1
|
Memon WA, Zhu Y, Xiong S, Chen H, Lai H, Wang Y, Li H, Li M, He F. Dual Additive Strategy with Quasi-Planar Heterojunction Architecture Assisted in Morphology Optimization for High-Efficiency Organic Solar Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:69467-69478. [PMID: 39636704 DOI: 10.1021/acsami.4c17639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Achieving high-performance and stable organic solar cells (OSCs) remains a critical challenge, primarily due to the precise optimization required for active layer morphology. Herein, this work reports a dual additive strategy using 3,5-dichlorobromobenzene (DCBB) and 1,8-diiodooctane (DIO) to optimize the morphology of both bulk-heterojunction (BHJ) and quasi-planar heterojunction (Q-PHJ) based on donor D18 and acceptor BTP-eC9. The systematic results reveal that the dual additive strategy significantly promotes phase separation while inhibiting excessive aggregation, which, in turn, improves molecular order and crystallization. As a result, BHJ and Q-PHJ OSCs processed with dual additive DIO + DCBB achieve impressive power conversion efficiencies of 17.77% and 18.60%, respectively, the highest reported values for dual additive-processed OSCs. The superior performance is attributed to improved charge transport and reduced recombination losses, as evidenced by higher short-circuit current densities (JSC) and fill factors (FF). Importantly, Q-PHJ OSCs processed with either DCBB or DIO + DCBB, in comparison to BHJ OSCs, exhibit exceptional shelf-stability, maintaining 80% of their initial power conversion efficiency after 2660 and 2193 h, respectively. These findings underscore the potential of dual additive strategies to advance the development of stable, high-efficiency OSCs suitable for large-area fabrication, marking a significant step forward in renewable energy technology.
Collapse
Affiliation(s)
- Waqar Ali Memon
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yiwu Zhu
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Shilong Xiong
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Hui Chen
- School of Material Science and Engineering, Wuhan Institute of Technology, Wuhan 430079, China
| | - Hanjian Lai
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Yunpeng Wang
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Heng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Mingpeng Li
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
| | - Feng He
- Shenzhen Grubbs Institute and Department of Chemistry, Southern University of Science and Technology, Shenzhen 518055, China
- Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen 518055, China
- Institute of Innovative Materials, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
2
|
Wang X, Feng C, Liu P, He Z, Cao Y. Origin of the Additive-Induced V OC Change in Non-Fullerene Organic Solar Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2107106. [PMID: 35088934 DOI: 10.1002/smll.202107106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Additives are often used to adjust the morphology of the active layer to improve the performance of organic solar cells (OSCs). Here, taking typical high-efficiency non-fullerene systems as examples, the effect of the additive on the device performance in non-fullerene OSCs is systematically investigated. Surprisingly, an unpresented VOC change is observed in the opposite direction of the two typical systems (PM6:Y6 and PTB7-Th: ITIC) appearing after the incorporation of the additive DIO, which can be affected by the morphological differences as indicated by the several morphological studies. The bewildering VOC change caused by the additive in different material systems is supposed to originate from the different energy level variations as verified by the energy level studies. Molecular dynamic (MD) and density functional theory (DFT) calculations are also included to get an insight into the dynamic of the additive-induced morphological differences that are supposed to contribute to the energy level changes. Combining a series of morphological and energic studies as well as the theoretical calculations, the origin of unforeseeable VOC changes caused by additives in non-fullerene OSCs is clarified, and provides in-depth insights into the effects of additives on device performance.
Collapse
Affiliation(s)
- Xiaojing Wang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chuang Feng
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Peng Liu
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Zhicai He
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Yong Cao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Material Science and Engineering, South China University of Technology, Guangzhou, 510640, P. R. China
| |
Collapse
|
3
|
Schweda B, Reinfelds M, Hofstadler P, Trimmel G, Rath T. Recent Progress in the Design of Fused-Ring Non-Fullerene Acceptors-Relations between Molecular Structure and Optical, Electronic, and Photovoltaic Properties. ACS APPLIED ENERGY MATERIALS 2021; 4:11899-11981. [PMID: 35856015 PMCID: PMC9286321 DOI: 10.1021/acsaem.1c01737] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Organic solar cells are on the dawn of the next era. The change of focus toward non-fullerene acceptors has introduced an enormous amount of organic n-type materials and has drastically increased the power conversion efficiencies of organic photovoltaics, now exceeding 18%, a value that was believed to be unreachable some years ago. In this Review, we summarize the recent progress in the design of ladder-type fused-ring non-fullerene acceptors in the years 2018-2020. We thereby concentrate on single layer heterojunction solar cells and omit tandem architectures as well as ternary solar cells. By analyzing more than 700 structures, we highlight the basic design principles and their influence on the optical and electrical structure of the acceptor molecules and review their photovoltaic performance obtained so far. This Review should give an extensive overview of the plenitude of acceptor motifs but will also help to understand which structures and strategies are beneficial for designing materials for highly efficient non-fullerene organic solar cells.
Collapse
Affiliation(s)
- Bettina Schweda
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Matiss Reinfelds
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Petra Hofstadler
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Gregor Trimmel
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| | - Thomas Rath
- Institute for Chemistry and
Technology of Materials, NAWI Graz, Graz
University of Technology, Stremayrgasse 9, 8010Graz, Austria
| |
Collapse
|
4
|
Arefinia Z, Samajdar DP. Novel semi-analytical optoelectronic modeling based on homogenization theory for realistic plasmonic polymer solar cells. Sci Rep 2021; 11:3261. [PMID: 33547355 PMCID: PMC7864904 DOI: 10.1038/s41598-021-82525-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 01/20/2021] [Indexed: 11/30/2022] Open
Abstract
Numerical-based simulations of plasmonic polymer solar cells (PSCs) incorporating a disordered array of non-uniform sized plasmonic nanoparticles (NPs) impose a prohibitively long-time and complex computational demand. To surmount this limitation, we present a novel semi-analytical modeling, which dramatically reduces computational time and resource consumption and yet is acceptably accurate. For this purpose, the optical modeling of active layer-incorporated plasmonic metal NPs, which is described by a homogenization theory based on a modified Maxwell-Garnett-Mie theory, is inputted in the electrical modeling based on the coupled equations of Poisson, continuity, and drift-diffusion. Besides, our modeling considers the effects of absorption in the non-active layers, interference induced by electrodes, and scattered light escaping from the PSC. The modeling results satisfactorily reproduce a series of experimental data for photovoltaic parameters of plasmonic PSCs, demonstrating the validity of our modeling approach. According to this, we implement the semi-analytical modeling to propose a new high-efficiency plasmonic PSC based on the PM6:Y6 PSC, having the highest reported power conversion efficiency (PCE) to date. The results show that the incorporation of plasmonic NPs into PM6:Y6 active layer leads to the PCE over 18%.
Collapse
Affiliation(s)
- Zahra Arefinia
- Department of Photonics, Faculty of Physics, University of Tabriz, 51666-14766, Tabriz, Iran.
| | - Dip Prakash Samajdar
- Department of Electronics and Communication Engineering, PDPM Indian Institute of Information Technology, Design and Manufacturing, Jabalpur, Madhya Pradesh, 482005, India
| |
Collapse
|