergistic coupling of strong and weak hydrogen bonds, rigid ring-flexible chain coordination, and precise control of hard/soft block ratio enabled the development of an optimized multiscale architecture tailored for superior performance, achieving a tensile strength of 84 MPa and a toughness of 450 MJ m⁻3, while maintaining excellent impact resistance across varying strain rates. Additionally, the incorporation of hindered urea dynamic covalent bonds and hydrogen bond-induced localized conjugation effect impart thermal adhesion and fluorescence capabilities, broadening the material's functional application scenarios. This multiscale molecular design strategy not only facilitates the tailoring of high-performance materials but also provides new insights into the structure-property relationships in elastomers.
Collapse
Affiliation(s)
- Zhongting Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jing Yuan
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Xinghao Wang
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Tsinghua University, Beijing, 100084, China
| | - Yizhi Zhang
- Department of Engineering Mechanics, Applied Mechanics Laboratory, Tsinghua University, Beijing, 100084, China
| | - Zhiqi Wang
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Yuanxia Wang
- College of Materials Science and Engineering, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Baohua Guo
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jiaxin Shi
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| | - Jun Xu
- Advanced Materials Laboratory of Ministry of Education (MOE), Department of Chemical Engineering, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
3
|
Liu Z, Ma Y. Recyclable Dynamic Covalent Networks Derived from Isocyanate Chemistry: The Critical Role of Electronic and Steric Effects in Reversibility. CHEMSUSCHEM 2025:e2500436. [PMID: 40198229 DOI: 10.1002/cssc.202500436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/31/2025] [Accepted: 04/08/2025] [Indexed: 04/10/2025]
Abstract
The dynamic covalent networks (DCNs), featuring dynamic covalent bonds (DCBs) formed through isocyanate-involved chemistry, potentially contributes to a circular economy in polyurea and polyurethane industries, due to the inherent recyclability of DCNs. Over the past decade, remarkable progress has been made in the development of isocyanate-derived DCBs (IdDCBs) for the synthesis of recyclable DCNs, aiming to substitute conventional, non-recyclable materials. Herein, the fundamental aspect of the IdDCB-related chemistries reported to date is investigated, and it is found that their reversibility is governed by electronic and steric effects. This discovery encourages us to structure the review into three sections. The first section examines the reversibility of various IdDCBs through the lens of electronic and steric influences. The findings show that the reversibility of some IdDCBs is driven by a single chemical effect, with the examples of steric effect contributing to the dynamic behavior of thiourethanes and hindered ureas, while other cases of reversibility arise from a combination of two or more chemical effects. The knowledge thus established allows to categorize and discuss the technologically relevant DCNs, with particular emphasis on how these chemical effects influence their recyclability. Finally, the review concludes by highlighting several potentially impactful research directions that merit further exploration.
Collapse
Affiliation(s)
- Zhiyong Liu
- Department of Polymer Materials and Engineering, School of Chemical and Environmental Engineering, Anhui Polytechnic University, Wuhu, 241000, P. R. China
| | - Youwei Ma
- Institute of Materials, École Polytechnique Fédérale de Lausanne (EPFL), Station 12, CH-1015, Lausanne, Switzerland
| |
Collapse
|
4
|
Li X, Ning N, Yu B, Tian M. Recyclable Millable Polyurethane based on Enaminone Bonds With Upcycled Mechanical Performance. Macromol Rapid Commun 2025; 46:e2400858. [PMID: 39803848 DOI: 10.1002/marc.202400858] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/23/2024] [Indexed: 03/28/2025]
Abstract
Thermoplastic polyurethane (TPU) exhibits re-processable properties, but the properties of TPU is deteriorated during the reprocessing for the oxidation and degradation of polymer chains. Meanwhile, although thermoset polyurethane exhibits excellent mechanical properties, it cannot be recycled for permanent crosslinking. Hence, it's still a challenge to obtain PU which exhibits the balance between the recyclability and mechanical properties. In this work, a new dynamic bond obtained from the reaction between enaminone and isocyanate is used to prepare re-processable millable polyurethane, and the morphology of network can be tuned via the dissociation of the cross-linked sites of PU. Interestingly, the cross-linked network can transform into a linear polymer by adding the amine which can be used when reacted with isocyanate to generate new re-crosslinked PU. This process can be carried out in a Haake mixer without any solvents. The mechanical properties of the re-crosslinked polyurethane can be tuned via the controlling of the amine and isocyanate addition, and the maximum tensile strength increase by 178.4% after processing for four times, realizing mechanical reinforcement after recycling. This kind of recycling achieves through one-step melting method in solvent-free conditions provides a feasible way to prepare recyclable PU with good mechanical performance and customizable properties.
Collapse
Affiliation(s)
- Xinyu Li
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Nanying Ning
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Bing Yu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ming Tian
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, China
- Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
5
|
Xu J, Shao M, Wang X, Chen T, Li S, Zhang X, Wang T, Zhang Y, Yang Z, Wang Q. Flexible Cages Enable Robust Supramolecular Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2311992. [PMID: 38183353 DOI: 10.1002/adma.202311992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/19/2023] [Indexed: 01/08/2024]
Abstract
Advances in modern industrial technology continue to place stricter demands on engineering polymeric materials, but simultaneously possessing superior strength and toughness remains a daunting challenge. Herein, a pioneering flexible cage-reinforced supramolecular elastomer (CSE) is reported that exhibits superb robustness, tear resistance, anti-fatigue, and shape memory properties, achieved by innovatively introducing organic imide cages (OICs) into supramolecular networks. Intriguingly, extremely small amounts of OICs make the elastomer stronger, significantly improving mechanical strength (85.0 MPa; ≈10-fold increase) and toughness (418.4 MJ m-3; ≈7-fold increase). Significantly, the cooperative effect of gradient hydrogen bonds and OICs is experimentally and theoretically demonstrated as flexible nodes, enabling more robust supramolecular networks. In short, the proposed strengthening strategy of adding flexible cages effectively balances the inherent conflict between material strength and toughness, and the prepared CSEs are anticipated to be served in large-scale devices such as TBMs in the future.
