1
|
Pi S, Liu C, Zhang J, Li N, Shen J, Guo W, Qin L, Zhao J, Zhang S, Wang Z. Durable Rapid Self-Disinfection, Reusable Protective Clothing Based on the Ag-Pd@MoS 2 Nanozyme with Enhanced Triple-Mode Synergistic Antibacterial Effect. ACS APPLIED MATERIALS & INTERFACES 2023; 15:18032-18044. [PMID: 37000034 DOI: 10.1021/acsami.2c23130] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Personal protective clothing plays an important role in isolating microorganisms and harmful ultrafine dust, but it cannot quickly inactivate bacteria intercepted on the surface, making it a potential source of infection. However, spontaneous and durable rapid sterilization is a major challenge for commercial protective clothing. Herein, we exquisitely engineered a visible light-enhanced Ag-Pd@MoS2 nanozyme-based fabric, named PVDF/Ag-Pd@MoS2/PAN fabric (PAPMP fabric), with prominent triple-mode synergistic antibacterial effect through the replacement reaction, electrospinning technique, and vacuum filtration method. The modification of Ag-Pd greatly strengthened the absorption of MoS2 nanosheets to the visible light spectrum (390-780 nm) and its corresponding catalytic performance. Meanwhile, the combination of MoS2 nanosheets significantly enhanced the oxidase-like characteristics of Ag-Pd under sunlight irradiation, increasing the yield of surface-bound 1O2 ∼4.54 times in 5 min. In addition, the obtained Ag-Pd@MoS2 nanozyme showed an excellent photo-to-thermal conversion property (36.12%), which enabled the sharp increase in the surface temperature of the PAPMP fabric to 62.8 °C in 1 min under a solar simulator (1 W/cm2). Correspondingly, the obtained PAPMP fabric exhibited excellent intrinsic antibacterial effect and greatly shortened the sterilization time from 4 h to only 5 min under sunlight stimulation. The rapid antibacterial effect of the fabric was attributable to the enhanced production rate of surface-bound reactive oxygen species and the increased temperature by solar irradiation. Notably, the fabric still maintained the efficient germicidal effect even after 30 washing cycles. In addition to high reusability, the fabric also had outstanding biological compatibility and water resistance. Our work provides a novel strategy to improve the inherent timely sterilization and heat preservation efficiency of protective clothing.
Collapse
Affiliation(s)
- Shuai Pi
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Cui Liu
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jixiang Zhang
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Nian Li
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jianjun Shen
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Wei Guo
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Qin
- School of Mechatronics and Vehicle Engineering, Chongqing Jiaotong University, Chongqing 400074, China
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Jun Zhao
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shudong Zhang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Zhenyang Wang
- Institute of Solid-State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, Anhui 230031, China
- Key Laboratory of Photovoltaic and Energy Conservation Materials, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| |
Collapse
|
2
|
Liu L, Lai Y, Cao J, Peng Y, Tian T, Fu W. Exploring the Antibacterial and Biosensing Applications of Peroxidase-Mimetic Ni 0.1Cu 0.9S Nanoflower. BIOSENSORS 2022; 12:874. [PMID: 36291011 PMCID: PMC9599305 DOI: 10.3390/bios12100874] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Nanozymes, as artificial enzymes with the biological action of natural enzymes, have enormous potential in the fields of disease diagnosis, bacteriostasis, biosensing, etc. In this work, the Ni0.1Cu0.9S nanoflower was successfully synthesized through a one-step hydrothermal method. A combined strategy of Ni doping and morphology design was employed to adjust its electronic structure and active sites, endowing the Ni0.1Cu0.9S nanoflower with excellent peroxidase-like activity. Therefore, it can catalyze the decomposition of H2O2 to generate •OH with higher antibacterial activity, establishing a broad-spectrum antibacterial system based on the Ni0.1Cu0.9S nanoflower against E. coli and S. aureus, which avoids the harm of a high concentration of H2O2. Additionally, the colorless substrate TMB can be catalytically oxidized into blue ox-TMB via •OH. As a result, a colorimetric technique with rapid and accurate detection of ascorbic acid (AA) by the unaided eye was designed, in view of the specific inhibition effect towards the oxidation of TMB. This detection platform has a wide linear range (10~800 μM) with a low limit of detection (0.84 μM) and exhibits a satisfactory selectivity toward the detection of AA. This study sheds new light on the application of copper-containing nanozymes in the fields of biomedicine and bioassay.