Collapse
Affiliation(s)
- Jing Xu
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Mingchao Shao
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xiaoyue Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tianze Chen
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Song Li
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Xinrui Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Tingmei Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Yaoming Zhang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Zenghui Yang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| | - Qihua Wang
- State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, Beijing, 100049, China
- Key Laboratory of Science and Technology on Wear and Protection of Materials, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
| |
Collapse
|
6
|
Cui YY, Sheng MQ, Liu Y, Feng Y, Li HJ, Wu YC. Antifouling and Self-Healing Performance of Marine Coatings Based on Hydrogen-Bond Interactions. ACS APPLIED MATERIALS & INTERFACES 2023; 15:58967-58975. [PMID: 38055890 DOI: 10.1021/acsami.3c16130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
Biofouling is an urgent problem that has to be solved in marine industries. As the traditional antifouling coating loses its antifouling ability after being damaged, the introduction of self-healing performance into the antifouling coating becomes a high priority. Accordingly, we report here a self-healing and antifouling polyurethane composite coating (PCL/MPU-Si/M) with the use of its carbonyl groups as multiple hydrogen bond acceptors. Its fabrication is carried out under mild and solvent-free conditions, forming a "cross-linking" network structure composed of alternately strong and weak bonds based on multiple carbonyl groups. The self-healing efficiency of PCL/MPU-Si/M in tensile strength is 85% after 48 h at room temperature, and higher temperatures can accelerate this self-healing process. Lubricant polydimethylsiloxane and antifoulant medetomidine endow the material with antifouling properties. The maximum antibacterial ability and algae inhibition coverage ability are 91.7 and 90.9%, respectively. This work provides a possible perspective for the design of antifouling and self-healing marine coatings.
Collapse
Affiliation(s)
- Yong-Yin Cui
- Weihai Marine Organism & Medical Technology Research Institute, College of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Miao-Qing Sheng
- Weihai Marine Organism & Medical Technology Research Institute, College of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Ying Liu
- Weihai Marine Organism & Medical Technology Research Institute, College of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Yuan Feng
- Weihai Marine Organism & Medical Technology Research Institute, College of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Hui-Jing Li
- Weihai Marine Organism & Medical Technology Research Institute, College of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China
| | - Yan-Chao Wu
- Weihai Marine Organism & Medical Technology Research Institute, College of Marine Science and Technology, Harbin Institute of Technology, Weihai 264209, P. R. China
| |
Collapse
|
7
|
Li H, Zhou J, Yu J, Zhao J. Light-activated cellulose nanocrystals/fluorinated polyacrylate-based waterborne coating: Facile preparation, mechanical and self-healing behavior. Int J Biol Macromol 2023; 249:126062. [PMID: 37524288 DOI: 10.1016/j.ijbiomac.2023.126062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 07/10/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
The development of environmental-friendly self-healing nanocomposites has attracted much attention. In this paper, the light-activated cellulose nanocrystals/ fluorinated polyacrylate-based waterborne coating based on the reversible cycloaddition reaction of the coumarin groups was prepared via Pickering emulsion polymerization. The cellulose nanocrystals (CNCs) modified by the PDMAEMA-b-PGMA-b-P(HFBA-co-VBMC) copolymer were studied via FT-IR and TGA. In addition, the dispersity and interface behavior of CNCs before and after modification were investigated by DLS and interfacial tension measurements. Afterwards, we focused on the influence of modified CNCs, PDMAEMA-g-CNC-g- P(HFBA-co-VBMC) (MCNC) dosage on the Pickering emulsion, emulsion polymerization and properties of latex film. The droplet diameter of Pickering emulsion gradually reduced with the increase of MCNC dosage. The MCNC dosage for the minimum average size and optimum stability of latex particles was 1.0 wt%. Moreover, the latex film comprising 1.0 wt% MCNC presented not only high tensile stress (6.0 MPa), large elongation at break (567.70 %) and superior oil/water repellency but also excellent self-healing properties. The outstanding self-healing capability of latex film was attributed to the reversible light-activated dimerization of coumarin groups. The preparation method for the advanced performance waterborne cellulose nanocrystals/fluorinated polyacrylate will provide valuable guidance for the development of versatile materials.
Collapse
Affiliation(s)
- Hong Li
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jianhua Zhou
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China.
| | - Jiarui Yu
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Jiaojiao Zhao
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science and Technology, Xi'an 710021, China; National Demonstration Center for Experimental Light Chemistry Engineering Education, Shaanxi University of Science and Technology, Xi'an 710021, China
| |
Collapse
|
8
|
Guo Z, Lu X, Wang X, Li X, Li J, Sun J. Engineering of Chain Rigidity and Hydrogen Bond Cross-Linking toward Ultra-Strong, Healable, Recyclable, and Water-Resistant Elastomers. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300286. [PMID: 36854256 DOI: 10.1002/adma.202300286] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/21/2023] [Indexed: 05/26/2023]
Abstract
High-performance elastomers have gained significant interest because of their wide applications in industry and our daily life. However, it remains a great challenge to fabricate elastomers simultaneously integrating ultra-high mechanical strength, toughness, and excellent healing and recycling capacities. In this study, ultra-strong, healable, and recyclable elastomers are fabricated by dynamically cross-linking copolymers composed of rigid polyimide (PI) segments and soft poly(urea-urethane) (PUU) segments with hydrogen bonds. The elastomers, which are denoted as PIPUU, have a record-high tensile strength of ≈142 MPa and an extremely high toughness of ≈527 MJ m-3 . The structure of the PIPUU elastomer contains hydrogen-bond-cross-linked elastic matrix and homogenously dispersed rigid nanostructures. The rigid PI segments self-assemble to generate phase-separated nanostructures that serve as nanofillers to significantly strengthen the elastomers. Meanwhile, the elastic matrix is composed of soft PUU segments cross-linked with reversible hydrogen bonds, which largely enhance the strength and toughness of the elastomer. The dynamically cross-linked PIPUU elastomers can be healed and recycled to restore their original mechanical strength. Moreover, because of the excellent mechanical performance and the hydrophobic PI segments, the PIPUU elastomers are scratch-, puncture-, and water-resistant.
Collapse
Affiliation(s)
- Zhiwei Guo
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xingyuan Lu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiaohan Wang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Xiang Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Jian Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| | - Junqi Sun
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun, 130012, P. R. China
| |
Collapse
|
9
|
Zhu X, Han K, Li C, Wang J, Yuan J, Pan Z, Pan M. Tough, Photoluminescent, Self-Healing Waterborne Polyurethane Elastomers Resulting from Synergistic Action of Multiple Dynamic Bonds. ACS APPLIED MATERIALS & INTERFACES 2023; 15:19414-19426. [PMID: 37018595 DOI: 10.1021/acsami.3c00333] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Polymers that integrate multiple functions into one system broaden the application range of materials, but it remains a great challenge to obtain polymer materials with simultaneously high strength, high toughness, and high self-healing rate. In this work, we prepared waterborne polyurethane (WPU) elastomers using Schiff bases containing disulfide and acylhydrazone bonds (PD) as chain extenders. Acylhydrazone forming a hydrogen bond not only acts as a physical cross-linking point, which promotes the microphase separation of polyurethane to increase the thermal stability, tensile strength, and toughness of the elastomer, but also serves as a "clip" to integrate various dynamic bonds together to synergistically reduce the activation energy of the polymer chain movement and endow the molecular chain with faster fluidity. Therefore, WPU-PD exhibits excellent mechanical properties at room temperature, such as a tensile strength and a fracture energy of 25.91 MPa and 121.66 kJ m-2, respectively, and a high self-healing efficiency of 93.7% in a short time under moderate heating conditions. In addition, the photoluminescence property of WPU-PD enables us to track its self-healing process by monitoring change of the fluorescence intensity at the cracks, which helps to avoid the accumulation of cracks and improve the reliability of the elastomer. This self-healing polyurethane has a great potential application value in optical anticounterfeiting, flexible electronics devices, functional automobile protective films, and so on.
Collapse
Affiliation(s)
- Xueling Zhu
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Kai Han
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Chao Li
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jianlong Wang
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Jinfeng Yuan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Zhicheng Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300401, P. R. China
| | - Mingwang Pan
- Department of Polymer Materials and Engineering, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300401, P. R. China
- Hebei Key Laboratory of Functional Polymers, Hebei University of Technology, Tianjin 300401, P. R. China
| |
Collapse
|
10
|
An ZW, Xue R, Ye K, Zhao H, Liu Y, Li P, Chen ZM, Huang CX, Hu GH. Recent advances in self-healing polyurethane based on dynamic covalent bonds combined with other self-healing methods. NANOSCALE 2023; 15:6505-6520. [PMID: 36883369 DOI: 10.1039/d2nr07110j] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
To meet more application requirements, improving mechanical properties and self-healing efficiency has become the focus of current research on self-healing PU. The competitive relationship between self-healing ability and mechanical properties cannot be avoided by a single self-healing method. To address this problem, a growing number of studies have combined dynamic covalent bonding with other self-healing methods to construct the PU structure. This review summarizes recent studies on PU materials that combine typical dynamic covalent bonds with other self-healing methods. It mainly includes four parts: hydrogen bonding, metal coordination bonding, nanofillers combined with dynamic covalent bonding and multiple dynamic covalent bond bonding. The advantages and disadvantages of different self-healing methods and their significant role in improving self-healing ability and mechanical properties in PU networks are analyzed. At the same time, the possible challenges and research directions of self-healing PU materials in the future are discussed.
Collapse
Affiliation(s)
- Ze-Wei An
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Rui Xue
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Kang Ye
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Hui Zhao
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
- Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Yang Liu
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, China
| | - Peng Li
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Zhen-Ming Chen
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Chong-Xing Huang
- Guangxi Key Laboratory of Calcium Carbonate Resources Comprehensive Utilization, College of Materials and Chemical Engineering, Hezhou University, Hezhou 542899, China
| | - Guo-Hua Hu
- Laboratory of Reactions and Process Engineering, CNRS-University of Lorraine, Nancy 54001, France
| |
Collapse
|
11
|
Yin Y, Xu Y, Zhang X, Duan B, Xin Z, Bao C. Mechanically Strong and Tough Poly(urea-urethane) Thermosets Capable of Being Degraded under Mild Condition. Macromol Rapid Commun 2023; 44:e2200765. [PMID: 36419259 DOI: 10.1002/marc.202200765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/15/2022] [Indexed: 11/27/2022]
Abstract
The development of degradable polymeric materials such as degradable polyurethane or polyurea has been much highlighted for resource conservation and environmental protection. Herein, a facile strategy of constructing mechanically strong and tough poly(urea-urethane) (PUU) thermosets that can be degraded under mild conditions by using triple boron-urethane bonds (TBUB) as cross-linkers is demonstrated. By tailoring the molecular weight of the soft segment of the prepolymers, the mechanical performance can be finely controlled. Based on the cross-linking of TBUB units and hydrogen-binding interactions between TBUB linkages, the as-prepared PUU thermosets have excellent mechanical strength of ≈40.2 MPa and toughness of ≈304.9 MJ m-3 . Typically, the PBUU900 strip can lift a barbell with 60 000 times its own weight, showing excellent load-bearing capacity. Meanwhile, owing to the covalent cross-linking of TBUB units, all the PUU thermosets show initial decomposition temperatures over 290 °C, which are comparable to those of the traditional thermosets. Moreover, the TBUB cross-linked PUU thermosets can be easily degraded in a mild acid solution. The small pieces of the PBUU sample can be fully decomposed in 1 m HCl/THF solution for 3.5 h at room temperature.