Collapse
Affiliation(s)
- Li Liu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yayu Lai
- The Department of General Practice, The 958th Hospital of Chinese People’s Liberation Army, Chongqing 400000, China
| | - Jinming Cao
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Yu Peng
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Tian Tian
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| | - Wensheng Fu
- Chongqing Key Laboratory of Green Synthesis and Applications, College of Chemistry, Chongqing Normal University, Chongqing 401331, China
| |
Collapse
|
3
|
Maddheshiya S, Nara S. Recent Trends in Composite Nanozymes and Their Pro-Oxidative Role in Therapeutics. Front Bioeng Biotechnol 2022; 10:880214. [PMID: 35711631 PMCID: PMC9197165 DOI: 10.3389/fbioe.2022.880214] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Accepted: 04/20/2022] [Indexed: 01/16/2023] Open
Abstract
Nanozymes are inorganic nanostructures whose enzyme mimic activities are increasingly explored in disease treatment, taking inspiration from natural enzymes. The catalytic ability of nanozymes to generate reactive oxygen species can be used for designing effective antimicrobials and antitumor therapeutics. In this context, composite nanozymes are advantageous, particularly because they integrate the properties of various nanomaterials to offer a single multifunctional platform combining photodynamic therapy (PDT), photothermal therapy (PTT), and chemodynamic therapy (CDT). Hence, recent years have witnessed great progress in engineering composite nanozymes for enhanced pro-oxidative activity that can be utilized in therapeutics. Therefore, the present review traverses over the newer strategies to design composite nanozymes as pro-oxidative therapeutics. It provides recent trends in the use of composite nanozymes as antibacterial, antibiofilm, and antitumor agents. This review also analyzes various challenges yet to be overcome by pro-oxidative composite nanozymes before being used in the field.
Collapse
Affiliation(s)
- Shilpa Maddheshiya
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| | - Seema Nara
- Department of Biotechnology, Motilal Nehru National Institute of Technology, Allahabad, India
| |
Collapse
|
4
|
Jin X, Gao F, Qin M, Yu Y, Zhao Y, Shao T, Chen C, Zhang W, Xie B, Xiong Y, Yang L, Wu Y. How to Make Personal Protective Equipment Spontaneously and Continuously Antimicrobial (Incorporating Oxidase-like Catalysts). ACS NANO 2022; 16:7755-7771. [PMID: 35491982 DOI: 10.1021/acsnano.1c11647] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The inability of commercial personal protective equipment (PPE) to inactivate microbes in the droplets/aerosols they intercept makes used PPE a potential source of cross-contamination. To make PPE spontaneously and continuously antimicrobial, we incorporate PPE with oxidase-like catalysts, which efficiently convert O2 into reactive oxygen species (ROS) without requiring any externally applied stimulus. Using a single-atom catalyst (SAC) nanoparticle containing atomically dispersed copper atoms as the reactive centers (Cu-SAC) and a silver-palladium bimetallic alloy nanoparticle (AgPd0.38) as models for oxidase-like catalysts, we show that the incorporation of oxidase-like catalysts enables PPE to inactivate bacteria in the droplets/aerosols they intercept without requiring any externally applied stimulus. Notably, this approach works both for PPE that are fibrous and woven such as a commercial KN95 facial respirator and for those made of solid plastics such as an apron. This work suggests a feasible and global approach for preventing PPE from spreading infectious diseases.
Collapse
Affiliation(s)
- Xinyang Jin
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Feng Gao
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Mingxin Qin
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yunpeng Yu
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yue Zhao
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Tianyi Shao
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Cai Chen
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- College of Chemistry and Chemical Engineering, Southwest Petroleum University, Chengdu 610500, China
| | - Wenhua Zhang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Bin Xie
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yujie Xiong
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Lihua Yang
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| | - Yuen Wu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
- School of Chemistry and Materials Science, University of Science and Technology of China, 96 Jinzhai Road, Hefei, Anhui 230026, China
| |
Collapse
|
5
|
Fang X, Wang C, Zhou S, Cui P, Hu H, Ni X, Jiang P, Wang J. Hydrogels for Antitumor and Antibacterial Therapy. Gels 2022; 8:gels8050315. [PMID: 35621613 PMCID: PMC9141473 DOI: 10.3390/gels8050315] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 12/12/2022] Open
Abstract
As a highly absorbent and hydrophobic material with a three-dimensional network structure, hydrogels are widely used in biomedical fields for their excellent biocompatibility, low immunogenicity, adjustable physicochemical properties, ability to encapsulate a variety of drugs, controllability, and degradability. Hydrogels can be used not only for wound dressings and tissue repair, but also as drug carriers for the treatment of tumors. As multifunctional hydrogels are the focus for many researchers, this review focuses on hydrogels for antitumor therapy, hydrogels for antibacterial therapy, and hydrogels for co-use in tumor therapy and bacterial infection. We highlighted the advantages and representative applications of hydrogels in these fields and also outlined the shortages and future orientations of this useful tool, which might give inspirations for future studies.