Collapse
Affiliation(s)
- Yanlong Yin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Yang Xu
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Xuhao Zhang
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Baorong Duan
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Zhirong Xin
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| | - Chunyang Bao
- College of Chemistry & Chemical Engineering, Yantai University, Yantai, 264005, China
| |
Collapse
|
12
|
Jin H, Lin W, Wu Z, Cheng X, Chen X, Fan Y, Xiao W, Huang J, Qian Q, Chen Q, Yan Y. Surface Hydrophobization Provides Hygroscopic Supramolecular Plastics Based on Polysaccharides with Damage-Specific Healability and Room-Temperature Recyclability. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2207688. [PMID: 36373548 DOI: 10.1002/adma.202207688] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/06/2022] [Indexed: 06/16/2023]
Abstract
Supramolecular materials with room-temperature healability and recyclability are highly desired because they can extend materials lifetimes and reduce resources consumption. Most approaches toward healing and recycling rely on the dynamically reversible supramolecular interactions, such as hydrogen, ionic and coordinate bonds, which are hygroscopic and vulnerable to water. The general water-induced plasticization facilitates the healing and reprocessing process but cause a troubling problem of random self-adhesion. To address this issue, here it is reported that by modifying the hygroscopic surfaces with hydrophobic alkyl chains of dodecyltrimethoxysilane (DTMS), supramolecular plastic films based on commercial raw materials of sodium alginate (SA) and cetyltrimethylammonium bromide (CTAB) display extraordinary damage-specific healability. Owing to the hydrophobic surfaces, random self-adhesion is eliminated even under humid environment. When damage occurs, the fresh surfaces with ionic groups and hydroxyl groups expose exclusively at the damaged site. Thus, damage-specific healing can be readily facilitated by water-induced plasticization. Moreover, the films display excellent room-temperature recyclability. After multiple times of reprocessing and re-modifying with DTMS, the rejuvenated films exhibit fatigueless mechanical properties. It is anticipated that this approach to damage-specific healing and room-temperature recycling based on surface hydrophobization can be applied to design various of supramolecular plastic polysaccharides materials for building sustainable societies.
Collapse
Affiliation(s)
- Hongjun Jin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Weilin Lin
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Ziyan Wu
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Xinyu Cheng
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Xinyuan Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Yingjie Fan
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Wangchuan Xiao
- School of Resources and Chemical Engineering, Sanming University, Sanming, Fujian, 365004, China
| | - Jianbin Huang
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| | - Qingrong Qian
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Qinghua Chen
- Engineering Research Center of Polymer Green Recycling of Ministry of Education, College of Environmental and Resource Sciences, College of Carbon Neutral Modern Industry, Fujian Normal University, Fuzhou, Fujian, 350007, China
| | - Yun Yan
- Beijing National Laboratory for Molecular Sciences (BNLMS), College of Chemistry and Molecular Engineering, Peking University, Beijing, 100871, China
| |
Collapse
|
13
|
A topological polymer network with Cu(II)-coordinated reversible imidazole-urea locked unit constructs an ultra-strong self-healing elastomer. Sci China Chem 2023. [DOI: 10.1007/s11426-022-1437-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
14
|
Shi Q, Wu W, Yu B, Ren M, Wu L, Zhang C. Preparation of ecofriendly water-borne polyurethane elastomer with mechanical robustness and self-healable ability based on multi-dynamic interactions. RSC Adv 2022; 12:35396-35408. [PMID: 36540214 PMCID: PMC9733714 DOI: 10.1039/d2ra07000f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 11/29/2022] [Indexed: 04/27/2025] Open
Abstract
Self-healing materials have attracted widespread attention owing to their capacity to extend the lifetime of materials and improve resource utilization. However, achieving superior mechanical performance and high self-healable capability simultaneously under moderate conditions remains a long-standing challenge. Integrating multiple dynamic interactions in waterborne polyurethane (WPU) systems can overcome the above-mentioned issue. Herein, environmentally friendly WPU systems containing multiple hydrogen bonds and boronic ester bonds in their polymer backbones were synthesized, where 2,6-diaminopyridine (DAP) and boric acid (BA) served as a dynamic chain extender and reversible cross-linking agent, respectively. The chain structure of the polymer was adjusted by controlling the ratio (DAP/BA) of hard segments, which could effectively meet the requirement of mechanical robustness and desirable self-healable efficiency. Benefiting from multiple dynamic interactions, the prepared WPU elastomer exhibited good mechanical properties, such as tensile strength (from 18.89 MPa to 30.78 MPa), elongation (about 900%) and toughness (from 54.82 MJ m-3 to 92.74 MJ m-3). Driven by water and heat, the IP-DAP40-BA10-WPU film cut in the middle exhibited good self-healing ability, with healing efficiencies of tensile stress of 90.74% and elongation of 91.29% after self-healing at 80 °C for 36 h. Meanwhile, the synthesized WPU elastomer exhibited good water resistance and thermal stability. This work presents a novel way to design robust self-healable materials, which will have wide promising applications in flexible electronics, smart coatings and adhesives.
Collapse
Affiliation(s)
- Qingsong Shi
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Weilin Wu
- School of Pharmaceutical Sciences, Hunan University of Medicine No. 492 South Jinxi Road Huaihua Hunan 418000 P. R. China
| | - Bing Yu
- MEGA P&C Advanced Materials (Shanghai) Co., Ltd. P. R. China
| | - Mengqing Ren
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Lili Wu
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| | - Chaocan Zhang
- School of Materials Science and Engineering, Wuhan University of Technology Wuhan 430070 P. R. China
| |
Collapse
|
15
|
Zhao D, Zhou X, Li Q, Yang J, Li H. Unprecedented toughness in transparent, luminescent, self-healing polymers enabled via hierarchical rigid domain design. MATERIALS HORIZONS 2022; 9:2626-2632. [PMID: 35983747 DOI: 10.1039/d2mh00820c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The preparation of luminescent self-healing materials simultaneously featuring superior integrated mechanical properties is still a great challenge because the relationship between self-healing ability and mechanical capacities is conflicted. Here, transparent luminescent materials with balanced self-healing behavior, extreme toughness, and fast elastic recovery are prepared via hierarchical rigid domain design by coordinating lanthanide (Ln3+) to terpyridine (TPy) moieties linked to the polymer chains formed through polymerization of tolylene-2,4-diisocyanate-terminated polypropylene glycol (PPG-NCO) and 1,6-hexanediamine (HDA). The hierarchical rigid domain containing lanthanide-terpyridine (Ln3+-TPy) coordination interactions and H-bonds formed by urea and urethane leads to a tough network that features unprecedented toughness of 133.35 MJ m-3, which reaches 83% of that of typical spider silk (≈ 160 MJ m-3) and is also dynamic for fast self-healing at ambient temperature. Besides, the multi-color emission, ranging from red through orange and yellow to green, can be achieved via adjusting the molar ratio of Eu3+/Tb3+. We believe that the strategy applied in this work provides some insights for the preparation of high mechanical strength luminescence materials with self-healing properties.