Collapse
Affiliation(s)
- Xiuling Fang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Cheng Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
| | - Shuwen Zhou
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Pengfei Cui
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Huaanzi Hu
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
| | - Xinye Ni
- Second People’s Hospital of Changzhou, Nanjing Medical University, Changzhou 213003, China
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Pengju Jiang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| | - Jianhao Wang
- School of Pharmacy, Changzhou University, Changzhou 213164, China; (X.F.); (C.W.); (S.Z.); (P.C.); (H.H.)
- Correspondence: (X.N.); (P.J.); (J.W.)
| |
Collapse
|
6
|
Wang D, Dang X, Tan B, Zhang Q, Zhao H. 3D V 2O 5-MoS 2/rGO nanocomposites with enhanced peroxidase mimicking activity for sensitive colorimetric determination of H 2O 2 and glucose. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 269:120750. [PMID: 34929623 DOI: 10.1016/j.saa.2021.120750] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 12/03/2021] [Accepted: 12/09/2021] [Indexed: 06/14/2023]
Abstract
In this work, we reported a novel nanozyme (3D V2O5-MoS2/rGO) by decorating MoS2 nano-flowers and V2O5 nanoparticles on reduced graphene oxide (rGO). The 3D V2O5-MoS2/rGO nanocomposites exhibited intrinsic peroxidase mimicking activity and catalyzed the oxidation of 3, 3', 5, 5'-tetramethylbenzidine (TMB) to produce a blue colored product in the presence of H2O2. Compared with horseradish peroxidase (HRP), 3D V2O5-MoS2/rGO nanocomposites displayed high catalytic velocity (Vmax) and affinity (Km) for substrates (H2O2 and TMB). The study of the catalytic mechanism showed that the reduction of V5+ and the oxidation of S2- in the 3D V2O5-MoS2/rGO nanocomposites accelerate electron transfer between H2O2 and TMB, which enhanced the peroxidase mimicking activity of 3D V2O5-MoS2/rGO nanocomposites. The as-synthetized 3D V2O5-MoS2/rGO could be used for the colorimetric detection of H2O2 in the range of 20.00-800.00 μM with the LOD of 12.40 μM (3σ/S). Moreover, the 3D V2O5-MoS2/rGO could also be used for the detection of glucose in the range of 4.00-300.00 μM with the LOD of 3.99 μM (3σ/S). In addition, the as-synthetized novel peroxidase mimics has good applicability for sensitive colorimetric determination of glucose in human blood samples and artificial urine samples, and has broad application prospects as a multi-functional sensing platform in clinical diagnosis.
Collapse
Affiliation(s)
- Denghao Wang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xueming Dang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Bing Tan
- Key Laboratory of Yellow River and Huai River Water Environment and Pollution Control, Ministry of Education, School of Environment, Henan Normal University, Xinxiang, Henan 453007, China
| | - Qi Zhang
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Huimin Zhao
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
7
|
Zhou C, Wang Q, Jiang J, Gao L. Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics (Basel) 2022; 11:antibiotics11030390. [PMID: 35326853 PMCID: PMC8944833 DOI: 10.3390/antibiotics11030390] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 03/04/2022] [Accepted: 03/07/2022] [Indexed: 01/27/2023] Open
Abstract
Infectious diseases caused by bacteria represent a global threat to human health. However, due to the abuse of antibiotics, drug-resistant bacteria have evolved rapidly and led to the failure of antibiotics treatment. Alternative antimicrobial strategies different to traditional antibiotics are urgently needed. Enzyme-based antibacterials (Enzybiotics) have gradually attracted interest owing to their advantages including high specificity, rapid mode-of-action, no resistance development, etc. However, due to their low stability, potential immunogenicity, and high cost of natural enzymes, enzybiotics have limitations in practical antibacterial therapy. In recent years, many nanomaterials with enzyme-like activities (Nanozymes) have been discovered as a new generation of artificial enzymes and perform catalytic antibacterial effects against bacterial resistance. To highlight the progress in this field of nanozyme-based antibacterials (Nanozybiotics), this review discussed the antibacterial mechanism of action of nanozybiotics with a comparison with enzybiotics. We propose that nanozybiotics may bear promising applications in antibacterial therapy, due to their high stability, rapid bacterial killing, biofilm elimination, and low cost.