Collapse
Affiliation(s)
- Di Zhao
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China.
| | - Xinzhe Zhou
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China.
| | - Qianrui Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China.
| | - Jing Yang
- School of Materials Science and Engineering, Hebei University of Engineering, Handan, 056038, Hebei province, P. R. China
| | - Huanrong Li
- National-Local Joint Engineering Laboratory for Energy Conservation in Chemical Process Integration and Resources Utilization, Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, GuangRong Dao 8, Hongqiao District, Tianjin, 300130, P. R. China.
| |
Collapse
|
16
|
Mechanically robust self-repairing polyurea elastomers: the roles of hard segment content and ordered/disordered hydrogen-bonding arrays. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Li Y, Jin Y, Fan W, Zhou R. A review on room-temperature self-healing polyurethane: synthesis, self-healing mechanism and application. JOURNAL OF LEATHER SCIENCE AND ENGINEERING 2022. [DOI: 10.1186/s42825-022-00097-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
AbstractPolyurethanes have been widely used in many fields due to their remarkable features such as excellent mechanical strength, good abrasion resistance, toughness, low temperature flexibility, etc. In recent years, room-temperature self-healing polyurethanes have been attracting broad and growing interest because under mild conditions, room-temperature self-healing polyurethanes can repair damages, thereby extending their lifetimes and reducing maintenance costs. In this paper, the recent advances of room-temperature self-healing polyurethanes based on dynamic covalent bonds, noncovalent bonds and combined dual or triple dynamic bonds are reviewed, focusing on their synthesis methods and self-healing mechanisms, and their mechanical properties, healing efficiency and healing time are also described in detial. In addition, the latest applications of room-temperature self-healing polyurethanes in the fields of leather coatings, photoluminescence materials, flexible electronics and biomaterials are summarized. Finally, the current challenges and future development directions of the room-temprature self-healing polyurethanes are highlighted. Overall, this review is expected to provide a valuable reference for the prosperous development of room-temperature self-healing polyurethanes.
Graphical abstract
Collapse
|
18
|
Shou T, Zhai M, Wu Y, Wu S, Hu S, Zhao X, Zhang L. Bio-based, recyclable and self-healing polyurethane composites with high energy dissipation and shape memory. Macromol Rapid Commun 2022; 43:e2200486. [PMID: 35947533 DOI: 10.1002/marc.202200486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/15/2022] [Indexed: 11/08/2022]
Abstract
Rubber composites make an important contribution to eliminating vibration and noise owing to their unique viscoelasticity. However, it is important to find alternative bio-based products with high damping properties owing to the shortage of petrochemical resources and poor performance. The ability to self-heal is an additional characteristic that is highly desirable because it can further increase the service life and safety of such products. In this study, a bio-based polylactic acid thermoplastic polyurethane (PLA-TPU) and its composites (PLA-TPU/AO-80) were synthesized. The reversible sacrificial hydrogen bonds in the composites increased the peak value of the loss factor (tan δmax ) from 0.87 to 2.12 with a high energy dissipation efficiency of 99% at 50% strain. After being heated for 15 min, the healed sample recovered 81.98% of its comprehensive mechanical properties due to the reorganization of the hydrogen bonds. Its tensile strength remained at 93.4% after recycling five times. Moreover, its shape memory properties showed a response temperature close to the human body temperature making it an ideal candidate for medical applications. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Tao Shou
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Mengyao Zhai
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Yaowen Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Sizhu Wu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Shikai Hu
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Xiuying Zhao
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Liqun Zhang
- State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing, 100029, China.,Key Laboratory of Carbon Fiber and Functional Polymers, Ministry of Education, Beijing University of Chemical Technology, Beijing, 10029, China.,Beijing Engineering Research Center of Advanced Elastomers, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
19
|
A
high‐performance self‐healing
polyurea material based on exchangeable aromatic disulfide. J Appl Polym Sci 2022. [DOI: 10.1002/app.52992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
20
|
Xu H, Tu J, Ji J, Liang L, Li H, Li P, Zhang X, Gong Q, Guo X. Ultra-High-Strength Self-healing Supramolecular Polyurethane Based on Successive Loose Hydrogen-Bonded Hard Segment Structures. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
21
|
Zawadzki M, Zawada K, Kowalczyk S, Plichta A, Jaczewski J, Zabielski T. 3D reactive inkjet printing of aliphatic polyureas using in-air coalescence technique. RSC Adv 2022; 12:3406-3415. [PMID: 35425380 PMCID: PMC8979265 DOI: 10.1039/d1ra07883f] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/10/2022] [Indexed: 01/01/2023] Open
Abstract
An in-flight coalescence reactive inkjet printer has been developed to facilitate the in-air collision of two reactive microdroplets. This way precise volumes of reactive inks can be mixed and subsequently deposited on the substrate to produce the desired product by polymer synthesis and patterning in a single step. In this work, we validate the printer capabilities by fabrication of a series of 3D structures using an aliphatic polyurea system (isophorone diisocyanate IPDI and poly(propylene glycol) bis(2-aminopropyl ether) PEA-400). The influence of temperature and ink ratio on the material properties has been investigated. An increase in both IPDI and temperature facilitates the production of materials with higher Young's Modulus E and higher ultimate strength U. The possibility of printing different materials i.e. ductile (U = 2 MPa, ε B = 450%), quasi-brittle (U = 14 MPa, ε B = 350%), and brittle (U = 10 MPa, ε B = 11%) by varying the printing process parameters using one set of inks has been presented. The anisotropy of the material properties arising from different printing directions is at the 20% level.
Collapse
Affiliation(s)
- Maciej Zawadzki
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland +48 (22) 234 7475
- Zdalny Serwis sp z o.o. Wysowska 12 02-928 Warsaw Poland
| | | | - Sebastian Kowalczyk
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland +48 (22) 234 7475
| | - Andrzej Plichta
- Faculty of Chemistry, Warsaw University of Technology Noakowskiego 3 00-664 Warsaw Poland +48 (22) 234 7475
| | - Jan Jaczewski
- AVICON Advanced Vision Control Jerozolimskie 202 Warsaw Poland
| | | |
Collapse
|
22
|
Zheng J, Zhou Z, Zhu L, Chen Q, Hong M, Fu H. Room temperature self-healing CIP/PDA/MWCNTs composites based on imine reversible covalent bond as microwave absorber. REACT FUNCT POLYM 2022. [DOI: 10.1016/j.reactfunctpolym.2022.105179] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
23
|
Zhang C, Lu X, Wang Z, Xia H. Progress in Utilizing Dynamic Bonds to Fabricate Structurally Adaptive Self-Healing, Shape Memory, and Liquid Crystal Polymers. Macromol Rapid Commun 2021; 43:e2100768. [PMID: 34964192 DOI: 10.1002/marc.202100768] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/15/2021] [Indexed: 11/09/2022]
Abstract
Stimuli-responsive structurally dynamic polymers are capable of mimicking the biological systems to adapt themselves to the surrounding environmental changes and subsequently exhibiting a wide range of responses ranging from self-healing to complex shape-morphing. Dynamic self-healing polymers (SHPs), shape-memory polymers (SMPs) and liquid crystal elastomers (LCEs), which are three representative examples of stimuli-responsive structurally dynamic polymers, have been attracting broad and growing interest in recent years because of their potential applications in the fields of electronic skin, sensors, soft robots, artificial muscles, and so on. We review recent advances and challenges in the developments towards dynamic SHPs, SMPs and LCEs, focusing on the chemistry strategies and the dynamic reaction mechanisms that enhance the performances of the materials including self-healing, reprocessing and reprogramming. We compare and discuss the different dynamic chemistries and their mechanisms on the enhanced functions of the materials, where three summary tables are presented: a library of dynamic bonds and the resulting characteristics of the materials. Finally, we provide a critical outline of the unresolved issues and future perspectives on the emerging developments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Chun Zhang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Xili Lu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Zhanhua Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| | - Hesheng Xia
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu, 610065, China
| |
Collapse
|
24
|
Liu L, Zhu M, Xu X, Li X, Ma Z, Jiang Z, Pich A, Wang H, Song P. Dynamic Nanoconfinement Enabled Highly Stretchable and Supratough Polymeric Materials with Desirable Healability and Biocompatibility. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2105829. [PMID: 34599781 DOI: 10.1002/adma.202105829] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Lightweight polymeric materials are highly attractive platforms for many potential industrial applications in aerospace, soft robots, and biological engineering fields. For these real-world applications, it is vital for them to exhibit a desirable combination of great toughness, large ductility, and high strength together with desired healability and biocompatibility. However, existing material design strategies usually fail to achieve such a performance portfolio owing to their different and even mutually exclusive governing mechanisms. To overcome these hurdles, herein, for the first time a dynamic hydrogen-bonded nanoconfinement concept is proposed, and the design of highly stretchable and supratough biocompatible poly(vinyl alcohol) (PVA) with well-dispersed dynamic nanoconfinement phases induced by hydrogen-bond (H-bond) crosslinking is demonstrated. Because of H-bond crosslinking and dynamic nanoconfinement, the as-prepared PVA nanocomposite film exhibits a world-record toughness of 425 ± 31 MJ m-3 in combination with a tensile strength of 98 MPa and a large break strain of 550%, representing the best of its kind and even outperforming most natural and artificial materials. In addition, the final polymer exhibits a good self-healing ability and biocompatibility. This work affords new opportunities for creating mechanically robust, healable, and biocompatible polymeric materials, which hold great promise for applications, such as soft robots and artificial ligaments.
Collapse
Affiliation(s)
- Lei Liu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Menghe Zhu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
- School of Materials Science and Engineering, Tongji University, Shanghai, 201804, China
| | - Xiaodong Xu
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Xin Li
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Zhewen Ma
- College of Chemistry and Materials Engineering, Zhejiang A&F University, Hangzhou, 311300, China
| | - Zhen Jiang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Andrij Pich
- DWI-Leibniz-Institute for Interactive Materials e.V, 52056, Aachen, Germany
- Institute for Technical and Macromolecular Chemistry, RWTH Aachen University, 52074, Aachen, Germany
| | - Hao Wang
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| | - Pingan Song
- Centre for Future Materials, University of Southern Queensland, Springfield Central, 4300, Australia
| |
Collapse
|
25
|
He C, Liang F, Veeramuthu L, Cho C, Benas J, Tzeng Y, Tseng Y, Chen W, Rwei A, Kuo C. Super Tough and Spontaneous Water-Assisted Autonomous Self-Healing Elastomer for Underwater Wearable Electronics. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102275. [PMID: 34519441 PMCID: PMC8564429 DOI: 10.1002/advs.202102275] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Indexed: 05/19/2023]
Abstract
Self-healing soft electronic material composition is crucial to sustain the device long-term durability. The fabrication of self-healing soft electronics exposed to high moisture environment is a significant challenge that has yet to be fully achieved. This paper presents the novel concept of a water-assisted room-temperature autonomous self-healing mechanism based on synergistically dynamic covalent Schiff-based imine bonds with hydrogen bonds. The supramolecular water-assisted self-healing polymer (WASHP) films possess rapid self-healing kinetic behavior and high stretchability due to a reversible dissociation-association process. In comparison with the pristine room-temperature self-healing polymer, the WASHP demonstrates favorable mechanical performance at room temperature and a short self-healing time of 1 h; furthermore, it achieves a tensile strain of 9050%, self-healing efficiency of 95%, and toughness of 144.2 MJ m-3 . As a proof of concept, a versatile WASHP-based light-emitting touch-responsive device (WASHP-LETD) and perovskite quantum dot (PeQD)-based white LED backlight are designed. The WASHP-LETD has favorable mechanical deformation performance under pressure, bending, and strain, whereas the WASHP-PeQDs exhibit outstanding long-term stability even over a period exceeding one year in a boiling water environment. This paper provides a mechanically robust approach for producing eco-friendly, economical, and waterproof e-skin device components.