Collapse
Affiliation(s)
- Caiyu Zhou
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qian Wang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- College of Life Sciences, Graduate School of University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jing Jiang
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
| | - Lizeng Gao
- CAS Engineering Laboratory for Nanozyme, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; (C.Z.); (Q.W.); (J.J.)
- Nanozyme Medical Center, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou 450001, China
- Correspondence:
| |
Collapse
|
8
|
Abstract
Nanozyme is a series of nanomaterials with enzyme-mimetic activities that can proceed with the catalytic reactions of natural enzymes. In the field of biomedicine, nanozymes are capturing tremendous attention due to their high stability and low cost. Enzyme-mimetic activities of nanozymes can be regulated by multiple factors, such as the chemical state of metal ion, pH, hydrogen peroxide (H2O2), and glutathione (GSH) level, presenting great promise for biomedical applications. Over the past decade, multi-functional nanozymes have been developed for various biomedical applications. To promote the understandings of nanozymes and the development of novel and multifunctional nanozymes, we herein provide a comprehensive review of the nanozymes and their applications in the biomedical field. Nanozymes with versatile enzyme-like properties are briefly overviewed, and their mechanism and application are discussed to provide understandings for future research. Finally, underlying challenges and prospects of nanozymes in the biomedical frontier are discussed in this review.
Collapse
|
9
|
Development of enzyme-free single-step immunoassays for glycocholic acid based on palladium nanoparticle-mediated signal generation. Anal Bioanal Chem 2021; 413:5733-5742. [PMID: 34476526 DOI: 10.1007/s00216-021-03548-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 06/12/2021] [Accepted: 07/13/2021] [Indexed: 10/20/2022]
Abstract
Palladium nanoparticles (PdNPs) are composed mainly of inert noble metals, and their outstanding properties have attracted wide attention. PdNPs are not only capable of mimicking the oxidase-like characteristics of natural bio-enzymes, but they also present a clear black band in the test zone. In this work, the synthesized PdNPs promoted a transformation of colorless tetramethylbenzidine (TMB) to a blue oxidation product of TMB, providing a Km value of 0.09 mM for TMB, and revealing the good catalytic performance of the synthesized PdNPs. For both signal generation and amplification, PdNPs effectively replaced natural bio-enzymes as a new labeling tag. Thus, the PdNP-based enzyme-free single-step immunoassays were successfully developed for efficient and sensitive detection of glycocholic acid (GCA). Under optimal conditions, a noticeable linear relationship was identified by the enzyme-linked immunosorbent assay (ELISA) over a range of 8-2390 ng/mL, while the visual limit of detection (vLOD) in the constructed lateral flow immunoassay (LFA) was 10 ng/mL for GCA. The recovery rate in spiked urine samples obtained by the ELISA ranged from 84.2 to 117.9%, which was consistent with the results in LFA. The present work demonstrates the potential of PdNPs as labeling matrices in enzyme-free single-step immunoassays.
Collapse
|
10
|
Wang Q, Jiang J, Gao L. Nanozyme-based medicine for enzymatic therapy: progress and challenges. Biomed Mater 2021; 16. [PMID: 33601365 DOI: 10.1088/1748-605x/abe7b4] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/18/2021] [Indexed: 12/17/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like characteristics. As a new generation of artificial enzymes, nanozymes have the advantages of low cost, good stability, simple preparation, and easy storage, allowing them to overcome many of the limitations of natural enzymes in enzymatic therapy. Currently, most reported nanozymes exhibit oxidoreductase-like activities and can regulate redox balance in cells. Nanozymes with superoxide dismutase and catalase activity can be used to scavenge reactive oxygen species (ROS) for cell protection, while those with peroxidase and oxidase activity can generate ROS to kill harmful cells, such as tumor cells and bacteria. In this review, we summarize recent progress in nanozyme-based medicine for enzymatic therapy and highlight the opportunities and challenges in this field for future study.
Collapse
Affiliation(s)
- Qian Wang
- Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing, Beijing, 100101, CHINA
| | - Jing Jiang
- Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing, 100101, CHINA
| | - Lizeng Gao
- Institute of Biophysics Chinese Academy of Sciences, 15 Datun Road, Beijing, Beijing, 100101, CHINA
| |
Collapse
|