Collapse
Affiliation(s)
- Cyuan‐Lun He
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Fang‐Cheng Liang
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Loganathan Veeramuthu
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Chia‐Jung Cho
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Jean‐Sebastien Benas
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Yung‐Ru Tzeng
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Yen‐Lin Tseng
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Wei‐Cheng Chen
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| | - Alina Rwei
- Department of Chemical EngineeringDelft University of TechnologyDelft2629 HZNetherlands
| | - Chi‐Ching Kuo
- Institute of Organic and Polymeric MaterialsResearch and Development Center of Smart Textile TechnologyNational Taipei University of TechnologyNo. 1, Sec. 3, Chung‐Hsiao East RoadTaipei10608Taiwan
| |
Collapse
|
26
|
Supramolecular polyurea hydrogels with anti-swelling capacity, reversible thermochromic properties, and tunable water content and mechanical performance. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124213] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
27
|
Xie H, Liu X, Sheng D, Wu H, Zhou Y, Tian X, Sun Y, Shi B, Yang Y. Novel titin-inspired high-performance polyurethanes with self-healing and recyclable capacities based on dual dynamic network. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.124096] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
28
|
Nellepalli P, Patel T, Oh JK. Dynamic Covalent Polyurethane Network Materials: Synthesis and Self-Healability. Macromol Rapid Commun 2021; 42:e2100391. [PMID: 34418209 DOI: 10.1002/marc.202100391] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/12/2021] [Indexed: 02/06/2023]
Abstract
Polyurethane (PU) has not only been widely used in the daily lives, but also extensively explored as an important class of the essential polymers for various applications. In recent years, significant efforts have been made on the development of self-healable PU materials that possess high performance, extended lifetime, great reliability, and recyclability. A promising approach is the incorporation of covalent dynamic bonds into the design of PU covalently crosslinked polymers and thermoplastic elastomers that can dissociate and reform indefinitely in response to external stimuli or autonomously. This review summarizes various strategies to synthesize self-healable, reprocessable, and recyclable PU materials integrated with dynamic (reversible) Diels-Alder cycloadduct, disulfide, diselenide, imine, boronic ester, and hindered urea bond. Furthermore, various approaches utilizing the combination of dynamic covalent chemistries with nanofiller surface chemistries are described for the fabrication of dynamic heterogeneous PU composites.
Collapse
Affiliation(s)
- Pothanagandhi Nellepalli
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Twinkal Patel
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| | - Jung Kwon Oh
- Department of Chemistry and Biochemistry, Concordia University, Montreal, Quebec, H4B 1R6, Canada
| |
Collapse
|
29
|
Wang D, Wang Z, Ren S, Xu J, Wang C, Hu P, Fu J. Molecular engineering of a colorless, extremely tough, superiorly self-recoverable, and healable poly(urethane-urea) elastomer for impact-resistant applications. MATERIALS HORIZONS 2021; 8:2238-2250. [PMID: 34846428 DOI: 10.1039/d1mh00548k] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Polyurethane or polyurea elastomers with superb mechanical strength and toughness, good self-recoverability and healable characteristics are of key significance for practical applications. However, some mutually exclusive conflicts among these properties make it challenging to optimize them simultaneously. Herein, we report a facile strategy to fabricate a colorless healable poly(urethane-urea) elastomer with the highest reported mechanical toughness and recoverable energy dissipation capability (503.3 MJ m-3 and 37.3 MJ m-3 recovered after 7× stretching). These results were achieved via implanting a large number of irregularly arranged urea H-bonds into units of hard domains of weak and soft, self-healing polymer, which led to a dramatic increase in the Young's modulus, tensile strength, toughness, and fracture energy, while maintaining dynamic adaptiveness and responsiveness. Similar to other external stimuli, such as heat, light, or electricity, etc., trace solvent is capable of dissociating noncovalent crosslinks, promoting the mobility of polymer chains surrounding the fracture surface, and thus endowing the elastomer with healability. Impressively, this elastomer possessed outstanding impact-resistance and energy-absorbing ability, even under relatively high temperature. Moreover, it recovered this functionality even after severe deformation or accidental mechanical damage.
Collapse
Affiliation(s)
- Dong Wang
- School of Chemical Engineering, Nanjing University of Science and Technology, 210094, China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Exploring piperazine for intrinsic weather-proof, robust and self-healable poly(urethane urea) toward surface and tire protection. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123829] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
31
|
Hu J, Yang R, Zhang L, Chen Y, Sheng X, Zhang X. Robust, transparent, and self-healable polyurethane elastomer via dynamic crosslinking of phenol-carbamate bonds. POLYMER 2021. [DOI: 10.1016/j.polymer.2021.123674] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
32
|
Zhang H, Yang S, Yang Z, Wang D, Han J, Li C, Zhu C, Xu J, Zhao N. An Extremely Stretchable and Self-Healable Supramolecular Polymer Network. ACS APPLIED MATERIALS & INTERFACES 2021; 13:4499-4507. [PMID: 33433191 DOI: 10.1021/acsami.0c19560] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of a single polymer network with extreme stretchability, relatively high mechanical strength, and fast and facile autonomous room-temperature self-healing capability still remains a challenge. Herein, supramolecular polymer networks are fabricated by synergistically incorporating metal-ligand and hydrogen bonds in poly(propylene glycol) (PPG). The representative specimen, PPG-Im-MDA-1.5-0.25-Cu, shows a combination of notable mechanical properties involving an extreme stretching ratio of 346 ± 14× and a Young's modulus of 2.10 ± 0.14 MPa, which are superior to the previously reported extremely stretchable polymeric materials. Notably, the destroyed specimen can fully recover mechanical performances within 1 h. The tunability of mechanical properties and self-healing capability has been actualized by merely tailoring the content of a chain extender. The application of the as-prepared supramolecular PPG network in constructing a flexible and self-healable conductor has been demonstrated. This strategy provides some insights for preparing extremely stretchable and self-healable polymeric materials.
Collapse
Affiliation(s)
- Huan Zhang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shijia Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhusheng Yang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Juanjuan Han
- Center for Physicochemical Analysis and Measurement, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Cuihua Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Caizhen Zhu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jian Xu
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ning Zhao
- Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Laboratory of Polymer Physics and Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
33
|
Eastmond T, Hu J, Alizadeh V, Hrubiak R, Oswald J, Amirkhizi A, Peralta P. Probing High-Pressure Structural Evolution in Polyurea with In Situ Energy-Dispersive X-ray Diffraction and Molecular Dynamics Simulations. Macromolecules 2021. [DOI: 10.1021/acs.macromol.0c02266] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Tyler Eastmond
- Mechanical and Aerospace Engineering, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| | - Jing Hu
- Mechanical and Aerospace Engineering, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| | - Vahidreza Alizadeh
- Department of Mechanical Engineering, University of Massachusetts Lowell, Dandeneau Hall
219, 1 University Ave, Lowell, Massachusetts 01854, United States
| | - Rostislav Hrubiak
- High Pressure Collaborative Access Team, X-ray Science Division, Argonne National Laboratory, Argonne, Illinois 60439, United States
| | - Jay Oswald
- Mechanical and Aerospace Engineering, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| | - Alireza Amirkhizi
- Department of Mechanical Engineering, University of Massachusetts Lowell, Dandeneau Hall
219, 1 University Ave, Lowell, Massachusetts 01854, United States
| | - Pedro Peralta
- Mechanical and Aerospace Engineering, Arizona State University, 501 E Tyler Mall, Tempe, Arizona 85287, United States
| |
Collapse
|
34
|
Chen ZH, Fan ST, Qiu ZJ, Nie ZJ, Zhang SX, Zhang S, Li BJ, Cao Y. Tough double-network elastomers with slip-rings. Polym Chem 2021. [DOI: 10.1039/d1py00327e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
In order to surmount the inherent trade-off between toughness and stiffness for most elastomers, we developed a strategy which let two polymer networks form an interpenetrated structure through introducing slip-rings by a very simple one-step synthesis method.
Collapse
Affiliation(s)
- Zhi-Hui Chen
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Shu-Ting Fan
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Zhen-Jiang Qiu
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Zi-Jun Nie
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Shao-Xia Zhang
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Sheng Zhang
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| | - Bang-Jing Li
- Chengdu Institute of Biology
- Chinese Academy of Sciences
- Chengdu 610041
- China
| | - Ya Cao
- State Key Laboratory of Polymer Materials Engineering
- Polymer Research Institute of Sichuan University
- Chengdu 610065
- China
| |
Collapse
|
35
|
Wang Y, Xiao Y, Fu X, Jiang L, Yuan A, Xu H, Wei Z, Lei Y, Lei J. A permanent covalent bond-crosslinked thermosetting polymer with room-temperature autonomous self-healing performance. NEW J CHEM 2021. [DOI: 10.1039/d1nj04330g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A room-temperature autonomous self-healing thermosetting polymer was prepared by crosslinking hydroxylated hyperbranched polymer with permanent covalent bonds for the first time.
Collapse
Affiliation(s)
- Yuechuan Wang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yao Xiao
- Chemical Synthesis and Pollution Control Key Laboratory of Sichuan Province, College of Chemistry and Chemical Engineering, China West Normal University, Nanchong 637002, China
| | - Xiaowei Fu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Liang Jiang
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Anqian Yuan
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Hualiang Xu
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Zhengkai Wei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Yuan Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| | - Jingxin Lei
- State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
| |
Collapse
|
36
|
Jing T, Heng X, Guifeng X, Ling C, Pingyun L, Xiaode G. Highly stretchable, high efficiency room temperature self-healing polyurethane adhesive based on hydrogen bonds – applicable to solid rocket propellants. Polym Chem 2021. [DOI: 10.1039/d1py00439e] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The introduction of weak hydrogen bonds based on the isophorone structure enables the polymer to have high stretchability and self-healing ability at room temperature to heal propellant damage.
Collapse
Affiliation(s)
- Tu Jing
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Xu Heng
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Xiang Guifeng
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Chen Ling
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Li Pingyun
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| | - Guo Xiaode
- National Special Superfine Powder Engineering Research Center of China
- Nanjing University of Science and Technology
- Nanjing
- P. R. China
| |
Collapse
|
37
|
Dzhardimalieva GI, Yadav BC, Kudaibergenov SE, Uflyand IE. Basic Approaches to the Design of Intrinsic Self-Healing Polymers for Triboelectric Nanogenerators. Polymers (Basel) 2020; 12:E2594. [PMID: 33158271 PMCID: PMC7694280 DOI: 10.3390/polym12112594] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 10/26/2020] [Accepted: 11/02/2020] [Indexed: 12/13/2022] Open
Abstract
Triboelectric nanogenerators (TENGs) as a revolutionary system for harvesting mechanical energy have demonstrated high vitality and great advantage, which open up great prospects for their application in various areas of the society of the future. The past few years have seen exponential growth in many new classes of self-healing polymers (SHPs) for TENGs. This review presents and evaluates the SHP range for TENGs, and also attempts to assess the impact of modern polymer chemistry on the development of advanced materials for TENGs. Among the most widely used SHPs for TENGs, the analysis of non-covalent (hydrogen bond, metal-ligand bond), covalent (imine bond, disulfide bond, borate bond) and multiple bond-based SHPs in TENGs has been performed. Particular attention is paid to the use of SHPs with shape memory as components of TENGs. Finally, the problems and prospects for the development of SHPs for TENGs are outlined.
Collapse
Affiliation(s)
- Gulzhian I. Dzhardimalieva
- Laboratory of Metallopolymers, The Institute of Problems of Chemical Physics RAS, 142432 Chernogolovka, Moscow Region, Russia;
- Moscow Aviation Institute (National Research University), 125993 Moscow, Russia
| | - Bal C. Yadav
- Nanomaterials and Sensors Research Laboratory, Department of Physics, Babasaheb Bhimrao Ambedkar University, Lucknow 226025, India;
| | - Sarkyt E. Kudaibergenov
- Institute of Polymer Materials and Technology, Almaty 050019, Kazakhstan;
- Laboratory of Engineering Profile, Satbayev University, Almaty 050013, Kazakhstan
| | - Igor E. Uflyand
- Department of Chemistry, Southern Federal University, 344006 Rostov-on-Don, Russia
| |
Collapse
|
38
|
Zhang Z, Chen M, Schneider I, Liu Y, Liang S, Sun S, Koynov K, Butt HJ, Wu S. Long Alkyl Side Chains Simultaneously Improve Mechanical Robustness and Healing Ability of a Photoswitchable Polymer. Macromolecules 2020. [DOI: 10.1021/acs.macromol.0c01784] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Zhenlin Zhang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, China
| | - Mingsen Chen
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Igor Schneider
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Yazhi Liu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Shuofeng Liang
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Shijie Sun
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
| | - Kaloian Koynov
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Hans-Jürgen Butt
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Si Wu
- CAS Key Laboratory of Soft Matter Chemistry, Hefei National Laboratory for Physical Sciences at the Microscale, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei 230026, China
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|